CN102386226A - 半导体结构及其制造方法 - Google Patents

半导体结构及其制造方法 Download PDF

Info

Publication number
CN102386226A
CN102386226A CN2010102692600A CN201010269260A CN102386226A CN 102386226 A CN102386226 A CN 102386226A CN 2010102692600 A CN2010102692600 A CN 2010102692600A CN 201010269260 A CN201010269260 A CN 201010269260A CN 102386226 A CN102386226 A CN 102386226A
Authority
CN
China
Prior art keywords
source
shallow trench
trench isolation
drain area
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010102692600A
Other languages
English (en)
Other versions
CN102386226B (zh
Inventor
朱慧珑
尹海洲
骆志炯
钟汇才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45772062&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102386226(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN 201010269260 priority Critical patent/CN102386226B/zh
Priority to US13/062,733 priority patent/US8633522B2/en
Priority to PCT/CN2010/001446 priority patent/WO2012027864A1/zh
Publication of CN102386226A publication Critical patent/CN102386226A/zh
Application granted granted Critical
Publication of CN102386226B publication Critical patent/CN102386226B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7834Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7846Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the lateral device isolation region, e.g. STI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本申请公开了一种半导体结构及其制造方法。本发明能够增强沟道区应力,从而提高载流子迁移率,改善器件性能,同时能够减少器件所用面积,进而降低制造成本。本发明的半导体结构包括:半导体衬底;沟道区,形成于所述半导体衬底中;栅极,包括介质层和导电层,形成于沟道区上方;源漏区,位于所述栅极的两侧;第一浅沟槽隔离,嵌于所述半导体衬底中,且长度方向与所述栅极长度方向平行;第二浅沟槽隔离,位于所述源漏区两侧,与所述第一浅沟槽隔离相接;其中,所述源漏区包括相对分布于所述栅极的两侧、且与所述第二浅沟槽隔离邻接的第一种晶层;所述第二浅沟槽隔离的上表面高于或持平于所述源漏区的上表面。

Description

半导体结构及其制造方法
技术领域
本发明涉及半导体领域,更具体地,涉及一种能够有效增强沟道区应力的源漏区自对准半导体结构及其制造方法。
背景技术
随着金属氧化物半导体场效应晶体管(MOSFET)器件特征尺寸不断减小,为了抑制短沟道效应,防止源漏穿通及增大驱动电流,必须提高沟道中的掺杂浓度、减薄栅介质层厚度。但同时,高载流子浓度和高纵向电场也致使载流子的沟道迁移率随特征尺寸的缩小而不断下降,进而导致器件饱和驱动电流变小和截止频率降低。
应变沟道技术是提高载流子的迁移率的有效途径之一,能够进一步改善器件电学性能。但是,由于MOSFET器件有源区之间的隔离大多采用浅沟槽隔离(STI)结构,形成STI后MOSFET器件要经过一系列例如侵蚀性的清洗、反应离子刻蚀等工艺,导致最终形成的STI的减损,应力经由侧向界面释放,应变沟道工程产生的性能改善效果减弱。
有鉴于此,需要提供一种新颖的半导体结构及其制作方法,以进一步增强沟道应力、缩减器件尺寸。
发明内容
本发明的目的在于提供一种半导体结构及其制造方法,以克服上述现有技术中的问题,特别是进一步增强MOSFET的沟道应力。
根据本发明的一方面,提供了一种半导体结构,包括:半导体衬底;沟道区,形成于所述半导体衬底中;栅极,包括介质层和导电层,形成于沟道区上;源漏区,位于所述栅极的两侧;第一浅沟槽隔离,嵌于所述半导体衬底中,且长度方向与所述栅极长度方向平行;第二浅沟槽隔离,位于所述源漏区两侧,与所述第一浅沟槽隔离相接;其中,所述源漏区包括相对分布于所述栅极的两侧、且与所述第二浅沟槽隔离邻接的第一种晶层;所述第二浅沟槽隔离的上表面高于或持平于所述源漏区的上表面。
可选地,所述源漏区与栅极自对准。
可选地,在所述第一种晶层上,所述第二浅沟槽隔离与源漏区之间通过介质材料隔离。可选地,所述介质材料是Si3N4
可选地,所述源漏区包含使沟道区处于应力之下的应力材料,对于p型金属氧化物半导体场效应晶体管(pMOSFET),所述应力材料使沟道区处于压应力之下;对于n型金属氧化物半导体场效应晶体管(nMOSFET),所述应力材料使沟道区处于拉应力之下。
可选地,对于pMOSFET,所述应力材料为Si1-xGex,其中0<x<1;对于nMOSFET,所述应力材料为Si:C。
可选地,所述Si1-xGex材料中,Ge的原子百分比的取值范围为15%-70%;所述Si:C材料中,C的原子百分比的取值范围为0.2%-2%。
可选地,所述第二浅沟槽隔离的填充介质是Si3N4
根据本发明的另一方面,提供了一种制造半导体结构的方法,包括:提供半导体衬底;形成第一浅沟槽隔离、第二浅沟槽隔离;形成栅极,包括介质层和导电层,且栅极长度方向与第一浅沟槽隔离长度方向平行;在所述栅极两侧形成源漏区,所述源漏区包括相对分布于所述栅极的两侧、且与所述第二浅沟槽隔离邻接的第一种晶层;所述第二浅沟槽隔离相对分布于所述源漏区两侧,与所述第一浅沟槽隔离相接,其中,所述第二浅沟槽隔离的上表面高于或持平于所述源漏区的上表面。
可选地,形成源漏区的步骤包括:以所述栅极侧墙和第二浅沟槽隔离侧墙为界,向下刻蚀所述栅介质层和半导体衬底,以形成源漏区凹槽;以所述源漏区凹槽靠近所述第二浅沟槽隔离的侧壁为第一种晶层,以所述源漏区凹槽的底部为第二种晶层,以所述源漏区凹槽与栅极邻接的部分为第三种晶层,外延应力材料。
可选地,在形成源漏区凹槽之前形成栅极之后还包括:形成源漏延伸区和晕环。
可选地,对于pMOSFET,注入B、BF2、In中一种或其组合形成源漏延伸区;对于nMOSFET,注入As、P中的一种或其组合形成源漏延伸区。
可选地,对于pMOSFET,注入As、P中一种或其组合形成源漏晕环区;对于nMOSFET,注入B、BF2、In中的一种或其组合形成源漏晕环区。
可选地,对于pMOSFET,所述应力材料使沟道区处于压应力之下;对于nMOSFET,所述应力材料使沟道区处于拉应力之下。
可选地,对于pMOSFET,应力材料为Si1-xGex以形成压应力,其中0<x<1;对于nMOSFET,应力材料为Si:C以形成拉应力。
可选地,所述Si1-xGex材料中,Ge的原子百分比的取值范围为15%-70%;所述Si:C材料中,C的原子百分比的取值范围为0.2%-2%。
可选地,在外延应力材料的同时进行源漏区原位掺杂。
可选地,对于pMOSFET,外延Si1-xGex的同时原位掺杂B;对于nMOSFET,外延Si:C的同时原位掺杂P。
可选地,所述第二浅沟槽隔离的填充介质是Si3N4
与现有技术相比,采用本发明提供的技术方案具有如下优点。
根据本发明的实施例,所形成的第二浅沟槽隔离上表面高于或持平于源漏区上表面,能够避免应力由侧向界面释放,起到增强沟道区应力的作用,从而提高载流子迁移率。
此外,根据本发明的实施例,能够以与栅极自对准的方式来形成源漏区,从而能够防止对准失误,改善器件性能。同时,能够减少器件所用面积,进而降低制造成本。
进一步,在源漏区可以形成应力材料,可采用外延法形成应力材料,使沟道区处于应力之下。如,在pMOSFET中,所述源漏区产生压应力;在nMOSFET中,所述源漏区产生拉应力。通过调节器件沟道区中的应力,可以进一步提高沟道区内载流子的迁移率。
此外,根据本发明的实施例,在源漏区凹槽靠近第二浅沟槽隔离的侧壁处保留有第一种晶层。因此,可以以源漏区凹槽靠近第二浅沟槽隔离的侧壁为第一种晶层,以源漏区凹槽的底部为第二种晶层,以源漏区凹槽与栅极邻接的部分为第三种晶层,来外延应力材料,如,Si1-xGex,从而可以改善晶体质量,在源漏区形成均匀一致的高质量的单晶,从而降低源漏寄生电阻。
另外,浅沟槽隔离介质优选地采用氮化物,可以减少在后续的工艺处理过程中介质的损减。
另外,通过形成源漏延伸区和晕环(HALO)区,有利于进一步抑制短沟道效应。
附图说明
下列图6-21中所述剖视图均指沿对应的俯视图中给出的剖线(11′)的剖视图。
图1、图2和图3所示为本发明半导体结构的制造方法实施例中在衬底上形成第一浅沟槽隔离后的俯视图、沿剖线(AA′)剖视图和沿剖线(11′)剖视图;
图4和图5所示为本发明半导体结构的制造方法实施例中在衬底上形成为形成半导体器件所需的各材料层后的沿剖线(AA′)剖视图和沿剖线(11′)剖视图;
图6和图7所示为本发明半导体结构的制造方法实施例中图形化栅极的俯视图和剖视图;
图8所示为本发明半导体结构的制造方法实施例中刻蚀氧化物层和多晶硅层后的剖视图;
图9所示为本发明半导体结构的制造方法实施例中形成氧化物盖帽层和侧墙后的剖视图;
图10所示为本发明半导体结构的制造方法实施例中形成第二浅沟槽隔离沟槽后的剖视图;
图11和图12所示为本发明半导体结构的制造方法实施例中形成第二浅沟槽隔离后的俯视图和剖视图;
图13和图14所示为本发明半导体结构的制造方法实施例中去除氧化物盖帽层和侧墙后的俯视图和剖视图;
图15所示为本发明半导体结构的制造方法实施例中形成栅极后的结构剖视图;
图16所示为本发明半导体结构的制造方法实施例中形成栅极侧墙和第二浅沟槽隔离侧墙后的结构剖视图后的结构剖视图;
图17所示为本发明半导体结构的制造方法实施例中形成源漏区凹槽后的剖视图;
图18所示为本发明半导体结构的制造方法实施例中在源漏区外延应力材料后的剖视图;
图19所示为本发明半导体结构的制造方法实施例中去除栅极之上的氮化物层后的剖视图;
图20和图21所示为本发明半导体结构的制造方法实施例中形成半导体结构后的俯视图和剖视图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
下文的公开提供了许多不同的实施例或例子用来实现本发明提供的技术方案。虽然下文中对特定例子的部件和设置进行了描述,但是,它们仅仅为示例,并且目的不在于限制本发明。
此外,本发明提供了各种特定工艺和/或材料的例子,但是,本领域普通技术人员可以意识到的其他工艺和/或其他材料的替代应用,显然未脱离本发明要求保护的范围。需强调的是,本文件内所述的各种结构之间的相互关系包含由于工艺或制程的需要所作的必要的延展,如,术语“持平”意指两平面之间的高度之差在工艺或制程允许的范围内。
图1~21详细示出了根据本发明实施例制作半导体结构的各步骤。以下,将参照这些附图对根据本发明实施例的各个步骤以及由此得到的半导体结构予以详细说明。
首先,如图1所示,提供半导体衬底1000,并在半导体衬底上以常规的方法形成第一浅沟槽隔离1001。图2和图3分别示出了图1所示形成有第一浅沟槽隔离1001的半导体衬底1000沿A-A′线、1-1′线的剖视图。衬底1000可以是体硅或绝缘体上硅(SOI),也可以是恰当的其他半导体材料,例如GaAs等Ⅲ-Ⅴ族化合物半导体材料。
随后,如图4和图5中分别沿A-A′线、1-1′线的剖视图所示,在半导体衬底1000上,顺次形成栅介质层1002,导电层1003(如,金属和/或多晶硅层,在本发明的该实施例中为第一多晶硅层),氮化物层1004,第二多晶硅层1005,氧化物层1006。这些层例如可以通过传统的淀积工艺制得。
栅介质层1002材料可选用HfO2、HfSiO、HfSiON、HfTaO、HfFiO、HfZrO、Al2O3、La2O3、ZrO2、LaAlO中的任一种或其组合。
其中,栅介质层1002厚度可为1~3nm,如2nm;第一多晶硅层(导电层)1003厚度可为50~100nm,如60nm、70nm、80nm或90nm;氮化物层1004厚度可为50~70nm,如55nm、60nm或65nm;第二多晶硅层1005厚度可为100~150nm,如110nm、120nm、130nm或140nm;氧化物层1006厚度可为10~20nm,如15nm。
之后,图案化栅极。具体地,在氧化物层1006上旋涂光致抗蚀剂1007,在一定温度下前烘,随后用栅极所需的掩模图形来曝光、显影,再次高温处理后在氧化物层上形成光致抗蚀剂图形,如图6所示。图7示出了图6所示结构沿1-1′线的剖视图。随后,以光致抗蚀剂1007为掩模,刻蚀氧化物层1006和第二多晶硅层1005,所得结构如图8所示。本实施例中可以采用反应离子刻蚀(RIE)法。刻蚀气体的种类和流量可以依据待刻蚀材料种类和器件结构而合理地调节。
然后,采用本领域公知的方法去除光致抗蚀剂1007,淀积氧化物层,所述氧化层厚度可为40~100nm,如50nm、60nm、70nm、80nm或90nm。刻蚀氧化物层形成覆盖第二多晶硅层1005顶部的氧化物盖帽层1008及侧墙1009,如图9所示。本实施例中采用反应离子刻蚀。接着,如图10所示,相对于氧化物选择性刻蚀氮化物层1004,刻蚀第一多晶硅层1003,刻蚀栅介质层1002及一部分半导体衬底1000,从而形成用于第二浅沟槽隔离的沟槽。本实施例中采用反应离子刻蚀。
如图11的俯视图以及图12中沿图11的1-1′线的剖视图所示,沉积氮化物,例如Si3N4,并回蚀氮化物,形成第二浅沟槽隔离1010。
然后,相对多晶硅和氮化物选择性去除氧化物隔离介质,即第二多晶硅层1005顶部的氧化物盖帽层1008及侧墙1009,如图13的俯视图和图14中沿图13的1-1′线的剖视图所示。
接着,反应离子刻蚀氮化物1004;然后,相对于栅介质选择性反应离子刻蚀第一多晶硅层1003和第二多晶硅层1005,所得结构如图15所示。本文件内栅极长度是指如图15中“L”所示的长度方向。
优选地,可以通过离子注入来形成针对源漏区的晕环(HALO)和延伸(extension)结构(未示出),以抑制短沟道效应。其中,对于n型MOSFET(nMOSFET)进行As或P的离子掺杂,对于p型MOSFET(pMOSFET)进行B、BF2或In的离子掺杂形成源漏延伸区。对于nMOSFET进行B、BF2或In的离子注入,对于pMOSFET进行As或P的离子注入形成源漏晕环区。之后可以在900-1100℃下进行尖峰退火激活掺杂杂质。
接着,淀积氮化物如Si3N4,所述氮化物厚度为5~150nm,如10nm、30nm、50nm、70nm、90nm、110nm或130nm。并对其进行反应离子刻蚀以形成氮化物隔离介质1011,即栅极侧墙及第二浅沟槽隔离侧墙,该步骤在图16中示出。
图17显示了形成源漏凹槽的步骤:以第二浅沟槽隔离侧墙、栅极侧墙1011为界刻蚀栅介质层1002和一部分半导体衬底1000从而形成源漏区所用的凹槽。本实施例中采用反应离子刻蚀。被刻蚀半导体衬底部分的厚度可为50-150nm,如60nm、70nm、80nm、90nm、100nm、110nm、120nm、130nm或140nm。此外,从图17中可见,由于第二浅沟槽隔离侧墙1011的存在,源漏凹槽与第二浅沟槽隔离1010之间有一定的间隙,这个间隙构成了后面形成源漏应力材料的第一种晶层。所述第一种晶层的宽度可为5-20nm,如10nm或15nm。
接着,外延形成具有应力的源漏区,如图18所示。在形成的凹槽内通过选择性外延生长形成应力层以调节沟道应力从而提高器件性能。具体地,以上述第一种晶层,位于所述凹槽底部的第二种晶层以及所述凹槽与栅极邻接的第三种晶层作为晶源外延生长应力层。对于pMOSFET而言,应力材料可以为Si1-xGex以向沟道施加压应力,其中Ge的原子百分比的取值范围例如为15%至70%,如30%、40%、50%或60%。优选地,如果需要,也可在外延Si1-xGex的同时原位掺杂硼。对于nMOSFET而言,应力材料可以为Si:C以向沟道施加拉应力,其中C的原子百分比的取值范围例如为0.2%至2%。优选地,如果需要,也可在Si:C中原位掺杂磷或砷。根据本发明的该实施例,源漏区包括第一种晶层、第二种晶层、第三种晶层以及应力材料。
然后,通过反应离子刻蚀去除氮化物层1004,暴露出栅极的顶部,也即暴露出第一多晶硅层1003,如图19所示。此外,也可以同时去除氮化物层1004和氮化物隔离介质1011,即栅极侧墙及第二浅沟槽隔离侧墙。
之后,形成金属硅化物1013,如图20的俯视图以及图21中沿图20的1-1′线的剖视图所示。使用传统方法在源漏区1012以及栅极导电层(第一多晶硅层1003)上形成金属硅化物1013,例如NiPtSi。这可以采用如下方法:先溅射形成薄层NiPt,300-500℃下快速热退火形成硅化物NiPtSi,随后选择性湿法刻蚀去除未反应的金属,再次快速热退火,形成低阻态的硅化物1013。
至此形成了根据本发明实施例的半导体结构,如图21所示。该半导体结构包括:半导体衬底1000;沟道区,形成于所述半导体衬底上;栅极,包括介质层1002和导电层1003,形成于沟道区上;源漏区1012,位于所述栅极的两侧;第一浅沟槽隔离1001,嵌于所述半导体衬底1000中,且长度方向与所述栅极长度方向平行;第二浅沟槽隔离1011,位于所述源漏区1012两侧,与所述第一浅沟槽隔离相接;所述源漏区包括相对分布于所述栅极的两侧、且与所述第二浅沟槽隔离邻接的第一种晶层;其中,所述第二浅沟槽隔离1011的上表面高于或持平于所述源漏区1012的上表面。
可选地,所述源漏区1012与栅极自对准。
可选地,在所述第一种晶层上,所述第二浅沟槽隔离1011与源漏区1012之间通过介质材料隔离。
可选地,所述介质材料是Si3N4
可选地,所述源漏区1012包含使沟道区处于应力之下的应力材料,对于pMOSFET,所述应力材料使沟道区处于压应力之下;对于nMOSFET,所述应力材料使沟道区处于拉应力之下。
可选地,对于pMOSFET,所述应力材料为Si1-xGex,其中0<x<1;对于nMOSFET,所述应力材料为Si:C。
可选地,所述Si1-xGex材料中,Ge的原子百分比的取值范围为15%-70%;所述Si:C材料中,C的原子百分比的取值范围为0.2%-2%。
可选地,所述第二浅沟槽隔离的填充介质是Si3N4
本发明的实施例中,第二浅沟槽隔离1010的上表面高于或持平于源漏1012的上表面,从而避免了源漏区的应力向外扩散,这增强了器件的沟道应力、提高了载流子迁移率并因此提升了器件性能。
通过与栅极自对准的方式形成源漏区,能够防止对准失误,改善器件性能。同时,能够减少器件所用面积,进而降低制造成本。
进一步,在所述源漏区形成应力材料,可采用外延法形成所述应力材料,使沟道区处于应力之下。例如,在pMOSFET中,所述源漏区产生压应力;在nMOSFET中,所述源漏区产生拉应力。调节器件沟道区中的应力,从而进一步提高沟道区内载流子的迁移率。
此外,以源漏区凹槽靠近所述第二浅沟槽隔离的侧壁为第一种晶层,以源漏区凹槽的底部为第二种晶层,以所述源漏区凹槽与栅极邻接的部分为第三种晶层外延应力材料,如,Si1-xGex,可以改善晶体质量,在源区形成均匀一致的高质量的单晶,从而降低源漏寄生电阻。
浅沟槽隔离介质优选地采用氮化物,可以减少在后续的工艺处理过程中介质的损减。
另外,可以形成源漏延伸区和晕环(HALO)区,有利于进一步抑制短沟道效应。
在以上的描述中,对于各层的构图、刻蚀等技术细节并没有做出详细的说明。但是本领域技术人员应当理解,可以通过现有技术中的各种手段,来形成所需形状的层、区域等。另外,为了形成同一结构,本领域技术人员还可以设计出与以上描述的方法并不完全相同的方法。
以上参照本发明的实施例对本发明予以了说明。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本发明的范围。本发明的范围由所附权利要求及其等价物限定。不脱离本发明的范围,本领域技术人员可以做出多种替换和修改,这些替换和修改都应落在本发明的范围之内。

Claims (19)

1.一种半导体结构,包括:
半导体衬底;
沟道区,形成于所述半导体衬底中;
栅极,包括介质层和导电层,形成于所述沟道区上方;
源漏区,位于所述栅极的两侧;
第一浅沟槽隔离,嵌于所述半导体衬底中,且长度方向与所述栅极长度方向平行;
第二浅沟槽隔离,位于所述源漏区两侧,与所述第一浅沟槽隔离相接,
其中,所述源漏区包括相对分布于所述栅极的两侧、且与所述第二浅沟槽隔离邻接的第一种晶层,所述第二浅沟槽隔离的上表面高于或持平于所述源漏区的上表面。
2.根据权利要求1所述的半导体结构,其中,所述源漏区与栅极自对准。
3.根据权利要求1所述的半导体结构,其中,在所述第一种晶层上,所述第二浅沟槽隔离与源漏区之间通过介质材料隔离。
4.根据权利要求3所述的半导体结构,其中,所述介质材料是Si3N4
5.根据权利要求1所述的半导体结构,其中,所述源漏区包含向沟道区施加应力的应力材料,对于p型金属氧化物半导体场效应晶体管pMOSFET,所述应力材料向沟道区施加压应力;对于n型金属氧化物半导体场效应晶体管nMOSFET,所述应力材料向沟道区施加拉应力。
6.根据权利要求5所述的半导体结构,其中,对于pMOSFET,所述应力材料为Si1-xGex,其中0<x<1;对于nMOSFET,所述应力材料为Si:C。
7.根据权利要求6所述的半导体结构,其中,所述Si1-xGex材料中,Ge的原子百分比的取值范围为15%-70%;所述Si:C材料中,C的原子百分比的取值范围为0.2%-2%。
8.根据权利要求1所述的半导体结构,其中,所述第二浅沟槽隔离的填充介质是Si3N4
9.一种半导体结构的制造方法,其特征在于,包括:
提供半导体衬底;
形成第一浅沟槽隔离、第二浅沟槽隔离;
形成栅极,包括介质层和导电层,且栅极长度方向与第一浅沟槽隔离长度方向平行;
在所述栅极两侧形成源漏区,所述源漏区包括相对分布于所述栅极的两侧、且与所述第二浅沟槽隔离邻接的第一种晶层;
所述第二浅沟槽隔离相对分布于所述源漏区两侧,与所述第一浅沟槽隔离相接,其中,所述第二浅沟槽隔离的上表面高于或持平于所述源漏区的上表面。
10.根据权利要求9所述的方法,其特征在于,形成源漏区的步骤包括:
以所述栅极的侧墙和第二浅沟槽隔离的侧墙为界,向下刻蚀所述栅介质层和半导体衬底,以形成源漏区凹槽;
以所述第一种晶层,以所述源漏区凹槽的底部为第二种晶层,以所述源漏区凹槽与栅极邻接的部分为第三种晶层,外延应力材料。
11.根据权利要求10所述的方法,其中,在形成源漏区凹槽之前形成栅极之后还包括:形成源漏延伸区和晕环。
12.根据权利要求11所述的方法,其中,对于p型金属氧化物半导体场效应晶体管pMOSFET,注入B、BF2、In中一种或其组合形成源漏延伸区;对于n型金属氧化物半导体场效应晶体管nMOSFET,注入As、P中的一种或其组合形成源漏延伸区。
13.根据根据权利要求11所述的方法,其中,对于pMOSFET,注入As、P中一种或其组合形成源漏晕环区;对于nMOSFET,注入B、BF2、In中的一种或其组合形成源漏晕环区。
14.根据权利要求10所述的方法,其中,对于pMOSFET,所述应力材料向沟道区施加压应力;对于nMOSFET,所述应力材料向沟道区施加拉应力。
15.根据权利要求14所述的方法,其中,对于pMOSFET,所述应力材料为Si1-xGex,其中0<x<1;对于nMOSFET,所述应力材料为Si:C。
16.根据权利要求15所述的方法,其中,所述Si1-xGex材料中,Ge的原子百分比的取值范围为15%-70%;所述Si:C材料中,C的原子百分比的取值范围为0.2%-2%。
17.根据权利要求10所述的方法,其中,在外延应力材料的同时进行源漏区原位掺杂。
18.根据权利要求17所述的方法,其中,对于pMOSFET,外延Si1-xGex的同时原位掺杂B;对于nMOSFET,外延Si:C的同时原位掺杂P。
19.根据权利要求9所述的方法,其中,所述第二浅沟槽隔离的填充介质是Si3N4
CN 201010269260 2010-08-31 2010-08-31 半导体结构及其制造方法 Active CN102386226B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN 201010269260 CN102386226B (zh) 2010-08-31 2010-08-31 半导体结构及其制造方法
US13/062,733 US8633522B2 (en) 2010-08-31 2010-09-20 Semiconductor structure and method for fabricating the same
PCT/CN2010/001446 WO2012027864A1 (zh) 2010-08-31 2010-09-20 半导体结构及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010269260 CN102386226B (zh) 2010-08-31 2010-08-31 半导体结构及其制造方法

Publications (2)

Publication Number Publication Date
CN102386226A true CN102386226A (zh) 2012-03-21
CN102386226B CN102386226B (zh) 2013-08-28

Family

ID=45772062

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010269260 Active CN102386226B (zh) 2010-08-31 2010-08-31 半导体结构及其制造方法

Country Status (2)

Country Link
CN (1) CN102386226B (zh)
WO (1) WO2012027864A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014063381A1 (zh) * 2012-10-23 2014-05-01 中国科学院微电子研究所 Mosfet的制造方法
CN104409410A (zh) * 2014-11-19 2015-03-11 上海华力微电子有限公司 改善浅沟槽隔离边缘SiC应力性能的方法
CN104637879A (zh) * 2013-11-06 2015-05-20 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制备方法
CN105027291A (zh) * 2013-03-29 2015-11-04 英特尔公司 具有延伸凹陷的间隔体和源极/漏极区域的晶体管架构及其制造方法
KR20210083216A (ko) * 2018-06-29 2021-07-06 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 FinFET 디바이스 및 그 형성 방법
CN113764423A (zh) * 2020-06-04 2021-12-07 南亚科技股份有限公司 半导体结构及其形成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043007A (zh) * 2006-12-21 2007-09-26 上海集成电路研发中心有限公司 一种金属氧化物硅场效应晶体管制备工艺
CN101410959A (zh) * 2006-06-21 2009-04-15 国际商业机器公司 具有双浅沟槽隔离和低基极电阻的双极晶体管
CN101490842A (zh) * 2006-01-17 2009-07-22 国际商业机器公司 用于mosfet栅极电极接合衬垫的结构和方法
CN101777565A (zh) * 2009-12-30 2010-07-14 复旦大学 一种自供电低功耗集成电路芯片及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7303949B2 (en) * 2003-10-20 2007-12-04 International Business Machines Corporation High performance stress-enhanced MOSFETs using Si:C and SiGe epitaxial source/drain and method of manufacture
US7727856B2 (en) * 2006-12-24 2010-06-01 Chartered Semiconductor Manufacturing, Ltd. Selective STI stress relaxation through ion implantation
US8536619B2 (en) * 2007-02-05 2013-09-17 Taiwan Semiconductor Manufacturing Company, Ltd. Strained MOS device and methods for forming the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101490842A (zh) * 2006-01-17 2009-07-22 国际商业机器公司 用于mosfet栅极电极接合衬垫的结构和方法
CN101410959A (zh) * 2006-06-21 2009-04-15 国际商业机器公司 具有双浅沟槽隔离和低基极电阻的双极晶体管
CN101043007A (zh) * 2006-12-21 2007-09-26 上海集成电路研发中心有限公司 一种金属氧化物硅场效应晶体管制备工艺
CN101777565A (zh) * 2009-12-30 2010-07-14 复旦大学 一种自供电低功耗集成电路芯片及其制备方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014063381A1 (zh) * 2012-10-23 2014-05-01 中国科学院微电子研究所 Mosfet的制造方法
CN103779224A (zh) * 2012-10-23 2014-05-07 中国科学院微电子研究所 Mosfet的制造方法
US9691878B2 (en) 2012-10-23 2017-06-27 Institute of Microelectronics, Chinese Academy of Science Method of manufacturing MOSFET
CN105027291A (zh) * 2013-03-29 2015-11-04 英特尔公司 具有延伸凹陷的间隔体和源极/漏极区域的晶体管架构及其制造方法
US9786783B2 (en) 2013-03-29 2017-10-10 Intel Corporation Transistor architecture having extended recessed spacer and source/drain regions and method of making same
CN104637879A (zh) * 2013-11-06 2015-05-20 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制备方法
CN104409410A (zh) * 2014-11-19 2015-03-11 上海华力微电子有限公司 改善浅沟槽隔离边缘SiC应力性能的方法
KR20210083216A (ko) * 2018-06-29 2021-07-06 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 FinFET 디바이스 및 그 형성 방법
KR102310683B1 (ko) * 2018-06-29 2021-10-13 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 FinFET 디바이스 및 그 형성 방법
US11296225B2 (en) 2018-06-29 2022-04-05 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device and method of forming same
US11855213B2 (en) 2018-06-29 2023-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device and method of forming same
CN113764423A (zh) * 2020-06-04 2021-12-07 南亚科技股份有限公司 半导体结构及其形成方法

Also Published As

Publication number Publication date
CN102386226B (zh) 2013-08-28
WO2012027864A1 (zh) 2012-03-08

Similar Documents

Publication Publication Date Title
US8536653B2 (en) Metal oxide semiconductor transistor
US7525150B2 (en) High voltage double diffused drain MOS transistor with medium operation voltage
US8253177B2 (en) Strained channel transistor
US7892930B2 (en) Method to improve transistor tox using SI recessing with no additional masking steps
CN102446953B (zh) 一种半导体结构及其制造方法
US8048765B2 (en) Method for fabricating a MOS transistor with source/well heterojunction and related structure
US20080054250A1 (en) Structure and methods for forming SiGe stressors
US7935593B2 (en) Stress optimization in dual embedded epitaxially grown semiconductor processing
CN102386226B (zh) 半导体结构及其制造方法
US11670511B2 (en) Semiconductor device and method for fabricating the same including re-growth process to form non-uniform gate dielectric layer
CN102956705A (zh) 半导体器件及半导体器件的制造方法
US8318564B2 (en) Performance enhancement in transistors comprising high-k metal gate stack by an early extension implantation
US20120199890A1 (en) Transistor structure
US20180286946A1 (en) Novel sti process for sdb devices
CN103137475B (zh) 一种半导体结构及其制造方法
US8633522B2 (en) Semiconductor structure and method for fabricating the same
US7750399B2 (en) MOS transistors having recessed channel regions and methods of fabricating the same
US9461145B2 (en) OPC enlarged dummy electrode to eliminate ski slope at eSiGe
US8441045B2 (en) Semiconductor device and method for manufacturing the same
CN103762177A (zh) 具有嵌入式硅锗源漏区域的场效应晶体管中邻近效应的减少
KR20080024273A (ko) 반도체 소자 및 그의 제조방법
US8753945B2 (en) Method of manufacturing a semiconductor device
US8940608B2 (en) Methods for fabricating integrated circuits with drift regions and replacement gates
US20110101427A1 (en) Transistor including a high-k metal gate electrode structure formed prior to drain/source regions on the basis of a superior implantation masking effect
US8803250B2 (en) Metal-oxide-semiconductor field-effect transistor and method for manufacturing the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant