CN102447378B - 一种缓冲开关电路 - Google Patents

一种缓冲开关电路 Download PDF

Info

Publication number
CN102447378B
CN102447378B CN201110434300.7A CN201110434300A CN102447378B CN 102447378 B CN102447378 B CN 102447378B CN 201110434300 A CN201110434300 A CN 201110434300A CN 102447378 B CN102447378 B CN 102447378B
Authority
CN
China
Prior art keywords
inductance
oxide
metal
semiconductor
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110434300.7A
Other languages
English (en)
Other versions
CN102447378A (zh
Inventor
李东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201110434300.7A priority Critical patent/CN102447378B/zh
Publication of CN102447378A publication Critical patent/CN102447378A/zh
Application granted granted Critical
Publication of CN102447378B publication Critical patent/CN102447378B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种缓冲开关电路,该电路包括通过导线相连的缓冲模块、开关模块、整流模块,其中所述缓冲模块用于缓冲所述开关模块的开通脉冲上升沿和关断脉冲下降沿;所述开关模块用于实现电路通路的闭合与断开;所述整流模块用于将输出电压进行整形,所述整流保护模块用于防止所述整流模块被反向击穿。本发明的缓冲开关电路在现有技术开关电路的基础上增加缓冲模块,使得开关管高速且低导通损耗;整流保护模块能够防止整流二极管被反向击穿,保证开关电路正常工作。

Description

一种缓冲开关电路
技术领域
本发明涉及开关电路,尤其涉及一种缓冲开关电路。
背景技术
开关电源主要用于功率转换,其中能量转换部分主要通过开关管的导通和关断完成能量的转换过程。如图1至图3所示,开关电源能量转换器部分最基本的拓扑形式为两种,即升压斩波(Boost)拓扑和降压斩波(Buck)拓扑,其他任何拓扑都是这两种基本拓扑的变种。自从开关电源出现以来,业界就一直致力于提高开关电源的功率密度,其中一个主要的手段就是提高工作频率。随着工作频率的提高,能量转换拓扑中的主要储能器件如电感L和电容C的容量都可以线性下降,从而可以减小电路的尺寸。但是,随着开关频率的提升,拓扑中一个重要的器件开关S的损耗也会线性上升,于是转换的效率下降,这是阻碍开关电源小型化的一个重要因素。
以开关电源中常用的开关器件MOSFET为例来分析(对于IGBT也可以适用),MOSFET开关管是沟道型相当于一个水闸,水闸越宽即沟道越宽导通电阻越小,但是闸门越宽开关的时间越长,而开关损耗是和开关时间成正比的。所以这是一个矛盾,不可能用单个开关管做到高速且低导通损耗的开关电路。
发明内容
本发明的目的在于提供一种降低开关器件上产生的损耗,提高开关频率的电路,解决现有技术存在的缺憾。
本发明采用如下技术方案实现:
一种缓冲开关电路,其特征在于,该电路包括通过导线相连的缓冲模块、开关模块、整流模块,其中:
所述缓冲模块通过一饱和电感缓冲所述开关模块的开通脉冲上升沿,通过一高速开关高导通电阻的MOS管缓冲所述开关模块的关断脉冲下降沿;
所述开关模块通过一低速开关低导通电阻的MOS管实现电路通路的闭合与断开;
所述整流模块用于将输出电压进行整形;
还包括与整流模块相连的整流保护模块,所述整流保护模块用于防止所述整流模块被反向击穿,所述整流保护模块包括第三电感、第四电感、限流电阻,所述第三电感通过励磁电源供电并与所述整流模块相连,所述限流电阻一端与第三电感相连,另一端与所述第四电感串联,所述第四电感与第一、二、三MOS管的源极、滤波电容、负载等电势连接。
进一步的,所述开关模块包括第一MOS管和第一电感,所述缓冲模块包括第二电感和第二MOS管,所述整流模块包括第一整流二极管、第二整流二极管、第三整流二极管,其中:
所述第一电感一端连接在输入端,另一端与第二电感相连,所述第二电感与第一MOS管的漏极相连,所述第二MOS管的漏极连接在第一电感和所述第一整流二极管之间,所述第二整流二极管和第三整流二极管同向串联后,其正极连接在所述第二电感和所述第一MOS管的漏极之间,其负极与第一整流二极管的负极相连后再与一用于滤除负载两端输出电压杂波的滤波电容相连,所述第一、二MOS管的源极和所述滤波电容、所述负载等电势连接。
进一步的,所述第一电感为功率电感。
进一步的,所述第一MOS管的型号是FDB8832,所述第二MOS管的型号是IPD135N03L。
进一步的,还包括第五电感和第三MOS管,所述第五电感一端与所述第二电感相连,另一端连接在第三MOS管的漏极上,所述第三MOS管的源极与第一、二MOS管、滤波电容和负载等电势连接。
进一步的,所述第三电感为饱和电感,所述第四电感为恒流源电感。
本发明具备的有益技术效果是:
在现有技术开关电路的基础上增加缓冲模块,使得开关管做高速且低导通损耗;整流保护模块能够防止整流二极管被反向击穿,保证开关电路正常工作。
图1是开关电源能量转换器升压斩波(Boost)的拓扑结构图。
附图说明
图2是开关电源能量转换器降压斩波(Buck)的拓扑结构图。
图3是开关电源的功率转换原理框图。
图4是MOSFET的等效电路图。
图5是本发明缓冲开关电路第一实施例的电路原理图。
图6是本发明缓冲开关电路第二实施例的电路原理图。
图7是本发明缓冲开关电路第三实施例的电路原理图。
图8是本发明开关周期状态分析饱和电感的磁滞回线图。
图9是本发明缓冲开关电路饱和变压器波形分析图。
图10是第一MOS管Q1的开通波形图。
图11是第二MOS管Q2的开通波形图。
图12是漏极电容震荡引起的Q1电流变化图。
图13是第一MOS管Q1的关断波形图。
图14是第二MOS管Q2的关断波形图。
图15是第一MOS管Q1向第二MOS管Q2转移电流的软关断波形图。
具体实施方式
通过下面对实施例的描述,将更加有助于公众理解本发明,但不能也不应当将申请人所给出的具体的实施例视为对本发明技术方案的限制,任何对部件或技术特征的定义进行改变和/或对整体结构作形式的而非实质的变换都应视为本发明的技术方案所限定的保护范围。
如图1至图3所示,开关电源主要用于功率转换。其中能量转换部分主要通过开关管的导通和关断完成能量的转换过程。开关电源能量转换器部分最基本的拓扑形式为两种,即升压斩波(Boost)拓扑和降压斩波(Buck)拓扑,其他任何拓扑都是这两种基本拓扑的变种,图1和图2中虚线框内部为基本能量转换拓扑。
如图4所示对现有技术MOSFET的等效模型进行损耗分析:导通损耗主要是电阻Rdson上的有效电流产生的损耗。驱动损耗是栅极Gate对结电容Cgs和结电容Cgd充放电所造成的能量损失,主要和驱动电压的平方成正比,与频率和电容量成正比。漏极电荷损耗是指漏极电压存储在结电容Cgd和结电容Cds上的电荷在MOS开关时不断的充放电而造成能量损失。这部分与驱动损耗类似,只是电压为漏极电压的平方。开通损耗主要是因为在开通的过程中漏极因结电容的影响电压不能突变, 假如电路为漏极接电感的Boost拓扑,考虑最坏情况此处损耗功率为输出电压与电感最大电流的乘积的二分之一。由于开通损耗是存在于每个周期的,所以随着开关频率的提高,开通损耗线 性增长。关断损耗产生的原因主要是功率电感上电流不能突变,因而当MOS管关断时造成漏极电压突变(考虑漏极结电容的影响,电压并不会突变,但在大电流情况下因结电容很小所以可以近似为突变)。与开通损耗类似的,最坏情况损耗功率为输出电压与电感最大电流的乘积的二分之一。开通损耗与关断损耗的和为MOS的开关损耗,从  可以得出三种方法降低开关损耗:1、提高开关速度;2、开关动作时,使得漏极电压为零(或很低);3、开关动作时,使得漏极电流为零(或很低)。
在图5和图6中本发明的缓冲开关电路包括通过导线相连的开关模块1、缓冲模块2、整流模块3,其中缓冲模块2通过一饱和电感缓冲所述开关模块的开通上升沿,通过一高速开关高导通电阻的MOS管缓冲所述开关模块的关断脉冲下降沿;开关模块1通过一低速开关低导通电阻的MOS管实现电路通路的闭合与断开;整流模块3用于将输出电压进行整形,整流保护模块4用于防止整流模块3被反向击穿。
如图5所示本发明第一实施例,第一电感L1一端连接在输入端IN,另一端与第二电感L2相连,第二电感L2与第一MOS管Q1的漏极D相连,第二MOS管Q1的漏极D连接在第一电感L1和第一整流二极管D1之间,第二整流二极管D2和第三整流二极管D3同向串联后,其负极连接在所述第二电感L2和第一MOS管Q1的漏极D之间,其正极连接与第一整流二极管D1的正极相连后再与一用于滤除负载两端输出电压杂波的滤波电容C1相连,第一MOS管Q1、第二MOS管Q2的源极S、滤波电容C1、负载Rload等电势连接,第一电感L1为功率电感,所述第二电感L2为饱和电感,第一MOS管Q1的型号是FDB8832,第二MOS 管Q2的型号是IPD135N03L,第一MOS管Q1和第二MOS管Q2需要驱动,第二电感L2靠工作电压自驱动。驱动时序如下:
1、第一MOS管Q1开通脉冲上升沿首先到达,漏极电荷对地释放,漏极电压下降。第一电感L1输出端电压逐渐从第一MOS管Q1的漏极D转移到第二电感L2两端,L2很大相当于开路,漏电流为磁芯的矫顽电流;
2、第一MOS管Q1完全导通,这个过程的损耗只有漏极电荷损耗。随后经过第二电感L2固有伏秒延迟后,第二电感L2饱和导通。第二MOS管Q2漏极电荷对地释放,电压下降为零,L1电流全部流经第二电感L2-第一MOS管Q1。
3、第二MOS管Q2开通脉冲到来,零电压开通。
4、第一MOS管Q1关断脉冲下降沿到来,第一MOS管Q1漏极电流开始下降,所下降电流全部转移到第二MOS管Q2的漏极D。直到第一MOS管Q1漏极电流下降到小于等于第二电感L2的矫顽电流,第二电感L2开始脱离饱和成为一个正常的电感。
5、第一MOS管Q1漏极电流继续下降,由于第二电感L2的电感电流不能突变,所以第二电感L2电流开始给第一MOS管Q1漏极电容充电,随着第一MOS管Q1漏极电压上升(最大上升到输出电压后被二极管D2D3钳位),第二电感L2电流指数下降。
6、第二MOS管Q2关断脉冲下降沿到来,由于第二MOS管Q2漏极结电容的存在以及分布电容的存在,第二MOS管Q2软关断。随着第二MOS管Q2的关断,第二MOS管Q2漏极电压迅速上升到输出电压。
这样上述六个步骤就完成了一个开关周期的工作。
需要注意的是,第二MOS管Q2关断会在漏极产生极高的dv/dt,如果这个dv/dt直接加在第一MOS管Q1的漏极D,那么第一MOS管Q1 会被二次击穿。这里,第二电感L2起到了保护第一MOS管Q1的作用,在第一MOS管Q1漏极电压没有达到输出电压之前,已经脱离饱和的第二电感L2会保证第一MOS管Q1和第二MOS管Q2漏极之间的高阻抗,防止了第一MOS管Q1的二次击穿。
图8是本发明开关周期状态分析饱和电感的磁滞回线图:
T1时刻:第一MOS管Q1进入导通期,此时第二电感L2未饱和(位于2点)因此第一MOS管Q1导通仅为Q1漏极电荷损耗。
T1-T2时间:第二电感L2进入饱和导通(经过磁芯伏秒数的5%时间到达1点),第一MOS管Q1上的电流瞬间达到第一电感L1上的电流,第一整流二极管D1上的电流为零截止,第二MOS管Q2的电压电流均为零。
T2时刻:第二MOS管Q2导通,由于第一MOS管Q1导通压降很低所以第二MOS管Q2上的电流远低于第一MOS管Q1。
T2-T3时间为第一电感L1的充电时间。
T3时刻:第一MOS管Q1上截止沿到来,开始进入截止过程。
T3-T4时间:第一MOS管Q1上的电流持续减小,因为第二MOS管Q2导通,所以第一MOS管Q1所减小的电流全部转移到第二MOS管Q2上。此期间因为第一MOS管Q1的关断电压为第二MOS管Q2上的电压,所以第一MOS管Q1接近为零电压关断。
T4时刻:第一MOS管Q1完全关断,第一电感L1上所有电流都转移到第二MOS管Q2上,第二电感L2上有Hs的电流,此电流给第一MOS管Q1漏极电容充电,并通过D2-D3向负载输出,使得第二电感L2复位于2点。
T4-T5时刻:第一MOS管Q1上的电流为零,需要关断第二MOS管Q2以保证第一电感L1向负载Rload供电。第二MOS管Q2必须拥有 极高的关断速度以减小关断损耗。如果没有L2,则第二MOS管Q2关断过程导致第一MOS管Q1上的电压在几纳秒时间内上升到等于输出电压+第一整流二极管D1的电压,从而产生很高的dv/dt击穿第一MOS管Q1。
T5时刻:第二MOS管2完全关断,第一电感L1向负载输出能量。
如图6所示本发明第二实施例,首先从磁电缓冲开关的原理分析可以看出,本发明的缓冲开关电路具有非常高速的开关速度,产生的脉冲沿是纳秒级别的。这样高速的开关,对整流电路产生了非常大的压力。整流二极管通常情况下会产生反向恢复问题,二极管上电流的变化率dI/dt越高,反向恢复电流就越大。因此,高速开关会导致整流二极管反向恢复电流增大,导致输出二极管的选择十分困难。同时无法在输出使用同步整流的方式降低大电流输出的损耗(因为同步整流MOSFET的体二极管反向恢复能力极差,会产生极大的反向恢复脉冲电流,从而引起电路的不稳定,并导致高损耗)。抑制二极管的反向恢复电流还需要引入另外一个饱和电感,这个饱和电感串联在输出二极管的后面,但另一个问题是,这个饱和电感必须持续保持正向饱和,否则会阻挡第一电感L1的输出,并产生很高的冲击电压。整流保护模块4的作用是防止整流二极管被反向击穿,整流保护模块4包括第三电感L3、第四电感L4、限流电阻R1,第三电感L3通过励磁电源供电,并与整流模块3相连,限流电阻R1一端与第三电感L3相连,另一端与第四电感L4串联,第四电感L4与第一、三MOS管的源极S、滤波电容C1、负载Rload等电势连接,其中第三电感L3为饱和电感,第四电感L4为恒流源电感。整流保护模块4在稳态工作时,励磁电源使得第三电感L3处于饱和状态,其中工作时序如下:
1、当整流模块3导通时,由于第三电感L3已经饱和相当于一根导线,整流模块3的电流只是增加了导线上的电流,所以毫无损耗的传输给负载Rload。
2、当整流模块3关断时,整流模块3上电流减小到零,这时第三电感L3仍然正向饱和。
3、整流模块3由于结电容的存在,所以电流减小到零后继续减小为负值。这时,第三电感L3脱离饱和,并逐渐达到反向矫顽电流,这个电流等于两倍的励磁电流。
4、在第三电感L3反向饱和之前,反向恢复电流逐渐被消耗直至为零。
整个步骤2至步骤4的过程中,第三电感L3脱离了饱和区成为理想变压器,所以反向恢复电流会在励磁侧产生和励磁电压极性相同的感生电压叠加在励磁电压上。如果没有恒流源电感的存在,励磁电流会上升,从而无法起到阻碍反向恢复电流上升的作用。但由于恒流电感的存在,这个理想变压器还是个电抗器。反向恢复电流为零后,励磁电流继续起作用,从而使第三电感L3再一次进入饱和。
图9是整流饱和模块的波形分析图,如图所示:
1、T1时刻前整流模块3截止,第三电感L3上只有一个励磁电流,这个励磁电流使得第三电感L3正向饱和。
2、T1-T2阶段,MOS关断,电流通过整流模块3逐渐增加到功率电感最大电流。第三电感L3磁通已经饱和,不会再增加。
3、T2-T3阶段,功率电感向负载Rload放电。第三电感L3磁通继续饱和。
4、T3-T5阶段,MOS开通,二极管的反向恢复,
a)T3-T4电流反向,绝对值逐渐达到最大值(励磁电流+矫顽电流)磁通脱离正向饱和,并逐渐反向增加,在反向饱和伏秒到达之前,缓慢增加。
b)T4-T5电流反向,但随着二极管节电容电荷的释放,反向电流逐渐减小到零。磁通随着反向电流的减小逐渐正向增加,直到反向电流为零,重新进入正向饱和。
5、T5-T6阶段,等于第三电感L3以前,功率电感充电,整流模块3截止。
如图7所示本发明第三实施例,与第一、二实施例不同之处在于,本实施例中还包括第五电感L5和第三MOS管Q3,第五电感L5一端与第二电感L2相连,另一端连接在第三MOS管Q3的漏极D上,第三MOS管Q3与第一、二MOS管、滤波电容C1和负载Rload等电势连接。当漏极电压很高的时候漏极电荷的损耗成为主要的损耗,增加第五电感L5和第三MOS管Q3的目的是消除MOS的漏极电荷损耗。将一个高速的第三MOS管Q3与第一MOS管Q1并联,利用两个MOS之间的分布电感(或串联电感)将第一MOS管Q1的漏极电荷向负载转移,从而消除或减小第一MOS管Q1的漏极电荷损耗。Q1的漏极电荷经由第五电感L5、第三MOS管Q3转移到负载Rload。第三MOS管Q3先于第一MOS管Q1开启,开启的时间长度为第三电感L3和第一MOS管Q1漏极结电容组成的LC电路的瞬态响应时间。
如图10所示,第一MOS管Q1的驱动电压V(Q1_c)上升导通,Id(Q1)的波形曲线与V(Q1_d)的波形曲线的相交点为功率损耗点,从图中可看出功率损耗点偏下,达到了减少功率损耗的目的。
如图11所示,V(Q2_d)为第二MOS管的漏极电压,第二MOS管Q2零电压/零电流导通。
如图13所示,第一MOS管Q1的漏极电压V(Q1_d)和漏极电流Id(Q1)的相交点为功率损耗点,从图中可看出功率损耗点偏下,达到了减少功率损耗的目的。
如图14所示,第二MOS管Q2关断为硬关断,漏极电压V(Q1_d)和漏极电流Id(Q1)的相交点较高,但由于关断时间很短(纳秒级),故功率损耗低。
当然,本发明还可以有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可以根据本发明做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (6)

1.一种缓冲开关电路,其特征在于,该电路包括通过导线相连的缓冲模块、开关模块、整流模块,其中:
所述缓冲模块通过一饱和电感缓冲所述开关模块的开通脉冲上升沿,通过一高速开关高导通电阻的MOS管缓冲所述开关模块的关断脉冲下降沿;
所述开关模块通过一低速开关低导通电阻的MOS管实现电路通路的闭合与断开;
所述整流模块用于将输出电压进行整形;
还包括与整流模块相连的整流保护模块,所述整流保护模块用于防止所述整流模块被反向击穿,所述整流保护模块包括第三电感、第四电感、限流电阻,所述第三电感通过励磁电源供电并与所述整流模块相连,所述限流电阻一端与第三电感相连,另一端与所述第四电感串联,所述第四电感与第一、二、三MOS管的源极、滤波电容、负载等电势连接。
2.根据权利要求1所述的缓冲开关电路,其特征在于,所述开关模块包括第一MOS管和第一电感,所述缓冲模块包括第二电感和第二MOS管,所述整流模块包括第一整流二极管、第二整流二极管、第三整流二极管,其中:
所述第一电感一端连接在输入端,另一端与第二电感相连,所述第二电感与第一MOS管的漏极相连,所述第二MOS管的漏极连接在第一电感和所述第一整流二极管之间,所述第二整流二极管和第三整流二极管同向串联后,其正极连接在所述第二电感和所述第一MOS管的漏极之间,其负极与第一整流二极管的负极相连后再与一用于滤除负载两端输出电压杂波的滤波电容相连,所述第一、二MOS管的源极和所述滤波电容、所述负载等电势连接。
3.根据权利要求2所述的缓冲开关电路,其特征在于,所述第一电感为功率电感。
4.根据权利要求2所述的缓冲开关电路,其特征在于,所述第一MOS管的型号是FDB8832,所述第二MOS管的型号是IPD135N03L。
5.根据权利要求2所述的缓冲开关电路,其特征在于,还包括第五电感和第三MOS管,所述第五电感一端与所述第二电感相连,另一端连接在第三MOS管的漏极上,所述第三MOS管的源极与第一、二MOS管、滤波电容和负载等电势连接。
6.根据权利要求1所述的缓冲开关电路,其特征在于,所述第三电感为饱和电感,所述第四电感为恒流源电感。
CN201110434300.7A 2011-12-22 2011-12-22 一种缓冲开关电路 Expired - Fee Related CN102447378B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110434300.7A CN102447378B (zh) 2011-12-22 2011-12-22 一种缓冲开关电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110434300.7A CN102447378B (zh) 2011-12-22 2011-12-22 一种缓冲开关电路

Publications (2)

Publication Number Publication Date
CN102447378A CN102447378A (zh) 2012-05-09
CN102447378B true CN102447378B (zh) 2015-04-22

Family

ID=46009563

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110434300.7A Expired - Fee Related CN102447378B (zh) 2011-12-22 2011-12-22 一种缓冲开关电路

Country Status (1)

Country Link
CN (1) CN102447378B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9484911B2 (en) * 2015-02-25 2016-11-01 Qualcomm Incorporated Output driver with back-powering prevention
CN107331337A (zh) * 2017-07-31 2017-11-07 京东方科技集团股份有限公司 阵列基板及其测试装置、方法以及显示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1574582A (zh) * 2003-05-23 2005-02-02 台达电子工业股份有限公司 软切换功率变换器
US6924630B1 (en) * 2004-02-03 2005-08-02 Lockheed Martin Corporation Buck-boost power factory correction circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1574582A (zh) * 2003-05-23 2005-02-02 台达电子工业股份有限公司 软切换功率变换器
US6924630B1 (en) * 2004-02-03 2005-08-02 Lockheed Martin Corporation Buck-boost power factory correction circuit

Also Published As

Publication number Publication date
CN102447378A (zh) 2012-05-09

Similar Documents

Publication Publication Date Title
CN100468936C (zh) 新型谐振复位正激变换器的同步整流自驱动电路
CN203206197U (zh) 延迟电路及具有延迟电路的电路系统
CN103312202B (zh) 高频应用中的逆变器拓扑及其控制方法
CN104221209B (zh) 具有带反向mosfet的降压转换器的光伏系统充电控制器
CN103904901B (zh) 一种移相全桥变换电路及控制方法
CN104617752A (zh) 氮化镓晶体管的驱动方法、电路及应用其电路的反激变换器
CN106533224A (zh) 一种新型谐振直流环节软开关逆变器及其调制方法
CN106160424B (zh) 功率开关电路
CN106026721B (zh) 一种采用SiC功率管的ZCS全桥变换器的栅驱动电路
CN103066855A (zh) 用于电源变换系统中的零电压开关的系统和方法
CN103618449A (zh) 带有电荷泵的三绕组耦合电感双管升压变换器
CN206992982U (zh) 一种t型变换电路和相应的三相变换电路
CN101976940A (zh) 开关电源转换器开关管驱动自举电路
CN107026561B (zh) 栅极驱动电路及方法
CN103618444A (zh) 三绕组耦合电感zvs/zcs双管升压变换器
CN106570261A (zh) 用于集成门极换流晶闸管驱动关断电路及续流回路的参数提取方法
CN105406724A (zh) 移相控制全桥零电流变换器及直流开关电源
CN105871219A (zh) 一种辅助管电压箝位型软开关推挽直流变换器
Chen et al. Analysis and design of LLC converter based on SiC MOSFET
Zhang et al. A synchronous rectification featured soft-switching inverter using CoolMOS
CN102447378B (zh) 一种缓冲开关电路
CN106100295B (zh) 一种基于电荷保持的开关器件驱动电路
CN109450263A (zh) 一种推挽谐振型驱动电路及其控制方法
CN102545560B (zh) 一种功率开关驱动器、ic芯片及直流-直流转换器
CN107482921A (zh) 一种双向dc‑dc变换器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150422

Termination date: 20171222

CF01 Termination of patent right due to non-payment of annual fee