CN102403990B - 射频模块 - Google Patents

射频模块 Download PDF

Info

Publication number
CN102403990B
CN102403990B CN201110185700.9A CN201110185700A CN102403990B CN 102403990 B CN102403990 B CN 102403990B CN 201110185700 A CN201110185700 A CN 201110185700A CN 102403990 B CN102403990 B CN 102403990B
Authority
CN
China
Prior art keywords
circuit
transistor
supply voltage
voltage
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110185700.9A
Other languages
English (en)
Other versions
CN102403990A (zh
Inventor
饭岛正统
原泽良明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Publication of CN102403990A publication Critical patent/CN102403990A/zh
Application granted granted Critical
Publication of CN102403990B publication Critical patent/CN102403990B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • H03K17/62Switching arrangements with several input- output-terminals, e.g. multiplexers, distributors
    • H03K17/6221Switching arrangements with several input- output-terminals, e.g. multiplexers, distributors combined with selecting means

Landscapes

  • Electronic Switches (AREA)
  • Transceivers (AREA)
  • Transmitters (AREA)

Abstract

提供一种射频模块,所述射频模块可以实现高可靠性的省电模式。所述射频模块例如包括用于将发射节点耦合到天线的开关晶体管、用于将发射节点旁路到地电压的开关晶体管以及用于通过正电源电压和负电源电压实现晶体管的通断控制的电平移位电路。在发射操作模式中接收到睡眠指令时,电平移位电路首先转变到隔离操作模式,并且在经过一定时间周期后转变到睡眠模式,其中在发射操作模式中,用于将发射节点耦合到天线的晶体管导通并且用于将发射节点旁路到地电压的晶体管截止;在隔离操作模式中,用于将发射节点耦合到天线的晶体管截止并且用于将发射节点旁路到地电压的晶体管导通;在睡眠模式中,正电源电压和负电源电压被去激活。

Description

射频模块
相关申请的交叉引用
在此通过参考并入2010年9月14日提交的日本专利申请No.2010-205951的全部公开内容,包括说明书、附图和摘要。
技术领域
本发明涉及包括天线开关电路的射频模块,并且具体来说涉及当应用于具有省电功能的无线通信射频模块时有效的技术。
背景技术
例如,美国专利No.6804502描述了一种RF(射频)开关电路,它使用了在SOI(绝缘体上硅)衬底上的MOSFET(金属氧化物半导体场效应晶体管)。通过使用正电压和负电压的控制信号,使MOSFET导通和截止。此外,日本未审专利公开No.2005-159157描述了一种配置,其中射频模块中的开关元件是利用HEMT(高电子迁移率晶体管)元件形成的。
发明内容
在以蜂窝电话为代表的无线通信设备中,广泛地使用了射频模块(RF模块),该射频模块包括射频开关电路和射频功率放大器电路(功率放大器电路),该射频开关电路用于控制在天线与发射电路和接收电路之间的耦合,所述射频功率放大器电路是发射电路的一部分并且向射频开关电路输出射频信号。在使用诸如GSM(全球移动通信系统)之类的TDD(时分双工)的情况中以及在所谓的多频带蜂窝电话(该多频带蜂窝电话支持多个频带,其中包括W-CDMA(宽带码分多址))中选择每一频带时,在发射和接收之间的切换 中需要该射频开关电路。这种射频模块在无线通信设备中对于尺寸和功率可能有特殊的要求;因此,除了通信性能以外,对于较小的尺寸和较低的功耗也有巨大的需求。
图20A是电路图,示出的是在作为本发明的前提研讨的射频模块中的射频开关电路及外围电路的配置;图20B是说明性的示图,示出图20A中在发射期间的操作实例。在图20A中所示的射频开关电路RFSW例如包括四个开关晶体管TSW1至TSW4。晶体管TSW2的一端和晶体管TSW3的一端共同耦合到天线ANT。晶体管TSW2的另一端耦合到晶体管TSW1的一端,并且晶体管TSW3的另一端耦合到晶体管TSW4的一端。晶体管TSW1的另一端和晶体管TSW4的另一端耦合到地电压GND(0伏)。开关控制电路SWCTL分别使用控制信号OUT1、OUT1B、OUT2B、OUT2来实现晶体管TSW1至TSW4的通断控制。
在发射期间,晶体管TSW2和TSW4导通,并且晶体管TSW1和TSW3截止,因而使得来自发射节点TX的射频信号通过耦合电容器Ctx和晶体管TSW2发送到天线ANT。这时,由于晶体管TSW4导通,在晶体管TSW3与TSW4之间的耦合节点N11以低阻抗耦合到地GND。因此,即使发送到天线ANT的射频信号通过截止晶体管TSW3(例如源极和漏极之间的截止电容)泄漏,泄漏信号也可以被反射离开节点N11。另一方面,在接收期间,晶体管TSW1和TSW3导通,并且晶体管TSW2和TSW4截止,因而由天线ANT接收的射频信号经过晶体管TSW3和耦合电容器Crx发送到接收节点RX。这时,由于晶体管TSW1导通,在晶体管TSW1与TSW2之间的耦合节点N10以低阻抗耦合到地GND。因此,即使由天线ANT接收的射频信号经过截止晶体管TSW2(例如源极和漏极之间的截止电容)泄漏,泄漏信号也可以被反射离开节点N10。
此外,例如在发射期间,通过在晶体管TSW1的源极(s)和漏极(d)之间的高阻元件(未示出)将耦合节点N10偏置到0伏;因此如图20B所示在节点N10处生成跨过0伏的几伏的发射射频信号 RFtx的幅度。如果晶体管TSW 1的阈值电压接近0伏,并且到晶体管TSW1的栅极(g)的控制信号OUT1(栅极电压)是0伏(即晶体管TSW1处在浅截止状态),那么,晶体管TSW1可能由于节点N10处的负电压错误地导通,这可能引起信号RFtx中的波形失真(限幅到GND)。此外,在发射期间截止的晶体管TSW3由于类似的现象也可能错误地导通。这也可能引起信号RFtx中的波形失真,并且引起接收侧上的隔离特性的降低。信号RFtx的波形失真包括谐波失真,谐波失真可能干扰其它的通信设备。为了防止这种情形,必须要有一种机制,以用于控制晶体管TSW1至TSW4在晶体管TSW1至TSW4截止时进入深截止状态。
用于实现深截止状态的机制例如包括使用升压电路的方法和使用负电压的方法。图21是电路图,示出了借助使用升压电路的方法的实例的图20A中电路的详细配置实例。图22是剖面图,示出了图21中的每个开关晶体管的器件结构实例。在图21中所示的射频开关电路RFSWa中,四个开关晶体管TSW1至TSW4分别利用晶体管HT1至HT4配置,晶体管HT1至HT4分别由pHEMT(伪形高电子迁移率晶体管)元件形成。如图22所示,pHEMT元件具有如下结构,其中例如沟道层CH在半导体衬底SUB(如GaAs)之上形成,栅电极GT在层CH之上形成,并且源电极SC和漏电极DR在电极GT的每一侧上的层CH之上通过层间膜LY和盖帽层CAP形成。层CH具有如下结构,其中例如电子供应层(如n+-AlGaAs)叠置在电子过渡层(如InGaAs)之上,并且膜LY和层CAP例如由n+-GaAs形成。
pHEMT元件具有相当高的器件击穿电压。因而,在图21的实例中,升压电路VBST是在发射节点TX和晶体管HT2的栅极之间提供的,并且升压电路VBST驱动晶体管HT1和HT3,使晶体管HT1和HT3在发射期间截止,进入深截止状态。具体来说,在发射期间,在天线控制电路ANTCTL中的驱动器电路DV10向节点N12输出“H(高)”电平,并且驱动器电路DV11向节点N13输出“L(低)” 电平。电路DV10和电路DV11在电源电压VSW(如3伏左右)和地电压GND(0伏)下操作,因此“H”电平是约3伏,并且“L”电平是0伏。当通过电阻性元件将节点N12的电压(约3伏)施加到晶体管HT2的栅极时,电路VBST提升了电阻性元件两端之间的电压,并且将提升的电压施加到晶体管HT2的栅极。
在电路VBST中,当至发射结点TX的射频信号RFtx是负电压时,二极管Db 1导通并且二极管Db2截止,因此在电容器Cb2的Db 1侧上存储负电荷。另一方面,当信号RFtx是正电压时,二极管Db 1截止并且二极管Db2导通,因此在电容器Cb2的Db2侧上存储正电荷。因此,借助信号RFtx的重复生成的正电压和负电压,在电容器Cb2的Db2侧上生成电压(如约6伏),这个电压是通过提升节点N12处的电压(约为3伏)获得的,并且将这个电压施加到晶体管HT2的栅极。此时,将提升的电压施加到晶体管HT1的源极(以及通过高电阻元件与源极耦合的漏极),这个提升的电压还通过在晶体管HT2的栅极和源极(漏极)之间的正向肖特基结施加到晶体管HT3的源极(以及通过高电阻元件与源极耦合的漏极)。由于晶体管HT1的栅极耦合到地GND,在栅极和源极之间的电位差例如约为-6.0伏,因此将晶体管HT1驱动到深截止状态。由于在节点N13将晶体管HT3的栅极驱动到0伏,并且通过肖特基结的正向压降例如将源极驱动到约5.3伏,所以栅极和源极之间的电位差约为-5.3伏,从而将晶体管HT3驱动到深截止状态。
然而,通过组合这些pHEMT元件和升压电路获得的射频开关电路RFSWa不适合于减小射频模块的尺寸和成本。这就是说,pHEMT元件具有如图22所示的特殊器件结构,并且因此难以与以MOSFET为代表的普通电路集成在一起,这妨碍了尺寸的减小并且需要相当高的制造成本。出于这个理由,可以考虑,例如利用在SOI衬底上的MOSFET实现射频开关电路,这对于集成和降低成本是有益的。然而,与pHEMT元件相比,MOSFET通常具有较低的器件击穿电压;因此,不期望采取使用升压电路的方法。为此,在MOSFET的 情况下,期望的是,通过结合负电压生成电路,向栅极施加负电压,来驱动MOSFET进入深截止状态。
然而,使用负电压的方法可能在省电控制中引起新的问题。由于如以上所述要求射频模块具有较低的功耗,因此期望的是,在没有发射或接收的周期期间例如以省电操作模式(睡眠模式)来操作这个射频模块。例如,在图20A中,在发射节点TX和天线ANT之间,必须充分确保隔离特性,以便在睡眠模式期间不会从天线ANT发射不期望的无线电波。另一方面,必须停止生成和提供电源电压,以便实现这个模式的充分省电。
在图21中所示的配置实例中,通过在睡眠模式期间由某些装置从天线控制电路ANTCTL输出“L”电平(GND电平),可以使晶体管HT1(在图20A中的TSW1)导通,这个晶体管HT1例如是耗尽型的pHEMT元件。结果,由于可使发射节点TX偏置到地GND,所以可以确保隔离特性。然而,在使用负电压的方法的情况下,由于停止了用于设置“L”电平的负电压生成电路的操作,所以图20A中晶体管TSW1的栅极电平变成不确定的。尽管稍后将会讨论细节,但在实践中,栅极电平可以变成高阻抗等,这可能抑制晶体管TSW1导通,并且因此可能引起隔离特性的下降。
鉴于这种情况做出了本发明,本发明的目的是提供一种能够实现高可靠性的省电模式的射频模块。从这个说明书和附图的描述中,本发明的上述目的和其它目的以及新颖特征都将变得显而易见。
下面将对在本申请中公开的本发明的典型实施例进行简要描述。
根据这个实施例的射频模块包括功率放大器电路、第一晶体管和第二晶体管以及控制电路块。功率放大器电路放大发射射频信号,并且将放大的信号输出到发射节点。第一晶体管将发射节点耦合到天线,并且第二晶体管将发射节点旁路(shunt)到第一电源电压。控制电路块生成高于第一电源电压的第二电源电压和低于第一电源电压的第三电源电压,并且通过向第一晶体管和第二晶体管施加控制信号实现对第一晶体管和第二晶体管的通断控制,所述控制信号 具有第二电源电压或第三电源电压的值。当指定了发射操作模式时,控制电路块使第一晶体管导通并且使第二晶体管截止,并且当在发射操作模式后指定了省电操作模式时,控制电路块在第一时间周期期间使第一晶体管截止,然后停止第二电源电压和第三电源电压的生成。
这使得可以在省电操作模式中保持第一晶体管的截止状态和第二晶体管的导通状态,在省电操作模式中第二电源电压和第三电源电压变为不确定的,借此使得可以增强隔离特性。结果,变得可以实现高可靠性的省电操作模式。
根据在本申请中公开的本发明的典型实施例的效果,可以在射频模块中实现高可靠性的省电操作模式。
附图说明
图1是电路图,示出了根据本发明的实施例的射频模块的主要部分的示意配置实例和操作实例。
图2是示意图,示出了与图1对比的示意配置实例和操作实例。
图3是方框图,示出了根据本发明的实施例的射频模块的通用结构的实例。
图4是平面图,示出了图3中所示的射频模块的示意外形实例。
图5是电路图,示出了图3中所示的高功率放大器电路的示意配置实例。
图6是方框图,示出了图3中所示的天线开关的详细配置实例。
图7是电路图,示出了图6所示的天线开关中的振荡电路、负电压生成电路和电容切换电路的示意配置实例。
图8是波形图,示出了图7中电路的示意操作实例。
图9是方框图,示出了图6中所示的天线开关中的射频开关电路的详细配置实例。
图10是剖面图,示出了图9中所示的射频开关电路中每个开关晶体管的器件配置实例。
图11是曲线图,示出了图10中所示的开关晶体管的电特性的一个实例。
图12是方框图,示出了图3所示的射频模块中的天线控制电路的示意配置实例。
图13A和图13B是电路图,示出了图12所示的天线控制电路中的延迟电路的不同的详细配置实例。
图14是真值表,示出了图12所示的天线控制电路中的控制逻辑电路的详细操作实例。
图15A和图15B示出了与图14相关联地提取的特性操作实例,其中图15A是状态转变图,图15B是操作波形图。
图16是电路图,示出了图6所示的天线开关中的电平移位电路块中的每个电平移位电路的详细配置实例。
图17A和图17B示出了在图16所示的电平移位电路中的输出电压的实际转变实例,其中图17A示出了使用图1所示的操作实例的情况,图17B示出了作为对照例的使用图2所示的操作实例的情况。
图18是方框图,示出了采用根据本发明的实施例的射频模块的无线通信系统的配置实例。
图19是电路图,示出了图16所示的电平移位电路的对照例。
图20A是电路图,示出了作为本发明的前提研讨的射频模块中的射频开关电路和外围电路的配置,图20B是说明性的示图,示出了图20A中在发射期间的操作实例。
图21是电路图,示出了借助使用升压电路的方法实例的图20A中的电路的详细配置实例。
图22是剖面图,示出了图21中的每个开关晶体管的器件结构实例。
具体实施方式
在下面的实施例中,为方便起见,在必要时通过将一个实施例划分为多个部分或多个实施例进行描述;然而,除了给出特定指示时, 否则这些部分或实施例相互之间不是没有关系的,而是存在相互关系,这种相互关系就是,一个部分或实施例是另一个部分或实施例的一部分或全部的修改、具体说明或补充说明。此外,在下述实施例涉及有关元件的数字表达(包括数目、数值、数量、范围)的情况下,该数字表达不限于特定数目,而是可以大于或小于特定数目,除了当给出特定指示时、或者当数字表达在原理上明显地限于特定数目时。
此外,在下面的实施例中,组件(包括组成步骤)不总是不可缺少的,除了当给出特定指示时、或者当它们在原理上明显地被认为是不可缺少时。类似地,在下述实施例涉及组件等的形状、位置关系等的情况下,也包括在形状等方面大体上近似或类似的那些组件,除了当给出特定指示时或者当这些形状等在原理上明显地被认为要排除在外时。这也适用于以上所述的数值或范围。
此外,尽管在实施例中使用MOSFET(金属氧化物半导体场效应晶体管)(缩写为MOS晶体管)作为MISFET(金属绝缘体半导体场效应晶体管)的实例,但这并不排除非氧化物膜作为栅极绝缘膜。以下将参照附图详细描述本发明的优选实施例。在用于说明实施例的所有附图中,基本上用相同的参考符号标记相同的组件或元件,并且将不会重复对它们的描述。
《射频模块的主要部分的概述(本实施例的基本概念)》
图1是电路图,示出了根据本发明的实施例的射频模块的主要部分的示意配置实例和操作实例。图2是示意图,示出了与图1对比的示意配置实例和操作实例。在图2中,示出的是由射频模块中包括的天线控制电路ANTCTL、电平移位电路LS和射频(RF)开关电路RFSW构成的主要部分的通用电路配置,以及其中射频模块从发射操作模式TXMD切换到省电操作模式(睡眠模式)SLPMD的电路状态。图2中所示的电路ANTCTL、LS和RFSW例如是在同一SOI衬底之上形成的。
射频开关电路RFSW包括如在图20中所示的用于发射的耦合电 容器Ctx以及开关晶体管TSW1和TSW2。晶体管TSW1和TSW2是n型MOS晶体管,并且电容器Ctx例如是MIM(金属绝缘体金属)电容器。电容器Ctx耦合在发射节点TX和节点N1之间。晶体管TSW1作为旁路晶体管起作用,并且具有在节点N1和地电压GND之间的源-漏路径。晶体管TSW2作为直通晶体管(through transistor)起作用,并且具有在节点N1和天线ANT之间的源-漏路径。
电平移位电路LS包括用于驱动晶体管TSW1的栅极的驱动器电路块DVBKs和用于驱动晶体管TSW2的栅极的驱动器电路块DVBKt。块DVBKs包括开关电路SWs1及SWs2、和驱动器电路DVs1及DVs2。开关电路SWs1的一端以及开关电路SWs2的一端共同耦合到晶体管TSW1的栅极。开关电路SWs1的另一端耦合到驱动器电路DVs1的输出节点,并且开关电路SWs2的另一端耦合到驱动器电路DVs2的输出节点。电路DVs1在电源电压VSW和地电压GND下操作,并且按照来自电路ANTCTL的输入信号(例如在VSW电平和GND电平之间的信号)输出VSW电平或GND电平(0伏)。电路DVs2在地电压GND和负电源电压(-VSS)下操作,并且按照来自电路ANTCTL的输入信号输出GND电平(0伏)或-VSS电平。VSW值例如是3.1伏,并且-VSS值例如是-2.6伏。
像在块DVBKs中那样,块DVBKt包括开关电路SWt1及SWt2、以及驱动器电路DVt1及DVt2。开关电路SWt1的一端以及开关电路SWt2的一端共同耦合到晶体管TSW2的栅极。开关电路SWt1的另一端耦合到电路DVt1的输出节点,并且开关电路SWt2的另一端耦合到电路DVt2的输出节点。电路DVt1在电源电压VSW和地电压GND下操作,并且按照来自电路ANTCTL的输入信号输出VSW电平或GND电平。电路DVt2在电压GND和-VSS下操作,并且按照来自电路ANTCTL的输入信号输出GND电平(0伏)或-VSS电平。
因此,块DVBKs和DVBKt中的每一个都是用于将在VSW电平 和GND电平之间的输入信号转换成在VSW电平和-VSS电平之间的信号的电路。在实践中,驱动器电路DVs1、DVs2、DVt1和DVt2以及开关电路SWs1、SWs2、SWt1和SWt2利用在SOI衬底之上的MOS晶体管等来配置。从器件击穿电压角度来看,使用MOS晶体管可能使得通过例如在VSW电平和-VSS电平之间操作的一个驱动器电路实现电平转换变得困难。
在这种情况下,期望提供两个驱动器电路(例如DVs1和DVs2),两个驱动器电路的每个驱动器电路都在VSW电平和-VSS电平之间的半个电位差下操作,并且通过开关电路(例如SWs1和SWs2)适当地合成相应的输出。这时,电路SWs1和SWs2互补地操作,并且电路SWt1和SWt2互补地操作。例如,为了使晶体管TSW1导通,使电路SWs1导通并且使电路SWs2截止,从而传递来自电路DVs1的VSW电平。另一方面,为了使晶体管TSW1截止,使电路SWs1截止并且使电路SWs2导通,从而传递来自电路DVs2的-VSS电平。
如图2所示,在发射操作模式TXMD中,使电路SWs1截止并且使电路SWs2导通,从而将-VSS电平施加到晶体管TSW1的栅极,晶体管TSW1进入深截止状态。另一方面,使电路SWt1导通并且使电路SWt2截止,从而将VSW电平施加到晶体管TSW2的栅极,晶体管TSW2进入导通状态。这里假定,所述模块接收到一个指令:在模式TXMD之后立即转变到睡眠模式SLPMD。简言之,模式SLPMD是指用于通过停止电源供应实现省电的模式。借此,电源电压VSW和负电源电压(-VSS)变为不确定的。虽然在VSW电平和GND电平之间的电位差、或者在GND电平和-VSS电平之间的电位差能使电路SWs1、SWs2、SWt1和SWt2导通,但当电压VSW和-VSS变为不确定时(在一般情况下,接近GND电平),所述电位差下降,并且开关电路截止。因此,晶体管TSW1和TSW2的栅极变为高阻抗,并且通过晶体管TSW1和TSW2的栅极电容Cg1和Cg2保持模式TXMD中的晶体管TSW1的截止电平(-VSS电平)以及晶体管TSW2的导通电平(VSW电平)。这可能妨碍充分确保 在模式SLPMD中的隔离特性。
出于这个理由,根据本实施例的射频模块,在接收到用于在模式TXMD之后立即转变到模式SLPMD的指令时,首先转变到隔离操作模式ISOMD,然后经历某个等待时间(Twait)之后转变到模式SLPMD(即停止电源供应),如图1所示。在图1中,射频模块的电路配置和在模式TXMD以及模式SLPMD中的电路状态与图2中的情况相同。在模式ISOMD中,电路SWs1导通并且电路SWs2截止,从而将VSW电平施加到晶体管TSW1的栅极,晶体管TSW1进入导通状态。另一方面,电路SWt1截止并且电路SWt2导通,从而将-VSS电平施加到晶体管TSW2的栅极,晶体管TSW2进入深截止状态。当在这个状态下中模块在经历时间Twait后转变到模式SLPMD时,通过晶体管TSW1和TSW2的电容Cg1和Cg2来保持模式ISOMD中的晶体管TSW1的导通电平(VSW电平)以及晶体管TSW2的截止电平(-VSS电平),这与图2中所示的情况不同。
这使得能够充分确保在睡眠模式SLPMD中的隔离特性。这就是说,即使弱无线电信号因任何原因被发送到发射节点TX,在以低阻抗耦合到地GND的节点N1处也可能会反射或吸收这个弱无线电信号。除此之外,晶体管TSW2可能保持在截止状态。结果,大多数弱无线电信号不会抵达天线ANT,这可以防止不期望的无线电波(干扰其它通信设备的波)在睡眠模式期间从天线ANT发射出去。虽然在模式SLPMD中,开关电路SWs1、SWs2、SWt1和SWt2处在截止状态,但在实践中,在转变到模式SLPMD之前与其紧挨着的导通和截止状态可能会继续一段时间。例如,当通过电源电容等使-VSS或VSW电平继续一段时间时,用于使开关电路导通的电位差(在VSW和GND之间,或者在GND和-VSS之间)也将继续。然而,同样在这种情况下,模式TXMD在图2的情况下继续,并且模式ISOMD在图1的情况下继续;因此,可以获得与前述的效果相同的有益效果。
《射频模块的通用配置》
图3是方框图,示出了根据本发明的实施例的射频模块的通用配置的实例。在图3中,作为一个实例,示出了支持两种频带(称之为低频带和高频带)的射频模块。低频带例如是用于GSM(全球移动通信系统)的频带,它的发射频率近似从824MHz到915MHz,并且它的接收频率近似从869MHz到960MHz。高频带例如是用于DCS(数字蜂窝系统)的频带,它的发射频率从约1710MHz到1910MHz,并且它的接收频率从约1805MHz到1990MHz。
图3所示的射频模块RFMDL包括:高功率放大器电路块HPABK、天线开关ANTSW、阻抗匹配电路MCH 1和MCH2、功率检测电路(耦合器)CPL1和CPL2以及低通滤波器LPF1和LPF2。块HPABK包括用于低频带的高功率放大器电路HPA1、用于高频带的高功率放大器电路HPA2、总体控制电路RFCTL和自动功率控制电路APC。电路HPA1被配置有按顺序级联耦合的三个功率放大器电路PA11-PA13;并且,电路HPA2被配置有按顺序级联耦合的三个功率放大器电路PA21-PA23。
电路HPA1放大来自模块RFMDL外部(例如发射混频器电路等(未示出))的输入信号Pin1,并且通过电路MCH1、CPL1和LPF1将电路HPA1的输出信号发送到发射节点TX1。电路MCH1实现阻抗匹配,以便以低损耗将电路HPA1的输出信号发送到节点TX1,电路CPL1检测电路HPA1的输出信号的功率水平,并且滤波器LPF1抑制在电路HPA1的输出信号中可能出现的不期望的谐波分量(如二次谐波、三次谐波)。以同样的方式,电路HPA2放大来自模块RFMDL外部的输入信号Pin2,并且通过电路MCH2、CPL2和LPF2将电路HPA2的输出信号发送到发射节点TX2。电路MCH2对于电路HPA2的输出信号实现阻抗匹配,电路CPL2检测电路HPA2的输出信号的功率水平,并且滤波器LPF2抑制在电路HPA2的输出信号中的不期望的谐波分量。
总体控制电路RFCTL包括天线控制电路ANTCTL和偏置生成电路VBSGEN。电路VBSGEN向电路HPA1和HPA2提供偏置电压(或 偏置电流),借此控制电路HPA1和HPA2的增益(功率放大因子)。在这时,自动功率控制电路APC将由电路CPL1和CPL2检测到的电路HPA 1和HPA2的输出功率水平与从模块RFMDL外部的基带单元BBU输入的功率指定信号(Vramp)进行比较,并且将比较结果通知给电路VBSGEN。根据这个比较结果,电路VBSGEN控制偏置电压(或偏置电流)的幅度,从而使电路HPA1和HPA2的输出功率水平变成等于由信号Vramp指定的值。电路ANTCTL具有从外部提供的电池电源VBAT,电路ANTCTL提供电源电压VSM并且按照从单元BBU输入的操作模式设定信号MSET向天线开关ANTSW输出天线控制信号Sa、Sb、Sc。
天线开关ANTSW按照来自电路ANTCTL的天线控制信号Sa、Sb、Sc和电源电压VSW的组合来控制内部开关。例如,天线开关ANTSW在低频带通信期间将发射节点TX1或接收节点RX1耦合到天线ANT,并且在高频带通信期间将发射节点TX2或接收节点RX2耦合到天线ANT。在这个配置实例中,低频带信号或高频带信号直接耦合到天线ANT;然而,它们可以通过双工器从天线开关ANTSW耦合到天线ANT。在这种情况下,所述双工器包括用于传递低频带信号并抑制高频带信号的低通滤波器和与低通滤波器相反地操作的高通滤波器。
图4是平面图,示出了如图3所示的射频模块RFMDL的示意外形实例。在模块RFMDL的配置中,两个半导体芯片CP1和CP2以及各种无源组件PE(电容器、电感器、电阻器等)都安装在包含多个布线层的布线板PCB(如陶瓷板、玻璃环氧树脂板等)之上,并且这些组件经由布线层适当地耦合。芯片CP1包括例如由CMOS制造工艺在硅衬底之上形成的高功率放大器电路块HPABK。电路HPA1和HPA2例如被配置有LD(横向扩散的)结构的功率MOS晶体管(LDMOSFET)。芯片CP2包括例如在SOI衬底之上形成的天线开关ANTSW。具体来说,天线开关ANTSW被配置有MOS晶体管和MIM(金属绝缘体金属)电容器等。组件PE例如是SMD(表 面安装器件)组件。组件PE构成阻抗匹配电路MCH1和MCH2、耦合器CPL1和CPL2以及低通滤波器LPF1和LPF2。构成阻抗匹配电路、耦合器和低通滤波器的某些无源组件可以利用布线板之上的布线层和绝缘层形成。
除了发射操作模式和接收操作模式之外,还可以按照来自基带单元BBU的操作模式设定信号MSET将图3和图4所示的射频模块RFMDL设定为省电操作模式(睡眠模式)。在省电操作模式中,模块RFMDL例如停止自动功率控制电路APC的操作,并且停止偏置生成电路VBSGEN的偏置电压(或偏置电流)生成操作。在这时,天线控制电路ANTCTL确定信号MSET的内容,并且向电路APC和VBSGEN输出适当的控制信号,以使电路APC和VBSGEN认识到它们已经被设置成省电操作模式。此外,在省电操作模式中,电路ATNCTL停止电源电压VSW的生成和向天线开关ANTSW的供应,并且通过使用电池电源VBAT将天线控制信号Sa、Sb、Sc固定到GND电平(0伏)。
《高功率放大器电路的详细实例》
图5是电路图,示出了如图3所示的高功率放大器电路HPA(HPA1、HPA2)的示意配置实例。在图5中,取电路HPA1为例,但同样的配置实例也适用于电路HPA2。在图5中,功率放大器电路PA11包括MOS晶体管M1(在此例中是LD(横向扩散的)结构的n沟道功率MOS晶体管(n沟道LDMOSFET)),它的源极耦合到地电压GND,并且它的负载电路(在此例中是电感器L1)提供在晶体管M1的漏极和电源电压VDD之间。类似地,电路PA12包括源极接地的MOS晶体管M2和电感器L2,并且电路PA13包括源极接地的MOS晶体管M3和电感器L3。
向晶体管M1的栅极输入所述输入信号Pin1,并且还通过电阻器R1(用于交流切断(抑制)的高电阻元件)从偏置生成电路VBSGEN向晶体管M1的栅极施加偏置电压Vgs1。通过用于直流切断的电容器C1向晶体管M2的栅极输入来自晶体管M1的漏极的输出信号, 并且还以与晶体管M1中相同的方式,通过电阻器R2从偏置生成电路VBSGEN向晶体管M2的栅极施加偏置电压Vgs2。通过用于直流切断的电容器C2向晶体管M3的栅极输入来自晶体管M2的漏极的输出信号,并且还以与晶体管M1中相同的方式,通过电阻器R3从偏置生成电路VBSGEN向晶体管M3的栅极施加偏置电压Vgs3。在睡眠模式中,例如将电压Vgs1到Vgs3设定为0伏。因此,将晶体管M1到M3固定到切断状态,使得稳定的电流不会流入电路HPA1。
于是,在睡眠模式中,不会向电路HPA1供给偏置;因此,电路HPA1理想的情况是既不会进行放大操作,也不会进行输出操作。然而在实践中,由于电路HPA1的寄生电容等的原因,在某些时间电路HPA1可能进行某种输出操作。即,电路HPA1利用相当大尺寸的晶体管形成,从而导致大的寄生电容,使得可能将高频噪声等发送到具有低阻抗的输出侧。此外,由于电路HPA1包括如以上所述的大量的电容和电感组件,在向睡眠模式转变中,例如可能发生寄生振荡。因此期望的是,充分确保在随后阶段的天线开关ANTSW中的天线ANT与发射节点TX1之间的隔离特性。
在正常操作(如发射操作模式)期间射频模块RFMDL的功耗可以约为30dBm(w),但在睡眠模式期间所述功耗减小到例如-50dBm(w)。例如,在以蜂窝电话为代表的电池供电的设备中,使用睡眠模式可以延长电池的持续时间。尽管在图3等中示出了支持两种频带(低频带和高频带)的模块RFMDL的配置实例,但所述配置实例不限于此。所述模块可以具有支持一种频带的配置或者支持三种或更多种频带(包括用于W-CDMA(宽带码分多址)的频带和用于LTE(长期演进)的频带)的配置。
《天线开关的详细实例》
图6是方框图,示出了如图3所示的天线开关ANTSW的详述配置实例。图6中所示的天线开关ANTSW包括振荡电路OSC、负电压生成电路VSSGEN、电容切换电路CSWBK、复位电路RST、解码器电路DEC、电平移位电路块LSBK、射频开关电路RFSW和电容 器C1。电路OSC通过使用来自图3中的天线控制电路ANTCTL的电源电压VSW生成时钟信号CLK。电路VSSGEN通过使用信号CLK在电容器C1等处生成负电源电压(-VSS)。电路RST检测电源电压VSW的升高,并且在信号CLK的几个循环中激活复位信号RS1。电路CSWBK按照信号RS1的状态控制是否将电容器C1和例如外部电容器C2并联耦合。此外,电路OSC还按照信号RS1的状态切换振荡频率。稍后将描述有关信号RS1的另外的细节。
解码器电路DEC接收来自天线控制电路ANTCTL的天线控制信号Sa、Sb、Sc和电源电压VSW,生成与这些状态对应的多个(在此例中是四个)开关控制信号Ssw[1]至Ssw[4],并且将这些信号输出到电平移位电路块LSBK。块LSBK包括多个(在此例中是四个)电平移位电路LS[1]至LS[4],并且每个电平移位电路LS[n](n=1至4)都将从电路DEC输入的、幅度电压在VSW和GND之间的、相应开关控制信号Ssw[n]转换成幅度电压在VSW和-VSS之间的信号,并且输出双极性信号。
具体来说,响应幅度电压在VSW和GND之间的信号Ssw[1],电路LS[1]输出幅度电压在VSW和-VSS之间的开关通断信号(在低频带发射期间的旁路信号)TXLBS以及作为其反向信号的开关通断信号(在低频带发射期间的直通信号)TXLBT。类似地,电路LS[2]响应信号Ssw[2],输出开关通断信号RXLBS和RXLBT;电路LS[3]响应信号Ssw[3],输出开关通断信号TXHBS和TXHBT;并且电路LS[4]响应信号Ssw[4],输出开关通断信号RXHBS和RXHBT。信号RXLBS和RXLBT分别是在低频带接收期间的旁路信号和作为其反向信号的直通信号。信号TXHBS和TXHBT分别是在高频带发射期间的旁路信号和作为其反向信号的直通信号。射频开关电路RFSW按照这些开关通断信号实现内部开关晶体管的通断控制,从而恰当地控制发射节点TX1、TX2与接收节点RX1、RX2以及天线ANT之间的耦合关系。
图7是电路图,示出了图6中所示的天线开关ANTSW中的振荡 电路OSC、负电压生成电路VSSGEN和电容切换电路CSWBK的示意配置实例。在图7中,尽管没有具体限制,但振荡电路OSC是RC振荡电路,通过在反馈路径中提供的电阻器Rf1、Rf2和电容器Cf的值可以设定该振荡电路的振荡频率。开关SWf串联耦合到电阻器Rf2,电阻器Rf2和开关SWf并联耦合到电阻器Rf1。因此,当开关SWf断开时,基于时间常数Rf1×Cf,生成相对低频率的时钟信号CLK,并且当开关SWf接通时,基于时间常数(Rf1·Rf2/(Rf1+Rf2))×Cf,生成相对高频率的时钟信号CLK。
虽然没有具体限制,但负电压生成电路VSSGEN是包括电容器C3、开关SWc1和天关SWc2的电荷泵电路,其中信号CLK输入到电容器C3的一端,开关SWc1耦合在电容器C3的另一端和地GND之间,并且开关SWc2耦合在电容器C3的另一端和电容器C1的一端之间。电容器C1的另一端耦合到地GND。当信号CLK处在“H”电平(VSW电平)时,开关SWc1导通并且开关SWc2截止,使得与VSW电平对应的正电荷和负电荷分别存储在电容器C3的OSC侧和SWc2侧上。另一方面,当信号CLK处在“L”电平(GND电平)时,开关SWc1截止并且开关SWc2导通,使得存储在电容器C3的SWc2侧上的负电荷转移到电容器C1。电容器C1和C3例如是MIM电容器,并且在一般情况下C1>C3。通过重复“H”电平周期和“L”电平周期,在电容器C1的SWc2侧上按理想的情况可以生成-VSW电平的负电源电压(-VSS)。
电容切换电路CSWBK包括选择器电路SEL1和SEL2,选择器电路SEL1用于选择是将电容器C2的一端耦合到电源电压VSW还是将其耦合到地电压GND,选择器电路SEL2用于选择是将电容器C2的另一端耦合到地GND还是将其耦合到电容器C1的SWc2侧上的节点。与电容器C1相比,电容器C2具有较大的电容值,并且电容器C2作为SMD外部组件等安装。复位电路RST检测电源电压VSW的升高,并且在信号CLK的几个循环中激活复位信号RS1。按照信号RS1的状态来确定在电路CSWBK中将要通过电路SEL1和 SEL2选择的节点,并且根据信号RS 1的状态来实现在电路OSC中开关SWf的通断控制。
图8是波形图,示出了图7中电路的示意操作实例。如图8所示,当电源电压VSW升高时,复位电路(上电复位电路)RST在时钟信号CLK的多个循环(在此例中是两个循环)中输出“H”脉冲的复位信号RS1。在信号RS1的“H”脉冲周期期间,振荡电路OSC生成相对高频率的信号CLK,这时的开关SWf导通;并且电容切换电路CSWBK利用选择器电路SEL1和SEL2将电容器C2的一端耦合到电源电压VSW,并且将其另一端耦合到地GND。因此,在这个周期,负电压生成电路VSSGEN通过使用相对高频率的信号CLK在具有相对小的电容的电容器C1中生成负电压,因此使减小负电压的下降时间周期成为可能。
另一方面,当信号RS1从“H”电平转变到“L”电平时,电路OSC生成相对低频率的信号CLK,这时的开关SWf截止;并且电路CSWBK通过电路SEL1和SEL2将电容器C2的两端并联地耦合到电容器C1的两端。在信号RS1的“H”脉冲周期期间,由于电容器C1的电容值小,并且使用了相对高频率的信号CLK,所以在由电路VSSGEN生成的负电源电压(-VSS)中可能发生大的纹波。因此,在信号RS1转变到“L”电平之后的周期中,通过将C2加到C1上来增加电容值,并且使用相对低频率的信号CLK,借此使减小纹波成为可能。此外,预先在信号RS1的“H”脉冲周期期间,在电容器C2的两端充电VSW电平的电荷,从而在并联耦合所述电容器C1和C2时匹配电容器C1的电压极性,这也可能减小伴随并联耦合生成的电压波动。于是,使用图7所示的配置实例和图8所示的操作实例能够实现:按照由于从睡眠模式返回到正常操作模式引起的电源电压VSW的升高,迅速生成和稳定负电源电压(-VSS),这可以减小从睡眠模式返回所需要的时间。
《射频开关电路的详细实例》
图9是方框图,示出了图6中所示的天线开关ANTSW中的射频 开关电路RFSW的详细配置实例。图6中所示的射频开关电路RFSW包括两个开关单元(SPDT1和SPDT2),称之为SPDT(单极双掷)。在图6中,与低频带侧(发射节点TX1、接收节点RX1)对应提供开关单元SPDT1;在图6中,与高频带侧(发射节点TX2、接收节点RX2)对应提供开关单元SPDT2。
开关单元SPDT1例如包括四个开关晶体管TSW1a至TSW4a和两个耦合电容器Ctx1和Crx1。在图9中,晶体管TSW1a至TSW4a是n沟道型MOS晶体管。由于要求开关晶体管在高速下操作,因此期望使用n沟道型而不是p沟道型。晶体管TSW2a在低频带发射期间是直通晶体管。在晶体管TSW2a中,源极/漏极的一端耦合到天线ANT,另一端耦合到节点N10a,并且栅极由在图6所示的开关通断信号(在低频带发射期间的直通信号)TXLBT驱动。晶体管TSW1a在低频带发射期间是旁路晶体管。在晶体管TSW1a中,源极/漏极的一端耦合到节点N10a,另一端耦合到地电压GND,并且栅极由在图6所示的开关通断信号(在低频带发射期间的旁路信号)TXLBS驱动。在发射节点TX1和节点N10a之间提供电容器Ctx1。
晶体管TSW3a在低频带接收期间是直通晶体管。在晶体管TSW3a中,源极/漏极的一端耦合到天线ANT,另一端耦合到节点N11a,并且栅极由在图6所示的开关通断信号(在低频带接收期间的直通信号)RXLBT驱动。晶体管TSW4a在低频带接收期间是旁路晶体管。在晶体管TSW4a中,源极/漏极的一端耦合到节点N11a,另一端耦合到地电压GND,并且栅极由在图6所示的开关通断信号(在低频带接收期间的旁路信号)RXLBS驱动。在接收节点RX1和节点N11a之间提供电容器Crx1。此外,在晶体管TSW1a至TSW4a的每一个中,在源极和漏极之间耦合高电阻元件。因此,例如在晶体管TSW2a和TSW3a中,分别通过晶体管TSW1a和TSW4a的高电阻元件以及晶体管TSW2a和TSW3a的高电阻元件,将源极(和漏极)偏置到GND电平,并且通过相对于GND电平的栅极电压值实现通断控制。
虽然晶体管TSW1a至TSW4a中的每一个都表示为图9中的一个晶体管,但在实践中,每一个晶体管都可以被配置有多个晶体管,这样的多个晶体管的源极和漏极串联耦合并且栅极共同耦合在一起。与一个晶体管相比,多个晶体管的配置有利于确保源-漏击穿电压。此外,与一个晶体管相比,截止状态中的源-漏截止电容的串联耦合可以减小截止电容,这可以减小由源-漏耦合引起的信号泄漏。然而,使用串联耦合可能增加导通状态中的源-漏导通电阻(即,插入损耗);因此,在二者之间要有一个折衷。
另一方面,开关单元SPDT2像开关单元SPDT1那样,例如包括四个开关晶体管TSW1b至TSW4b和两个耦合电容器Ctx2和Crx2。在图9中,晶体管TSW1b至TSW4b是n沟道MOS晶体管。晶体管TSW2b在高频带发射期间是直通晶体管。在晶体管TSW2b中,源极/漏极的一端耦合到天线ANT,另一端耦合到节点N10b,并且栅极由在图6所示的开关通断信号(在高频带发射期间的直通信号)TXHBT驱动。晶体管TSW1b在高频带发射期间是旁路晶体管。在晶体管TSW1b中,源极/漏极的一端耦合到节点N10b,另一端耦合到地GND,并且栅极由在图6所示的开关通断信号(在高频带发射期间的旁路信号)TXHBS驱动。在发射节点TX2和节点N10b之间提供电容器Ctx2。
晶体管TSW3b在高频带接收期间是直通晶体管。在晶体管TSW3b中,源极/漏极的一端耦合到天线ANT,另一端耦合到节点N11b,并且栅极由在图6所示的开关通断信号(在高频带接收期间的直通信号)RXHBT驱动。晶体管TSW4b在高频带接收期间是旁路晶体管。在晶体管TSW4b中,源极/漏极的一端耦合到节点N11b,另一端耦合到地GND,并且栅极由在图6所示的开关通断信号(在高频带接收期间的旁路信号)RXHBS驱动。在接收节点RX2和节点N11b之间提供电容器Crx2。此外,在晶体管TSW1b至TSW4b的每一个中,在源极和漏极之间耦合高电阻元件。此外,像晶体管TSW1a至TSW4a那样,晶体管TSW1b至TSW4b的每一个都可被配置有多个晶体管。
图10是剖面图,示出了图9中所示的射频开关电路RFSW中每个开关晶体管的器件配置实例。图10所示的开关晶体管TSW(TSW1a至TSW4a,TSW1b至TSW4b)是在SOI衬底之上形成的n沟道MOS晶体管。在图10中,在半导体衬底SUB(如硅)之上形成绝缘膜ISL,在绝缘膜ISL的之上形成主体区域BD,在主体区域BD的两侧上形成扩散层DFLs和DFLd。此外,靠近扩散层DFLs形成扩散层DFHs,靠近扩散层DFLd形成扩散层DFHd。层DFLs和DFHs是源极SC的一部分,层DFLd和DFHd是漏极DR的一部分。区域BD例如是具有p型杂质的半导体区域,层DFLs、DFHs、DFLd和DFHd例如是具有n型杂质的半导体区域。与层DFHs和DFHd相比,层DFLs和DFLd具有较低的杂质密度,这增强了器件击穿电压等。
在主体区域BD之上通过栅极绝缘膜GOX(如氧化硅)形成栅电极GT。栅电极GT例如包括多晶硅层GP,多晶硅层GP是在膜GOX和硅化物层(如硅化钴)SL之之上形成的,所述硅化物层SL是在多晶硅层GP之上形成的,用于使栅电极GT具有较低的电阻。在位于栅电极GT两侧并且位于层DFLs和DFLd之上的区域中形成侧壁SDW,侧壁SDW是绝缘膜。此外,分别在层DFHs和DFHd之上形成硅化物层(如硅化钴)SLs和SLd。在层SLs之上通过插塞PLGs形成布线层MLs,并且在层SLd之上通过插塞PLGd形成布线层MLd。层SLs、插塞PLGs和层MLs是源极SC的一部分,并且层SLd、插塞PLGd和层MLd是漏极DR的一部分。插塞PLGs和PLGd是钛/氮化钛和钨,并且层MLs和层MLd是钛/氮化钛和铝等的叠置膜。
图11是曲线图,示出了如图10所示的开关晶体管的电特性的一个实例。在图11中,示出了栅-源电压Vgs和漏-源电流Ids之间的关系。在图11中,虽然没有具体限制,但使用耗尽特性的n沟道MOS晶体管作为开关晶体管TSW。它的阈值电压Vth例如是约-0.5伏。例如,在如图20B所示生成发射射频信号RFtx的幅度约为跨过0伏的±1.2伏的情况下,为了维持晶体管TSW在-1.2伏的截止状态,则必须向栅极施加约为-2.0伏或更小的负电压(在这种情况下Vgs=-0.8伏)。在这个实施例中,根据与阈值电压Vth的变化相关联的边界确保(期望较低的负电压)和与器件击穿电压相关联的边界确保(期望较高的负电压)之间的折衷考虑,将截止状态期间的负电压(由图6中的电路VSSGEN生成的负电源电压-VSS)设置在-2.6伏或类似值。
《天线控制电路的详述实例(本实施例的特性配置)》
图12是方框图,示出了在如图3所示的射频模块RFMDL中的天线控制电路ANTCTL的示意配置实例。图12所示的天线控制电路ANTCTL包括:控制逻辑电路LGC、天线开关缓冲电路SWBF、天线开关电源电压生成电路VSWREG、与(AND)运算电路AD1和延迟电路DLY。电路LGC在电池电源VBAT下操作,根据从图3的基带单元BBU输入的操作模式设定信号MSET实现解码处理等,并且向电路SWBF生成输出信号。在图12中,信号MSET是被配置有发射使能信号TX_EN、发射开关使能信号TX_SW_EN和频带选择信号BAND。
天线开关电源电压生成电路VSWREG是所谓的功率调节器电路,在电池电源VBAT下操作,并生成电源电压VSW(如3.0伏)。虽然没有具体限制,但电路VSWREG包括:参考电压生成电路(带隙参考电路)BGR、放大器电路AMPv以及反馈电阻器Rv1和Rv2。将来自电路BGR的固定电压Vref输入到电路AMPv的正输入节点,并且将通过由电阻器Rv1和Rv2对电路AMPv的输出电压进行分压获得的电压输入到负输入节点。通过适当调节电阻器Rv1和Rv2之间的分压比,电路AMPv输出电压VSW(={(Rv1+Rv2)/Rv2}×Vref),如3.0伏。电路VSWREG具有的配置可以控制是否按照功率生成使能信号VSWEN的状态生成电压VSW。虽然没有具体限制,但这可以通过控制电路AMPv的激活和去激活(例如偏置电源的存 在或不存在)来容易地实现。
天线开关缓冲电路SWBF例如包括多个反相器电路,反相器电路是在来自电路VSWREG的电压VSW下操作的。电路SWBF转换从电路LGC输入的、幅度电压在VBAT和GNT之间的输出信号,并且输出幅度电压在VSW和GND之间的天线控制信号Sa、Sb、Sc。与运算电路AD1在电池电源VBAT下操作,并且对三个输入信号TX_EN、TX_SW_EN和BAND进行与运算。虽然稍后将描述细节,但电路AD1是作为用于睡眠指令的检测电路起作用的。延迟电路DLY在电池电源VBAT下操作,将电路AD1的输出信号延迟预定时间周期,并且输出功率生成使能信号VSWEN。
图13A和图13B是电路图,示出了在图12所示的天线控制电路ANTCTL中的延迟电路DLY的不同的详细配置实例。在图13A中所示的延迟电路DLY包括n沟道MOS晶体管MN10、电阻器Rd、电容器Cd和反相器电路IV10。在晶体管MN10中,源极耦合到地GND,漏极耦合到电路IV10的输入节点。在电阻器Rd中,一端耦合到电池电源VBAT,并且另一端耦合到电路IV10的输入节点。在电容器Cd中,一端耦合到地GND,另一端耦合到电路IV10的输入节点。当图12中所示的电路AD1的输出信号从“H”电平转变到“L”电平时,电路IV10的输出在经历一个由Rd和Cd的时间常数确定的时间周期(Twait)后从“H”电平转变到“L”电平。当电路AD1的输出信号相反地从“L”电平转变到“H”电平时,电路IV10的输出在经历一个比Twait足够短的时间周期后从“L”电平转变到“H”电平。
另一方面,图13B中所示的延迟电路DLY2在电池电源VBAT下操作,并且被配置有多个按顺序级联耦合的反相器电路IVd[1]、IVd[2]、....、IVd[n](n是偶数)。当电路AD1的输出信号从“H”电平转变到“L”电平或者从“L”电平转变到“H”电平时,电路IVd[n]的输出在经历一个由电路IVd[1]到IVd[n]的延迟时间确定的时间周期(Twait)后分别从“H”电平转变到“L”电平,或者从“L”电平 转变到“H”电平。
鉴于此,在图12所示的天线控制电路ANTCTL中,当来自单元BBU的操作模式设定信号MSET{TX_EN,TX_SW_EN,BAND}从除{“L”,“L”,“L”}外的组合转变到{“L”,“L”,“L”}时,信号VSWEN在经历时间周期Twait后从“H”电平转变到“L”电平。当信号VSWEN处在“H”电平时,电路VSWREG生成电源电压VSW(即被激活);当信号VSWEN处在“L”电平时,电路VSWREG停止生成电压VSW(即被去激活)。当信号MSET{TX_EN,TX_SW_EN,BAND}相反地从{“L”,“L”,“L”}转变到除{“L”,“L”,“L”}外的组合时,信号VSWEN在经历时间周期Twait或更小的时间周期后从“L”电平转变到“H”电平。
图14是真值表,示出了在如图12所示的天线控制电路ANTCTL中的控制逻辑电路LGC的详细操作实例。在图14中,除了控制逻辑电路LGC的操作实例以外,还示出了根据它的输出(即对应于图6中的解码器电路DEC的操作实例)所生成的图6中的开关通断信号的状态。例如,基带单元BBU输出{“1”,“1”,“0”}作为操作模式设定信号MSET{TX_EN,TX_SW_EN,BAND},以便指定低频带发射操作模式TXMD1(LB)。响应于此,电路ANTCTL生成并提供电源电压VSW(VSW=“1”),并且通过使用控制逻辑电路LGC来输出{“0”,“0”,“1”}作为{Sc、Sb、Sa}。响应于此,图6中所示的天线开关ANTSW将八个开关通断信号中的信号TXLBT、TXHBS、RXHBS、RXLBS驱动到VSW电平(“H”),并且将其余的四个信号驱动到-VSS电平(“L”)。借此,在图9中的低频带发射期间的直通晶体管(TSW2a)导通并且其余的直通晶体管截止。此外,在低频带发射期间旁路晶体管(TSW1a)截止并且其余的旁路晶体管导通。
在图14中,在其它的模式(LB ISOMD、HB ISOMD、TXMD2(HB)、RXMD2(HB)、RXMD1(LB)、ISOMD)中以及在模式TXMD1(LB)中,由来自单元BBU的{TX_EN,TX_SW_EN, BAND}的组合来指定操作模式,并且生成与它们对应的开关通断信号。模式“LB ISOMD”、“HB ISOMD”和“ISOMD”分别是低频带隔离操作模式、高频带隔离操作模式和正常隔离操作模式(空闲模式)。在任何操作模式中,图9中的所有直通晶体管都截止,所有的旁路晶体管都导通。
模式TXMD2(HB)是高频带发射操作模式。在模式TXMD2(HB)中,在图9的高频带发射期间,直通晶体管(TSW2b)导通,并且其余的直通晶体管截止。此外,在高频带发射期间,旁路晶体管(TSW1b)截止,其余的旁路晶体管导通。模式RXMD2(HB)是高频带接收操作模式。在模式RXMD2(HB)中,在图9中的高频带接收期间的直通晶体管(TSW3b)导通,并且其余的直通晶体管截止。此外,在高频带接收期间旁路晶体管(TSW4b)截止,并且其余的旁路晶体管导通。模式RXMD1(LB)是低频带接收操作模式。在模式RXMD1(LB)中,在图9的低频带接收期间,直通晶体管(TSW3a)导通,并且其余的直通晶体管截止。此外,在低频带接收期间,旁路晶体管(TSW4a)截止,并且其余的旁路晶体管导通。
另一方面,单元BBU输出{“0”,“0”,“0”}作为{TX_EN,TX_SW_EN,BAND},从而指定省电操作模式(睡眠模式)SLPMD(发出睡眠指令)。响应于此,电路ANTCTL停止生成和供应电源电压VSW(VSW=“0”),并且通过使用控制逻辑电路LGC输出{“0”,“0”,“0”}作为{Sc、Sb、Sa}。响应于此,在如图6所示的天线开关ANTSW中,八个开关通断信号变为高阻抗。然而,由于使用了图12中所示的天线控制电路ANTCTL,所以当从单元BBU发出睡眠指令时,信号{Sc、Sb、Sa}通过电路LGC瞬时变为{“0”,“0”,“0”},但电源电压VSW从如以上所述发出睡眠指令开始经过给定时间周期(Twait)之后才下降。因此,由于在这个时间周期(Twait)期间{VSW,Sc,Sb,Sa}={“1”,“0”,“0”,“0”},所以在实践中,该模块按隔离操作模式ISOMD操 作,并且在经历时间周期Twait之后转变到睡眠模式SLPMD。这可以容易地实现如图1所示的操作。
此外,在图12中,在睡眠模式SLPMD中,控制逻辑电路LGC使用电池电源VBAT输出三个H电平(VBAT电平)信号,并且通过开关缓冲电路SWBF中的反相器电路将这些信号反转,从而输出{“0”,“0”,“0”}作为{Sc、Sb、Sa}。这时,在电路SWBF中,即使在经过时间周期Twait后停止电压VSW的供应,H电平的输入仍旧继续,从而可以可靠地输出GND电平的{“0”,“0”,“0”}。在本实施例中,将在图14中实现电源电压VSW的生成和供应的操作模式(即,除睡眠模式SLPMD以外的操作模式)称为正常操作模式。
图15A和图15B示出了与图14相关联地提取的特性操作实例,其中图15A是状态转变图,并且图15B是操作波形图。如图15A所示的,在低频带或高频带发射操作模式TXMD1(LB)或TXMD2(HB)中接收到睡眠指令时,根据本实施例的射频模块RFMDL暂时转变到隔离操作模式ISOMD,并且在隔离操作模式中经历时间周期Twait后转变到睡眠模式SLPMD。图15B示出了在模式TXMD1(LB)中所述模块接收到睡眠指令时的每个操作波形实例。单元BBU促使操作模式设定信号MSET{TX_EN,TX_SW_EN,BAND}从{“1”,“1”,“0”}转变到{“0”,“0”,“0”},借此指示从发射操作模式转变到睡眠模式。
响应于睡眠指令,在如图12所示的天线控制电路ANTCTL中,天线控制信号(Sa、Sb、Sc)通过控制逻辑电路LGC和开关缓冲电路SWBF,从{“1”,“0”,“0”}转变到{“0”,“0”,“0”}。另一方面,从发出睡眠指令开始经历给定时间周期Twait后,实现电源电压VSW的去激活(功率生成使能信号VSWEN从“H”电平转变到“L”电平)。借此,在时间周期Twait期间实现隔离操作模式ISOMD后,完成到睡眠模式SLPMD的转变。
在图15B中,时间周期Twait(图12所示的延迟电路DLY的延 迟时间)例如是3.8微秒。这例如通过在图13A所示的配置实例中将电阻器Rd设置到几百千欧姆并且将电容器Cd设置到大约10皮法拉来实现。根据需求,从发出睡眠指令到实际转变到睡眠模式SLPMD的下降时间不大于6.9微秒,而从发出返回到正常操作模式的指令到实际转变到这个模式的上升时间不大于5微秒以确保特性。如以上所述,在如图13A所示的电路DLY1中,上升时可能发生小的延迟。因此,为了满足需求,电路DLY的延迟时间需要小于约7微秒(6.9微秒);但是过短的延迟时间引起到模式ISOMD的不充分的切换。出于这个理由,将延迟时间设置在3.8微秒或类似的时间,从而变得可以充分地满足需要,并且还能充分地切换到模式ISOMD,即使考虑到图13A中所示的电路DLY1和DLY2中的变化以及图12中所示的电路VSWREG的下降时间等因素,亦是如此。
此外,例如在GSM中,当使用TDMA(时分多址)时,并且按照称为时隙的时间周期为单位来切换操作模式。一个时隙的时间周期是577微秒,并且对于至少一个时隙的时间周期连续地执行模式SLPMD。在图15B中,针对3.8微秒的时间周期执行模式ISOMD,在这个时间周期上图10所示的n沟道MOS晶体管的栅极电容充电和放电到VSW电平(导通电平)或者-VSS电平(截止电平)。在此之后,当模块转变到模式SLPMD时,栅极例如变为高阻抗,并且通过栅极电容维持这个导通电平或截止电平。
栅极电容Cg的值可以由Cox·L·W近似地确定,其中Cox是每单位面积的栅极绝缘膜GOX的电容值,L是栅极长度,W是栅极宽度。在一般情况下,形成射频开关电路RFSW中的开关晶体管TSW的尺寸(如栅极宽度W)在很大程度上是为了减小导通电阻,这就增加了栅极电容Cg的值。因此,通过在3.8微秒的时间周期使电容Cg充分地充电和放电,可以将导通电平和截止电平维持某个时间周期,即使在一个时隙或更长的时间周期连续地执行模式SLPMD亦是如此。根据本发明人等人的考察,例如在旁路晶体管的尺寸为480微米且栅极电容为0.1皮法拉的情况下,可以维持这个电平例如约4 毫秒的时间周期,这个值对于实际使用是足够的。
《电平移位电路的详述实例》
图16是电路图,示出了如图6所示的天线开关ANTSW中的电平移位电路块LSBK中的每个电平移位电路LS[n]的详细配置实例。图16中所示的电平移位电路LS[n](n=1到4)被配置有电平移位级LSSG和输出级OTSG。电平移位级LSSG包括电压降电路VDC和缓冲器电路BFp和BFn。电路BFp在电源电压VSW和地GND下操作。将从解码器电路DEC输出的幅度电压在VSW和GND之间的开关控制信号Ssw[n]输入到电路BFp,并且电路BFp向节点Ninp输出幅度电压在VSW和GND之间的信号。电路BFn在地GND和负电源电压(-VSS)下操作。通过电路VDC向电路BFn输入信号Ssw[n],并且电路BFn向节点Ninn输出幅度电压在GND和-VSS之间的信号。
电路VDC例如包括多个二极管耦合的(栅-漏短路的)n沟道MOS晶体管MNd[1]至MNd[m]和电流源IS1。晶体管MNd[1]至MNd[m]按顺序串联耦合在信号Ssw[n]的输入节点和电路BFn的输入节点之间,并且电流源IS 1提供在电路BFn的输入节点和电压-VSS之间。鉴于此,电路VDC将信号Ssw[n]的幅度下降大致晶体管MNd[1]至MNd[m]的阈值电压之和,并且在电路BFn的输入节点处生成幅度电压近似在GND和-VSS之间的信号。
在图16中,输出级OTSG包括电路块OTT和电路块OTB,电路块OTT用于向射频开关电路RFSW输出控制信号OUT[n],电路块OTB用于输出作为信号OUT[n]的反转信号的控制信号OUTB[n]。例如,在n=1时图6中的电路LS[1]的情况下,信号OUT[1]和OUTB[1]分别与信号TXLBT和TXLBS对应。电路块OTB包括反相器电路IVp0至IVp2、IVn0至IVn2、p沟道MOS晶体管MPp1、MPp2、MPn1和n沟道MOS晶体管MNn1、MNn2、MNp1。电路IVp0至IVp2和晶体管MPp1、MPp2、MNp1构成幅度电压在GND和VSW之间的电路(第一输出电路OTP),并且电路IVn0至IVn2和晶体 管MNn1、MNn2、MPn1构成幅度电压在-VSS和GND之间的电路(第二输出电路OTN)。此外,晶体管MPp1、MPp2、MPn1、MNn1、MNn2、MNp1具有增强类型的特性。
在幅度电压在GND和VSW之间的电路(OTP)中,以节点Ninp作为输入,电路IVp0执行反转操作。电路IVp1响应电路IVp0的输出执行反转操作,并且控制晶体管MPp1的栅极,而电路IVp2响应电路IVp0的输出执行反转操作,并且控制晶体管MNp1的栅极。晶体管MPp1和MNp1的源-漏路径串联耦合在VSW和GND之间,它们的共同耦合节点(漏极节点)Npp耦合到晶体管MPp2的源极,晶体管MPp2的栅极耦合到地GND。从晶体管MPp2的漏极输出信号OUTB[n]。另一方面,类似地,在幅度电压在-VSS和GND之间的电路(OTN)中,以节点Ninn作为输入,电路IVn0执行反转操作。电路IVn1响应电路IVn0的输出执行反转操作,并且控制晶体管MPn1的栅极,而电路IVn2响应电路IVn0的输出执行反转操作,并且控制晶体管MNn1的栅极。晶体管MPn1和MNn1的源-漏路径串联耦合在GND和-VSS之间,它们的共同耦合节点(漏极节点)Nnn耦合到晶体管MNn2的源极,晶体管MNn2的栅极耦合到地GND。从晶体管MNn2的漏极输出信号OUTB[n]。
鉴于此,在幅度电压在GND和VSW之间的电路(OTP)中,当节点Ninp处在“L”电平(GND电平)时,信号OUTB[n]通过晶体管MPp 1和MPp2变为VSW电平。当节点Ninp处在“H”电平(VSW电平)时,晶体管MNp1导通并且晶体管MPp2截止,从而使信号OUTB[n]变为高阻抗。另一方面,在幅度电压在-VSS和GND之间的电路(OTN)中,当节点Ninn处在“L”电平(-VSS电平)时,晶体管MNn2截止,从而使信号OUTB[n]变为高阻抗。当节点Ninn处在“H”电平(GND电平)时,信号OUTB[n]通过晶体管MNn1和MNn2变为-VSS电平。因此,生成幅度电压在-VSS和VSW之间的信号OUTB[n]。
电路块OTT包括反相器电路IVp1’、IVp2’、IVn1’、IVn2’、p 沟道MOS晶体管MPp1’、MPp2’、MPn1’和NMOS晶体管MNn1’、MNn2’、MNp1’。除了块OTT不具有包括在块OTB的输入部分中的反相器电路IVp0和IVn0之外,块OTT具有与块OTB相同的配置,并且执行同样的操作。即,节点Ninp在没有电路IVp0的情况下直接耦合到电路IVp1’和IVp2’的输入端,并且节点Ninn在没有电路IVn0的情况下直接耦合到电路IVn1’和IVn2’的输入端。鉴于此,块OTT输出具有与信号OUTB[n]的极性不同的极性的控制信号OUT[n]。
图17A和图17B示出了图16所示的电平移位电路LS[n]中输出电压的实际转变实例,其中图17A示出了使用图1中所示的操作实例的情况,图17B示出了使用图2所示的操作实例作为对照例的情况。首先,在作为对照例的图17B中,示出的是从发射操作模式TXMD转变到睡眠模式SLPMD时,旁路晶体管(在图1和图2中的TSW1)的栅极电压(与图16中的信号OUTB[n]对应)和直通晶体管(TSW2)的栅极电压(与信号OUT[n]对应)。在模式TXMD期间,图16中的晶体管MNn和MNn2导通并且晶体管MPn1截止,从而使信号OUTB[n]变为-VSS电平(如-2.6伏),这使旁路晶体管截止。然后,在从模式TXMD转变到模式SLPMD时,图6和图7中的负电压生成电路VSSGEN停止生成电压-VSS。然而,由于通过图6和图7中的电容器C1和C2使电压-VSS保持一段时间,所以信号OUTB[n]通过晶体管MNn1和MNn2(其栅极处在GND电平)可以近似地维持-VSS电平。
此外,在模式TXMD期间,晶体管MPp1’和MPp2’导通并且晶体管MNp1’截止,因此信号OUT[n]变为VSW电平(如3.1伏),这将使直通晶体管导通。然后,在从模式TXMD转变到模式SLPMD时,停止电压VSW的供应(VSW朝向0伏下降),从而使在节点Npp’的电位通过晶体管MPp1’下降,并且信号OUT[n]也通过晶体管MPp2’下降。相应地,晶体管MPp1’和MPp2’的栅-源电位差Vgs下降,从而使节点Npp’和信号OUT[n]的电压下降到约为晶体管 MPp1’和MPp2’的阈值电压Vthp’(如0.7伏)。当节点Npp’和信号OUT[n]的电压下降到低于电压Vthp’时,晶体管MPp1’和MPp2’截止,从而使信号OUT[n]变为高阻抗,并保持大约电压Vthp’的电平。因此,在模式SLPMD期间,旁路晶体管维持截止状态,其中信号OUT[n]在-VSS电平,并且直通晶体管(耗尽型)维持导通状态,其中信号OUT[n]近似地为Vthp’电平,这可能引起隔离特性的下降。
另一方面,在根据本实施例的图17A中,执行从发射操作模式TXMD通过隔离操作模式ISOMD到睡眠模式SLPMD的转变。在模式ISOMD期间,晶体管MPp1和MPp2导通并且晶体管MNp1截止,从而使信号OUTB[n]变为VSW电平(如3.1伏),这使旁路晶体管导通。然后,在从模式ISOMD转变到模式SLPMD时,停止电压VSW的供应(VSW向0伏下降),从而使节点Npp的电位通过晶体管MPp1减小,并且信号OUTB[n]也通过晶体管MPp2减小。相应地,晶体管MPp1和MPp2的栅-源电位差Vgs减小,从而使节点Npp和信号OUTB[n]的电压下降到约为晶体管MPp1和MPp2的阈值电压Vthp(如0.7伏)。当节点Npp和信号OUTB[n]的电压下降到低于电压Vthp时,晶体管MPp1和MPp2截止,从而使信号OUTB[n]变为高阻抗,并保持大约电压Vthp的电平。
此外,在模式ISOMD期间,图16中的晶体管MNn1’和MNn2’导通并且晶体管MPn1’截止,从而使信号OUT[n]变为-VSS电平(如-2.6伏),这使直通晶体管截止。然后,在从模式ISOMD转变到模式SLPMD时,图6和图7中的负电压生成电路VSSGEN停止生成电压-VSS。然而,由于电压-VSS由图6和图7中所示的电容器C 1和C2保持一段时间,所以信号OUT[n]通过其栅极处在GND电平的晶体管MNn1’和MNn2’维持在近似-VSS电平。因此,在模式SLPMD期间,旁路晶体管(耗尽型)维持导通状态,其中信号OUTB[n]近似在Vthp电平,并且直通晶体管维持截止状态,其中信号OUT[n]在-VSS电平,这可以增强隔离特性。
《无线通信系统的通用配置》
图18是方框图,示出了使用根据本发明的实施例的射频模块的无线通信系统的配置实例。在图18中,示出了作为无线通信系统的实例的蜂窝电话系统。图18所示的蜂窝电话系统包括:基带单元BBU、射频系统单元RFSYS、天线ANT、扬声器SPK和话筒MIC。单元BBU将例如扬声器SPK和话筒MIC使用的模拟信号转换成数字信号,执行与通信有关的各种类型的数字信号处理(调制、解调、数字滤波等),并且输出与通信有关的各种类型的控制信号。控制信号包括用于切换各种不同的操作模式(如发射和接收)的操作模式设定信号MSET,和用于指定发射功率的功率指定信号。
单元RFSYS包括:射频信号处理单元RFBK、SAW(表面声波)滤波器和射频模块RFMDL。单元RFBK例如包括发射混频器电路、接收混频器电路和低噪声放大器电路,并且在主要由单元BBU使用的基带信号和由模块RFMDL使用的射频信号之间执行频率转换(增频转换、降频转换)。模块RFMDL例如通过单个模块布线板实施,在布线板上方安装高功率放大器电路块HPABK、耦合器CPL、低通滤波器LPF、天线开关ANTSW等。块HPABK和天线开关ANTSW例如通过相应的单个半导体芯片实施,如图4等所示。
块HPABK包括:高功率放大器电路HPA,用于放大从单元RFBK中的发射混频器电路等输出的发射信号;和自动功率控制电路APC,用于控制发射功率。耦合器CPL检测电路HPA的发射功率并且输出检测结果。电路APC根据由单元BBU通知的信号Vramp和耦合器CPL的检测结果来控制电路HPA。滤波器LPF对于电路HPA的发射信号进行滤波和阻抗匹配,并且向天线开关ANTSW输出处理的信号。天线开关ANTSW根据来自单元BBU的信号MSET切换这些开关,向天线ANT发送发射射频信号(RFtx),并且向SAW滤波器发送来自天线ANT的接收射频信号(RFrx)。SAW滤波器仅从信号RFrx提取必要的频带,并且将其输出到单元RFBK。在单元RFBK中,低噪声放大器电路放大从SAW滤波器接收的信号,并且接收混频器电路将放大的信号转换成基带信号。
《电平移位电路的对照例》
图19是电路图,示出了图16所示的电平移位电路的对照例。尽管图16示出了使用具有低器件击穿电压的MOS晶体管的电平移位电路的配置实例,但如果可以使用具有高器件击穿电压的MOS晶体管,就可以使用如图19所示的交叉耦合的电平移位电路。图19所示的电平移位电路包括p沟道MOS晶体管MP21和MP22、n沟道MOS晶体管MN21和MN22以及反相器电路IV20。晶体管MP21和MP22的源极共同耦合到电源电压VSW,晶体管MP21的漏极耦合到晶体管MN21的漏极,晶体管MP22的漏极耦合到晶体管MN22的漏极。晶体管MN21和MN22的源极共同耦合到负电源电压(-VSS),并且执行交叉耦合(一个晶体管的栅极耦合到另一个晶体管的漏极)。晶体管MN21的栅极由开关控制信号Ssw控制,并且晶体管MP22的栅极由通过电路IV20反转的信号Ssw的反向信号控制。电路IV20在电压VSW和GND之间操作。
借助这样一个配置实例,按照信号Ssw的逻辑电平,在晶体管MP22(MN22)的漏极处,可以生成幅度电压在VSW和-VSS之间的控制信号OUT,并且在晶体管MP21(MN21)的漏极处可以生成相反极性的控制信号OUTB。在这种情况下,曲于幅度电压在VSW和-VSS之间的信号施加在每个MOS晶体管的栅极和源极之间以及源极和漏极之间,所以对于每个MOS晶体管都要求有高器件击穿电压。因此,如果确保诸如在SOI衬底中的器件击穿电压不是很容易,则期望使用如图16所示的配置实例。然而,即使如图19所示的配置实例是可应用的,使用如图1等所示的操作实例也是有益的。
即,假定:在信号OUT处在VSW电平并且信号OUTB处在-VSS电平的状态下停止电压VSW和-VSS的供应。在这种情况下,信号OUT的电压通过晶体管MP22而减小。当信号OUT的电压达到晶体管MP22的阈值电压时,晶体管MP22截止,并且信号OUT变为高阻抗并且近似地维持在阈值电压。另一方面,由于电压-VSS由电容器C1和C2保持一段时间,并且信号OUT的电压(近似等于 晶体管MP22的阈值电压)提供给晶体管MN21的栅极,所以信号OUTB通过导通的晶体管MN21维持在近似电压-VSS。于是,如果紧接在睡眠模式之前的开关晶体管TSW的栅极电平处在VSW电平,则在此之后栅极电平保持在近似阈值电压电平。如果栅极电平处在-VSS电平,则在此之后栅极电平维持在-VSS电平。因此,对于图16和图17中,同样适用这种情况。
然而,如果负电源电压(-VSS)早就变为0伏(例如,电源电容小或者睡眠模式的持续时间长),则在图16和图19中所示的配置实例之间的操作是不同的。在图19所示的配置实例中,晶体管TSW的栅极从-VSS电平转变到0伏电平。另一方面,在图16所示的配置实例中,当晶体管TSW的栅极从-VSS电平达到-Vthn电平(这里的Vthn是晶体管MNn2和MNn2’的阈值电压)时,栅极变为高阻抗并且维持-Vthn电平。因此,在使用耗尽型晶体管TSW的情况下,使用如图19所示的配置实例在睡眠模式期间可能促使直通晶体管从截止状态转变到导通状态,而使用如图16所示的配置实例能够促使直通晶体管维持截止状态一段时间。
虽然根据所示的实施例具体地描述了由本发明人以上实现的本发明,但本发明不限于此,并且在不偏离本发明的构思和范围的情况下,可以进行各种改变和修改。
例如,虽然在上述的实施例中,如图1所示的操作实例是通过在如图12所示的天线开关电路ANTCTL中插入睡眠指令检测电路(AD1)和延迟电路DLY实现的,但可以适当地改变这个实施方案。例如,图12中所示的控制逻辑电路LGC利用状态机等来配置,并且在状态机中可以实现例如图15A所示的状态转变。此外,在基带单元BBU中,可将从发射操作模式到睡眠模式的转变转换成从发射操作模式通过隔离操作模式到睡眠模式的转变。但是在这种情况下,将特定的基带单元BBU与射频模块RFMDL进行组合是必要的;因此,期望对于单元BBU和模块RFMDL的任意组合,在模块RFMDL中都具有这种转换功能。
此外,虽然在这个实施例中,天线开关ANTSW是在SOI衬底上方形成的,但天线开关ANTSW也可以在SOS(蓝宝石上硅)衬底上方形成。此外,虽然在这个实施例中,高功率放大器电路块HPABK和天线开关ANTSW是在单独的芯片之上实现的,但块HPABK和天线开关ANTSW也可以在同一个半导体芯片之上实现,以便得到较高的集成度。此外,虽然在这个实施例中,高功率放大器电路HPA是利用LDMOSFET形成的,但电路HPA也可以用HBT(异质结双极晶体管)等形成。

Claims (19)

1.一种射频模块,包括:
功率放大器电路,用于放大发射射频信号并且向发射节点输出放大的信号;
第一晶体管,用于将所述发射节点耦合到天线;
第二晶体管,用于将所述发射节点旁路到第一电源电压;和
控制电路块,所述控制电路块生成高于所述第一电源电压的第二电源电压和低于所述第一电源电压的第三电源电压,并且通过向所述第一晶体管和所述第二晶体管施加值为所述第二电源电压或所述第三电源电压的控制信号,实现所述第一晶体管和所述第二晶体管的通断控制,
其中当指定发射操作模式时,所述控制电路块使所述第一晶体管导通并使所述第二晶体管截止,并且当在所述发射操作模式后指定省电操作模式时,所述控制电路块在第一时间周期期间使所述第一晶体管截止并使所述第二晶体管导通,然后停止所述第二电源电压和所述第三电源电压的生成。
2.根据权利要求1所述的射频模块,
其中所述第一晶体管和所述第二晶体管是n沟道MIS晶体管,
其中所述第一电源电压是地电压,
其中所述第二电源电压是正电源电压,以及
其中所述第三电源电压是负电源电压。
3.根据权利要求2所述的射频模块,
其中所述控制电路块包括:
第一驱动器电路,所述第一驱动器电路在所述第二电源电压和所述第一电源电压之间操作;
第二驱动器电路,所述第二驱动器电路在所述第一电源电压和所述第三电源电压之间操作;
第一开关电路,所述第一开关电路插入在所述第一驱动器电路的输出节点和所述第一晶体管的控制输入节点之间,并且当所述第一驱动器电路输出所述第二电源电压时所述第一开关电路导通,并且当所述第一驱动器电路输出所述第一电源电压时所述第一开关电路截止;
第二开关电路,所述第二开关电路插入在所述第二驱动器电路的输出节点和所述第一晶体管的控制输入节点之间,并且当所述第二驱动器电路输出所述第三电源电压时所述第二开关电路导通,并且当所述第二驱动器电路输出所述第一电源电压时所述第二开关电路截止;
第三驱动器电路,所述第三驱动器电路在所述第二电源电压和所述第一电源电压之间操作;
第四驱动器电路,所述第四驱动器电路在所述第一电源电压和所述第三电源电压之间操作;
第三开关电路,所述第三开关电路插入在所述第三驱动器电路的输出节点和所述第二晶体管的控制输入节点之间,并且当所述第三驱动器电路输出所述第二电源电压时所述第三开关电路导通,并且当所述第三驱动器电路输出所述第一电源电压时所述第三开关电路截止;以及
第四开关电路,所述第四开关电路插入在所述第四驱动器电路的输出节点和所述第二晶体管的控制输入节点之间,并且当所述第四驱动器电路输出所述第三电源电压时所述第四开关电路导通,并且当所述第四驱动器电路输出所述第一电源电压时所述第四开关电路截止。
4.根据权利要求2所述的射频模块,其中所述第一时间周期小于7微秒。
5.一种射频模块,包括:
功率放大器电路,用于放大发射射频信号并且向发射节点输出放大的信号;
第一晶体管,用于将所述发射节点耦合至天线;
第二晶体管,用于将所述发射节点旁路到第一电源电压;
第一电源电压生成电路,用于生成高于所述第一电源电压的第二电源电压;
第二电源电压生成电路,用于生成低于所述第一电源电压的第三电源电压;
电平移位电路单元,向所述电平移位电路单元提供所述第二电源电压和所述第三电源电压,所述电平移位电路单元通过向所述第一晶体管和所述第二晶体管施加值为所述第二电源电压或所述第三电源电压的控制信号实现所述第一晶体管和所述第二晶体管的通断控制;和
控制电路,所述控制电路按照输入的第一指令切换包括发射操作模式、隔离操作模式和省电模式的多个操作模式,并且按照每个操作模式控制所述电平移位电路单元以及所述第一电源电压生成电路和所述第二电源电压生成电路的激活和去激活,
其中在所述发射操作模式中,所述控制电路激活所述第一电源电压生成电路和所述第二电源电压生成电路,并且所述控制电路通过所述电平移位电路单元使所述第一晶体管导通并且使所述第二晶体管截止,
其中在所述隔离操作模式中,所述控制电路激活所述第一电源电压生成电路和所述第二电源电压生成电路,并且所述控制电路通过所述电平移位电路单元使所述第一晶体管截止并且使所述第二晶体管导通,
其中在所述省电操作模式中,所述控制电路去激活所述第一电源电压生成电路和所述第二电源电压生成电路,以及
其中当所述第一指令指示从所述发射操作模式转变到所述省电操作模式时,所述控制电路在所述发射操作模式后的第一时间周期期间实现所述隔离操作模式,然后转变到所述省电操作模式。
6.根据权利要求5所述的射频模块,
其中所述第一晶体管和所述第二晶体管是n沟道MIS晶体管,
其中所述第一电源电压是地电压,
其中所述第二电源电压是正电源电压,并且
其中所述第三电源电压是负电源电压。
7.根据权利要求6所述的射频模块,其中所述第二电源电压生成电路使用所述第二电源电压生成所述第三电源电压。
8.根据权利要求7所述的射频模块,
其中所述控制电路包括:
检测电路,用于检测指示转变到所述省电操作模式的所述第一指令;以及
延迟电路,用于将来自所述检测电路的检测信号延迟所述第一时间周期,并且
其中根据来自所述延迟电路的输出信号控制所述第一电源电压生成电路的激活和去激活。
9.根据权利要求8所述的射频模块,其中所述延迟电路使用电阻和电容的时间常数来设定所述第一时间周期。
10.根据权利要求8所述的射频模块,其中所述第一时间周期小于7微秒。
11.根据权利要求6所述的射频模块,
其中所述电平移位电路单元包括:
第一驱动器电路,所述第一驱动器电路在所述第二电源电压和所述第一电源电压之间操作;
第二驱动器电路,所述第二驱动器电路在所述第一电源电压和所述第三电源电压之间操作;
第一开关电路,所述第一开关电路插入在所述第一驱动器电路的输出节点和所述第一晶体管的控制输入节点之间,并且当所述第一驱动器电路输出所述第二电源电压时所述第一开关电路导通,并且当所述第一驱动器电路输出所述第一电源电压时所述第一开关电路截止;
第二开关电路,所述第二开关电路插入在所述第二驱动器电路的输出节点和所述第一晶体管的控制输入节点之间,并且当所述第二驱动器电路输出所述第三电源电压时所述第二开关电路导通,并且当所述第二驱动器电路输出所述第一电源电压时所述第二开关电路截止;
第三驱动器电路,所述第三驱动器电路在所述第二电源电压和所述第一电源电压之间操作;
第四驱动器电路,所述第四驱动器电路在所述第一电源电压和所述第三电源电压之间操作;
第三开关电路,所述第三开关电路插入在所述第三驱动器电路的输出节点和所述第二晶体管的控制输入节点之间,并且当所述第三驱动器电路输出所述第二电源电压时所述第三开关电路导通,并且当所述第三驱动器电路输出所述第一电源电压时所述第三开关电路截止;和
第四开关电路,所述第四开关电路插入在所述第四驱动器电路的输出节点和所述第二晶体管的控制输入节点之间,并且当所述第四驱动器电路输出所述第三电源电压时所述第四开关电路导通,并且当所述第四驱动器电路输出所述第一电源电压时所述第四开关电路截止。
12.根据权利要求11所述的射频模块,
其中所述第一开关电路是p沟道MIS晶体管,它的栅极施加有所述第一电源电压,它的源极耦合到所述第一驱动器电路的输出节点,
其中所述第二开关电路是n沟道MIS晶体管,它的栅极施加有所述第一电源电压,它的源极耦合到所述第二驱动器电路的输出节点,
其中所述第三开关电路是p沟道MIS晶体管,它的栅极施加有所述第一电源电压,它的源极耦合到所述第三驱动器电路的输出节点,
其中所述第四开关电路是n沟道MIS晶体管,它的栅极施加有所述第一电源电压,它的源极耦合到所述第四驱动器电路的输出节点,
其中构成所述第一开关电路到所述第四开关电路的晶体管具有增强型特性,并且
其中所述第一晶体管和所述第二晶体管具有耗尽型特性。
13.一种射频模块,包括:
布线板;
安装在所述布线板上方的第一半导体芯片;
安装在所述布线板上方并由SOI衬底形成的第二半导体芯片;
其中所述第一半导体芯片包括:
偏置电路,用于生成偏置;
功率放大器电路,用于以与所述偏置对应的增益放大输入的发射射频信号,并将放大的信号输出到发射节点;
第一电源电压生成电路,用于生成正电源电压;和
控制电路,所述控制电路按照输入的第一指令切换包括发射操作模式、隔离操作模式和省电操作模式的多个操作模式,输出与每个操作模式对应的第一控制信号,并且控制所述第一电源电压生成电路的激活和去激活,
其中所述第二半导体芯片包括:
第一晶体管,用于将所述发射节点耦合到天线;
第二晶体管,用于将所述发射节点旁路到地电压;
第三晶体管,用于向接收节点发送由所述天线接收的接收射频信号;
第四晶体管,用于将所述接收节点旁路到所述地电压;
第二电源电压生成电路,用于使用所述正电源电压生成负电源电压;和
电平移位电路单元,向所述电平移位电路单元提供所述正电源电压和所述负电源电压,所述电平移位电路单元通过按照所述第一控制信号向所述第一晶体管到所述第四晶体管施加值为所述正电源电压或所述负电源电压的第二控制信号实现所述第一晶体管到所述第四晶体管的通断控制,
其中在所述发射操作模式中,所述控制电路激活所述第一电源电压生成电路,并且输出具有第一逻辑信息的所述第一控制信号,
其中在所述隔离操作模式中,所述控制电路激活所述第一电源电压生成电路,并且输出具有第二逻辑信息的所述第一控制信号,
其中在所述省电操作模式中,所述控制电路去激活所述第一电源电压生成电路,并且输出具有第三逻辑信息的所述第一控制信号,
其中所述电平移位电路单元按照所述第一逻辑信息使所述第一晶体管和所述第四晶体管导通并且使所述第二晶体管和所述第三晶体管截止,
其中所述电平移位电路单元按照所述第二逻辑信息使所述第一晶体管和所述第三晶体管截止并且使所述第二晶体管和所述第四晶体管导通,并且
其中当所述第一指令指示从所述发射操作模式转变到所述省电操作模式时,所述控制电路在所述发射操作模式后的第一时间周期期间执行所述隔离操作模式,然后转变到所述省电操作模式。
14.根据权利要求13所述的射频模块,其中当所述第一指令指示转变到所述省电操作模式时,所述偏置电路停止所述偏置的生成。
15.根据权利要求14所述的射频模块,
其中所述第一电源电压生成电路使用负反馈配置的放大器电路生成所述正电源电压,并且
其中所述第二电源电压生成电路通过使用由所述正电源电压生成的时钟信号将电荷存储在第一电容器中而生成所述负电源电压。
16.根据权利要求15所述的射频模块,
其中所述控制电路包括:
检测电路,用于检测指示转变到所述省电操作模式的所述第一指令;和
延迟电路,用于将来自所述检测电路的检测信号延迟所述第一时间周期,并且
其中根据来自所述延迟电路的输出信号控制所述第一电源电压生成电路的激活和去激活。
17.根据权利要求16所述的射频模块,其中所述延迟电路使用电阻和电容的时间常数来设定所述第一时间周期。
18.根据权利要求14所述的射频模块,
其中所述电平移位电路单元包括:
第一驱动器电路,所述第一驱动器电路在所述正电源电压和所述地电压之间操作;
第二驱动器电路,所述第二驱动器电路在所述地电压和所述负电源电压之间操作;
第一开关电路,所述第一开关电路插入在所述第一驱动器电路的输出节点和所述第一晶体管的控制输入节点之间,并且当所述第一驱动器电路输出所述正电源电压时所述第一开关电路导通,并且当所述第一驱动器电路输出所述地电压时所述第一开关电路截止;
第二开关电路,所述第二开关电路插入在所述第二驱动器电路的输出节点和所述第一晶体管的控制输入节点之间,并且当所述第二驱动器电路输出所述负电源电压时所述第二开关电路导通,并且当所述第二驱动器电路输出所述地电压时所述第二开关电路截止;
第三驱动器电路,所述第三驱动器电路在所述正电源电压和所述地电压之间操作;
第四驱动器电路,所述第四驱动器电路在所述地电压和所述负电源电压之间操作;
第三开关电路,所述第三开关电路插入在所述第三驱动器电路的输出节点和所述第二晶体管的控制输入节点之间,并且当所述第三驱动器电路输出所述正电源电压时所述第三开关电路导通,并且当所述第三驱动器电路输出所述地电压时所述第三开关电路截止;以及
第四开关电路,所述第四开关电路插入在所述第四驱动器电路的输出节点和所述第二晶体管的控制输入节点之间,并且当所述第四驱动器电路输出所述负电源电压时所述第四开关电路导通,并且当所述第四驱动器电路输出所述地电压时所述第四开关电路截止。
19.根据权利要求18所述的射频模块,
其中所述第一开关电路是p沟道MIS晶体管,它的栅极施加有所述地电压,它的源极耦合到所述第一驱动器电路的输出节点,
其中所述第二开关电路是n沟道MIS晶体管,它的栅极施加有所述地电压,它的源极耦合到所述第二驱动器电路的输出节点,
其中所述第三开关电路是p沟道MIS晶体管,它的栅极施加有所述地电压,它的源极耦合到所述第三驱动器电路的输出节点,
其中所述第四开关电路是n沟道MIS晶体管,它的栅极施加有所述地电压,它的源极耦合到所述第四驱动器电路的输出节点,
其中构成所述第一开关电路到所述第四开关电路的晶体管具有增强型特性,并且
其中所述第一晶体管和所述第二晶体管是具有耗尽型特性的n沟道MIS晶体管。
CN201110185700.9A 2010-09-14 2011-06-29 射频模块 Active CN102403990B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-205951 2010-09-14
JP2010205951A JP5467979B2 (ja) 2010-09-14 2010-09-14 高周波モジュール

Publications (2)

Publication Number Publication Date
CN102403990A CN102403990A (zh) 2012-04-04
CN102403990B true CN102403990B (zh) 2015-10-21

Family

ID=45807236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110185700.9A Active CN102403990B (zh) 2010-09-14 2011-06-29 射频模块

Country Status (3)

Country Link
US (1) US8649741B2 (zh)
JP (1) JP5467979B2 (zh)
CN (1) CN102403990B (zh)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804502B2 (en) 2001-10-10 2004-10-12 Peregrine Semiconductor Corporation Switch circuit and method of switching radio frequency signals
US7719343B2 (en) 2003-09-08 2010-05-18 Peregrine Semiconductor Corporation Low noise charge pump method and apparatus
WO2006002347A1 (en) 2004-06-23 2006-01-05 Peregrine Semiconductor Corporation Integrated rf front end
US7890891B2 (en) 2005-07-11 2011-02-15 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
USRE48965E1 (en) 2005-07-11 2022-03-08 Psemi Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US9653601B2 (en) 2005-07-11 2017-05-16 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
US7910993B2 (en) 2005-07-11 2011-03-22 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFET's using an accumulated charge sink
US20080076371A1 (en) 2005-07-11 2008-03-27 Alexander Dribinsky Circuit and method for controlling charge injection in radio frequency switches
US9166471B1 (en) 2009-03-13 2015-10-20 Rf Micro Devices, Inc. 3D frequency dithering for DC-to-DC converters used in multi-mode cellular transmitters
US8548398B2 (en) 2010-02-01 2013-10-01 Rf Micro Devices, Inc. Envelope power supply calibration of a multi-mode radio frequency power amplifier
US9184701B2 (en) 2010-04-20 2015-11-10 Rf Micro Devices, Inc. Snubber for a direct current (DC)-DC converter
US9362825B2 (en) 2010-04-20 2016-06-07 Rf Micro Devices, Inc. Look-up table based configuration of a DC-DC converter
US9214900B2 (en) 2010-04-20 2015-12-15 Rf Micro Devices, Inc. Interference reduction between RF communications bands
US9008597B2 (en) 2010-04-20 2015-04-14 Rf Micro Devices, Inc. Direct current (DC)-DC converter having a multi-stage output filter
US9900204B2 (en) 2010-04-20 2018-02-20 Qorvo Us, Inc. Multiple functional equivalence digital communications interface
US9214865B2 (en) 2010-04-20 2015-12-15 Rf Micro Devices, Inc. Voltage compatible charge pump buck and buck power supplies
US9577590B2 (en) 2010-04-20 2017-02-21 Qorvo Us, Inc. Dual inductive element charge pump buck and buck power supplies
US9553550B2 (en) * 2010-04-20 2017-01-24 Qorvo Us, Inc. Multiband RF switch ground isolation
JP5677930B2 (ja) * 2011-08-31 2015-02-25 株式会社東芝 半導体スイッチ及び無線機器
US9413415B2 (en) * 2011-12-20 2016-08-09 Murata Manufacturing Co., Ltd. High frequency module
KR20130127782A (ko) * 2012-05-15 2013-11-25 삼성전기주식회사 스위칭 회로 및 이를 포함하는 무선통신 시스템
TWI552431B (zh) * 2012-09-04 2016-10-01 深圳市華星光電技術有限公司 具備可切換天線之通訊裝置
CN102972320B (zh) * 2012-12-18 2016-01-06 周文涛 一种电子脉冲拦鱼装置
US20140273825A1 (en) * 2013-03-15 2014-09-18 Infineon Technologies Ag Semiconductor Chip Configuration with a Coupler
JP6122682B2 (ja) * 2013-04-16 2017-04-26 ルネサスエレクトロニクス株式会社 半導体装置及びそれを備えたプロセッサシステム
KR102136228B1 (ko) * 2013-12-13 2020-07-21 에스케이하이닉스 주식회사 차동 시그널링을 지원하는 송/수신기 및 이를 포함하는 반도체 송/수신 시스템
KR20150076828A (ko) * 2013-12-27 2015-07-07 삼성전기주식회사 고주파 스위치
US9654094B2 (en) 2014-03-12 2017-05-16 Kabushiki Kaisha Toshiba Semiconductor switch circuit and semiconductor substrate
JP6216753B2 (ja) 2014-09-16 2017-10-18 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. バンドローディングを低減するマルチバンドデバイス
US9374124B2 (en) * 2014-10-03 2016-06-21 Analog Devices Global Apparatus and methods for biasing radio frequency switches
US9667312B2 (en) * 2015-01-13 2017-05-30 Hughes Network Systems, Llc Radio based automatic level control for linear radio calibration
US10050522B2 (en) 2015-02-15 2018-08-14 Skyworks Solutions, Inc. Interleaved dual output charge pump
CN105896959B (zh) * 2015-02-15 2019-03-08 天工方案公司 交错的双输出电荷泵
US9678528B2 (en) 2015-02-15 2017-06-13 Skyworks, Solutions Inc. Voltage supply system with boost converter and charge pump
CN106329157B (zh) * 2015-06-24 2019-12-31 天地融科技股份有限公司 一种天线装置及电子设备
CN105159372B (zh) * 2015-08-24 2017-03-22 锐迪科创微电子(北京)有限公司 一种负电压生成电路
CN106656126A (zh) * 2015-10-28 2017-05-10 上海新微技术研发中心有限公司 负电压产生电路、射频开关系统和射频开关电路控制方法
KR101823269B1 (ko) * 2016-11-18 2018-01-29 삼성전기주식회사 다이나믹 바이어스를 갖는 고주파 스위치 장치
EP3425799A4 (en) * 2017-02-23 2019-05-08 Shenzhen Goodix Technology Co., Ltd. RECTANGULAR CELL GENERATION METHOD AND RECTANGULAR CELL GENERATION CIRCUIT
CN106899323B (zh) * 2017-03-15 2020-04-21 广州慧智微电子有限公司 一种射频开关及其控制方法
US10778206B2 (en) * 2018-03-20 2020-09-15 Analog Devices Global Unlimited Company Biasing of radio frequency switches for fast switching
US10505530B2 (en) 2018-03-28 2019-12-10 Psemi Corporation Positive logic switch with selectable DC blocking circuit
US10769511B2 (en) * 2019-01-03 2020-09-08 Wiliot, Ltd Low energy transmitter
JP7186681B2 (ja) * 2019-09-03 2022-12-09 株式会社東芝 送信装置
US11502599B2 (en) * 2019-09-18 2022-11-15 Qualcomm Incorporated Constant gate-to-source-volt age-driving driver architecture for switched-mode power supplies
CN111030613B (zh) * 2019-11-25 2023-01-31 广州慧智微电子股份有限公司 射频信号处理电路和射频前端单元
US11152917B1 (en) 2020-05-28 2021-10-19 Analog Devices International Unlimited Company Multi-level buffers for biasing of radio frequency switches
CN113411822B (zh) * 2021-06-21 2024-02-06 上海禾苗创先智能科技有限公司 一种快速配置射频通路的方法及装置
US11863227B2 (en) 2021-10-25 2024-01-02 Analog Devices International Unlimited Company Radio frequency switches with fast switching speed

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804502B2 (en) * 2001-10-10 2004-10-12 Peregrine Semiconductor Corporation Switch circuit and method of switching radio frequency signals

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922632A (ja) * 1995-07-07 1997-01-21 Tokin Corp 高周波半導体スイッチモジュール
JPH09200021A (ja) * 1996-01-22 1997-07-31 Mitsubishi Electric Corp 集積回路
JP3769932B2 (ja) * 1998-04-20 2006-04-26 株式会社明電舎 スイッチング素子のゲート駆動回路
JP2005159157A (ja) * 2003-11-27 2005-06-16 Renesas Technology Corp 半導体装置
JP4115973B2 (ja) * 2004-08-12 2008-07-09 ユーディナデバイス株式会社 半導体装置および制御方法
KR100835163B1 (ko) * 2005-08-23 2008-06-04 삼성전자주식회사 시분할복신 무선통신시스템에서 수신회로 보호 장치
EP1994648A2 (en) * 2006-02-28 2008-11-26 Renaissance Wireless Rf transceiver switching system
JP2008011503A (ja) * 2006-05-31 2008-01-17 Matsushita Electric Ind Co Ltd 高周波スイッチ回路、高周波スイッチ装置、及び送信モジュール装置
US8666330B2 (en) * 2010-09-30 2014-03-04 St-Ericsson Sa Antenna switch with ESD isolation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804502B2 (en) * 2001-10-10 2004-10-12 Peregrine Semiconductor Corporation Switch circuit and method of switching radio frequency signals

Also Published As

Publication number Publication date
CN102403990A (zh) 2012-04-04
US20120064952A1 (en) 2012-03-15
JP5467979B2 (ja) 2014-04-09
US8649741B2 (en) 2014-02-11
JP2012065041A (ja) 2012-03-29

Similar Documents

Publication Publication Date Title
CN102403990B (zh) 射频模块
US9762192B2 (en) CMOS RF switch device and method for biasing the same
US9859846B2 (en) Apparatus and methods for capacitive load reduction in a mobile device
US8546980B2 (en) Radio-frequency module and radio communication system
CN101536327B (zh) 半导体集成电路、内置它的rf模块和安装它的无线通信终端装置
CN101252352B (zh) 半导体集成电路器件及高频功率放大器模块
US8587377B2 (en) Apparatus and methods for biasing a power amplifier
US8466745B2 (en) Hybrid reconfigurable multi-bands multi-modes power amplifier module
JP4939125B2 (ja) 半導体集積回路装置および高周波モジュール
CN1925325B (zh) 半导体集成电路设备和高频功率放大器模块
US8525590B2 (en) Power amplifier control circuit
JP2003101440A (ja) アンテナ切換装置及び信号供給方法
JP5267648B2 (ja) 半導体集積回路装置および高周波モジュール
JP5192900B2 (ja) スイッチ半導体集積回路
JP2007006180A (ja) アンテナスイッチ回路装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: Tokyo, Japan, Japan

Patentee after: Renesas Electronics Corporation

Address before: Kanagawa

Patentee before: Renesas Electronics Corporation

CP02 Change in the address of a patent holder