CN102385313B - 基于实时水压信息的城市供水区域动态划分控制方法 - Google Patents

基于实时水压信息的城市供水区域动态划分控制方法 Download PDF

Info

Publication number
CN102385313B
CN102385313B CN 201110165113 CN201110165113A CN102385313B CN 102385313 B CN102385313 B CN 102385313B CN 201110165113 CN201110165113 CN 201110165113 CN 201110165113 A CN201110165113 A CN 201110165113A CN 102385313 B CN102385313 B CN 102385313B
Authority
CN
China
Prior art keywords
pressure
data
class
water supply
cluster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201110165113
Other languages
English (en)
Other versions
CN102385313A (zh
Inventor
王景成
葛阳
仇军
赵金涛
赵平伟
汪瑞清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI MUNICIPAL WATER SUPPLY DISPATCHING AND MONITORING CENTER
Shanghai Jiaotong University
Original Assignee
SHANGHAI MUNICIPAL WATER SUPPLY DISPATCHING AND MONITORING CENTER
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI MUNICIPAL WATER SUPPLY DISPATCHING AND MONITORING CENTER, Shanghai Jiaotong University filed Critical SHANGHAI MUNICIPAL WATER SUPPLY DISPATCHING AND MONITORING CENTER
Priority to CN 201110165113 priority Critical patent/CN102385313B/zh
Publication of CN102385313A publication Critical patent/CN102385313A/zh
Application granted granted Critical
Publication of CN102385313B publication Critical patent/CN102385313B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种水利监控技术领域的基于实时水压信息的城市供水区域动态划分控制方法,利用SCADA系统从供水管网采集测压点、水厂、泵站等节点的压力数据,然后利用数据挖掘手段对数据进行预处理,之后对压力数据样本进行系统聚类分析并根据聚类结果及区块规模进行区域规模指标聚类,最后利用地理连通图进行区块的合并和分割,形成最终划分结果。本发明通过充分利用测压点获取的数据信息,结合实际地理情况,对城市供水区域进行合理的分区,控制区块规模使之符合要求,便于管理。可广泛应用于大型城市供水调度系统的管理、监测、控制。

Description

基于实时水压信息的城市供水区域动态划分控制方法
技术领域
本发明涉及的是一种水利监控技术领域的方法,具体是一种基于实时水压信息的城市供水区域动态划分控制方法。
背景技术
随着工业生产能力的提高,城市供水系统的规模在不断扩大,供水管网复杂性也随之提高。但是随之而来的是日益增多的各种各样的爆管事故,很多用户存在着水压不足的现象。根据中心城区管网监测数据,采用聚类方法,将这些测点依据其压力值和压力变化趋势进行了划分,确定平均水压的分区,如水压160kPa为危急低压区;160kPa<水压<180kPa为低压预警区;180kPa<水压<300kPa为正常范围;300kPa<水压<350kPa为高压预警区;水压>350kPa为危急高压区。这样,在日常操作中就形成有侧重的监控,可以有效地提高供水效率和有效地减少爆管事故和水压不足等情况的发生。
水压区域划分主要是对测压点、泵站、水厂在内的测点数据特性进行分析,采用聚类方法,将这些测点依据其压力值和压力变化趋势进行了划分,传统聚类方法可以分为两种:监督式聚类和非监督式聚类。其中监督式聚类的为方法是K-Mean聚类,在这种方法中,聚类的最终结果与用户初始指定的初始聚类中心有关。用户需要指定聚类数目、初始质心和评判某个成员归属某个聚类集合的阈值大小。这种方法本质上不是根据聚类元素的分布进行自适应聚类,且其聚类精度和效率依赖于初始质心选取等预设参数。
非监督聚类中为性的聚类方法有支持向量聚类,是基于支持向量机的聚类方法。在支持向量聚类中,聚类数据通过高斯核函数从低维空间被映射到高维特征空间,于是可以在这个高维特征空间找到一个最小的超球体将这些数据包围起来(虽然在低维空间无法找到这样的最小超球体将被聚类数据包围起来),这个超球体接着被映射回原始低维数据空间,被看作是包围被聚类数据点的轮廓,这些轮廓就认为是聚类簇的边界,在同一个轮廓中被包围的数据点认为属于同一个聚类集合,从而完成聚类。但是,支持向量聚类不是基于聚类数据物理分布的,难以反映数据全局分布。
近来,一种叫做AP聚类(Affinity Propagation Clustering),该算法是B.J.Frey,Dueck D于2007年发表在science上的Clustering by passing messages between data points(基于数据点消息传递的聚类分析,Science,2007,315(5814):972-976)。其基本思想就是通过消息传递,实现数据点的自动聚类。它将数据对象之间的相似度作为输入,而且此相似度可以是非对称的,即数据对象A到数据对象B的相似度可以不等于数据对象B到数据对象A的相似度。实值信息在数据对象之间交换传播直至一组高质量的聚类中心和相应的聚类产生。尽管该文称其聚类效果很好,计算速度也很快,但它也有几个缺点。第一,它也需要事先定义一个相似性度量,从而计算出数据点集之间的相似性矩阵来,这在时间和空间上就需要O(n2)。第二,迭代次数需要人工设定,而且聚类结果对此也较敏感。第三,获得聚类结果后,不能获得聚类分布的层次性,有时这是不够的。
K-Mean算法对于初始聚类中心的选择很关键,因为初始聚类中心选择的好坏直接影响到聚类结果,而且这个算法要求进行聚类时输入聚类数目,这也可以说是对聚类算法的一种限制。不过,这种算法运行速度相对于AP算法要快一些,因此,对于那些小而且数据比较密集的数据集来说,这种聚类算法还是比较好的。然而,在传统的K-Mean聚类技术中,在某些情况下,不能获得预期的聚类结果,即,接近人类直觉的聚类结果。例如,在本文中,分类结果不能很好满足相关地理信息。
在基于以上各种聚类方法的特点分析,这里采用改进的K-Mean算法,即,在一次K-Mean聚类下,考虑实际限制条件,进行二次聚类。首先,由于数据的充分性和对现实压力等数据的充分了解,可以运用工作经验,对水压区域划分的初始聚类中心进行很好的选择,这样就充分利用了K-Mean算法的特点,测压点、泵站、水厂等测点数据是小而且数据比较密集的数据集,因而可以发挥K-Mean算法的快速性特点。考虑到实际水压区域的划分中,区域的规模应有一定的限制,同时需要利用管道连通图,对划分结果进行和地理信息相关的调整,所以需要在一次聚类的基础上,进行二次聚类。从而使得最后的划分建议既具有理论依据,又完全符合实际要求。本发明的划分结果便于事故分析和监测,一旦发生爆管等事故,影响区域基本可以确定,事故处理更有针对性。
发明内容
本发明针对现有技术存在的上述不足,提供一种基于实时水压信息的城市供水区域动态划分控制方法,通过充分利用测压点获取的数据信息,结合实际地理情况,对城市供水区域进行合理的分区,控制区块规模使之符合要求,便于管理。可广泛应用于大型城市供水调度系统的管理、监测、控制。
本发明是通过以下技术方案实现的,本发明利用SCADA系统从供水管网采集测压点、水厂、泵站等节点的压力数据,然后利用数据挖掘手段对数据进行预处理,之后对压力数据样本进行系统聚类分析并根据聚类结果及区块规模进行区域规模指标聚类,最后利用地理连通图进行区块的合并和分割,形成最终划分结果。
本发明具体包括以下步骤:
第一步、通过SCADA(Supervisory Control And Data Acquisition,数据采集与监视控制)系统对供水管网压力节点进行数据采集,得到采集供水区域内各压力节点的压力数据。
所述的数据采集是指:含有压力的变化特性的时间域宽度。时间域的选择应当具有广泛性,包含工作日与休息日,尤其以用水量较大的时段为宜,通常跨度范围不少于3个月,每个月采样的天数不少于10天。
第二步、将采集到的压力数据进行无效数据剔除处理,然后计算每个压力节点的数据变化值并作为该压力节点的附加属性;
所述的无效数据剔除处理是指:对所有压力数据进行时间指标归一化,然后依次选取所有压力节点在任一时刻T的压力数据,当在该时刻T没有压力数据时,则进行数据校正和/或坏点剔除。
所述的数据校正是指:判断当任一时刻T的前后给定误差时间范围Δt内是否存在压力数据,当存在则选取T+Δt和T-Δt时刻的压力数据并求平均后作为T时刻压力节点的压力数据;
所述的坏点剔除是指:当连续10个采样时刻无数据时,则判定该时刻的压力数据为坏点,相应删除该压力节点及其对应的压力数据。
所述的附加属性通过以下方式得到:对校正及坏点剔除后的数据,计算每个压力节点T时刻的压力值与T-1时刻的压力值之差,将所有T时刻与T-1的压力值差值作为该压力节点的附加属性。
第三步、以供水区域内的所有压力节点及其相互之间管线直接联通与否作为元素值建立地理连通图矩阵,具体为:对供水区域内的n个压力节点pi,i=1,2,...,n,n为自然常数建立压力节点管线的地理连通图矩阵An×n,其中:地理连通图矩阵中元素aij在压力节点pi与pj之间存在管线直接联通时取1,否则为0。
第四步、每一个压力节点称为一个样本,对所有样本进行聚类计算,得到类间距离平均值及类内距离平均值。
所述的聚类计算的步骤如下:
4.1)先将n个样本分为n类,计算每一类的中心压力值CPi(i=1,2,…ncn)(ncn为当前聚类数):
Figure BDA0000069052070000031
其中:m为一个压力节点类中的压力节点数,Xi(i=1,2,…m)为每个压力节点的压力特性(包括压力值和压力变化值);
4.2)找出距离最近的两个类并将其合并成一个新类,重新计算新类的中心压力值,并计算该次聚类过程的类间距离平均值和类内距离平均值;
4.3)重复步骤4.1和步骤4.2,直到所有的压力节点聚为一类。
第五步、根据类间距离平均值和类内距离平均值选择较优聚类数目。
所述的较优聚类数目,是指:当聚类数从M减为M-1时,反映类内聚合性优劣的类内距离平均值出现超过5%的减小,或反映类间分离性优劣的类间距离平均值出现超过5%的增加时的聚类数目。
第六步、根据聚类的规模,进行区域规模指标聚类,包括步骤如下:
6.1)指定类的最大规模,通常根据城市规模、人口密度等设定在5-10内,选取出超过规模的类进行区域规模指标聚类;
6.2)单独取出超过规模的类中的压力节点,依照K-Mean聚类法,将其分为两类,判断新划分的两类是否规模都符合给定要求:当符合要求,则用新划分的两类替换原先的一类,完成区域规模指标聚类;当不符合要求,依次增加分类数,重复上述过程,直到所有分类均符合给定规模。
第七步、对第三步中得到的地理连通图矩阵进行校正处理,并根据聚类结果,按类对所有压力节点分成若干不同的分区。
所述的校正处理是指:针对某一个已经确定的类,随机选取其中一个压力节点作为起始节点,以地理连通图作为压力节点之间的连通关系,依照图的遍历方法,判断是否能够遍历该类中所有的节点;当有压力节点无法遍历,则将不能遍历的压力节点取出,组成新类,重复上述过程,直到每一个类中所有压力节点都能够遍历。
第八步、利用中心线法确定第七步中的分区界限作为最终分区结果并在城市供水监控、管理系统中加载,实现基于实时水压信息的供水区域动态划分,并实时显示区域划分图,当发生供水问题,比如某压力节点爆管,该节点及所在分区产生警示信号,并通过后台数据库调取该区域面积及人口等信息,作为事故评级和应急调度的评价因素。
所述的中心线法是指:选择相邻的两个区域,计算每个区域的分类中心,确定它们连线的中点,依次遍历所有两两相邻的区域,确定中点,对所有邻近中点进行连线,得到最终的区域划分结果。
本发明得到的聚类结果,类的规模可以根据实际情况予以调控:针对人口密集地区,可以将类的规模控制的较小,管理更为细致;针对人口较分散地区,可以将类的规模设置的较大,节约管理所需的人力、物力和财力。每个类中的压力节点在压力值和变化趋势方面都表现出较强的相关性,便于事故分析和监测。一旦发生爆管等事故,影响区域基本可以确定,事故处理更有针对性。
附图说明
图1为本发明的实施步骤流程图,图2为本发明实施例中的最终加载结果示意图。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例
如图1所示,本实施例实施步骤如下:
1.通过SCADA系统对供水管网压力节点进行数据采集。某城市东部地区,共有4大水厂,10条出水管道,因而对应10个压力节点,共有5个泵站,43个测压点。共计58个压力节点。对这58个压力节点进行编号,然后采集各个压力节点从2009年6月1日0时0分至2009年9月30日23时40分,每20分钟一个压力数据。这样,每一个压力节点就得到了共计8784个压力值数据。在每年的6月到9月,是属于较为炎热的夏季,因此该时间段是用水量较大,压力信息变化较明显的时间段。另一方面,这期间包括了工作日,周末休息日以及暑假,涵盖范围广泛。
2.将采集到的压力数据读入计算机并进行预处理,首先搜索第一个压力节点的所有压力值数据,找出其中不满足采集条件,既在某采样时刻附近允许时间误差内未获取压力值的时刻,去除该时刻所有压力节点的压力值数据。然后依次搜索其他节点,直到完成所有节点的数据剔除工作。此时,每个节点符合采集条件的压力数据共计7328个。然后计算每个压力节点压力值的变化数值,共计7327个,将其作为压力节点的附加属性。这样就构成了包含58个压力节点,每个压力节点有14655个压力属性的矩阵。其中每一行的编号为压力节点的编号,每一列为压力节点在某个相同时刻的压力属性。
3.依据地理信息,找出每两个压力节点的连通情况,构建地理连通图。
4.首先将58个压力节点每个单独作为一类,计算每一类的中心压力序列,以及两两之间的距离。选择距离最近的两个压力节点合并为一个新类并计算该新类的中心压力序列。同时计算该次聚类过程中的类间距离平均值(ado)和类内距离平均值(adi)。之后重复上述过程,直到所有的压力节点聚为一类。聚类信息见表1。
表1
Figure BDA0000069052070000051
5.根据第4步的聚类信息,确定较优聚类数。由表1可见,聚类数有10类减为9类时,评价指标类间距离平均值有明显下降(7.7%),而类内距离平均值有明显上升(8.1%),因此,本实施例的较优聚类数目为10类。聚类结果见表2。
表2
  类号   节点号   节点数
  1   3/4/7/8/9/11/15/16/17/18/20/25/26/29/30/31/32/33/41/46/47/48/50/51/54   25
  2   1/35/36/56   4
  3   5/6/52   3
  4   12/13/14/21/24/37/45/49/57/58   10
  5   23/24/55   3
  6   10   1
  7   27/28/42/43/44/53   6
  8   19/39/40   3
  9   2/38   2
  10   34   1
6.本实施例中设定类的规模不超过6个压力节点。由表2可见,第1类和第4类的压力节点数目超过给定规模,因此需要进行区域规模指标聚类。首先选取出第一类所包含的25个压力节点,随机指定两个压力节点作为中心节点,将其余23个压力节点依据其与中心节点的聚类,与其中距离较近的中心节点归为一类。然后分析两个新类是否都满足给定规模,当不满足,则增加一个中心节点数目,重复上述步骤,直到所有新类都满足给定规模。对于第四类的处理方式类似。最终第1类划分为5个新类,第4类划分为2个新类,合计15个类。划分结果见表3。
表3
Figure BDA0000069052070000071
7.根据地理连通图,对所划分的类进行校正。逐个分析15个类的遍历情况,将每个类中不能被遍历的压力节点取出作为新类。直到所有的类(包括新类)中的压力节点都能够被遍历。表4为校正结果。由表4可知,第11类和第15类存在无法遍历的情况,其中15类无法遍历的节点组成新类后依然无法全部遍历,因此构成2个新类。本实施例最终聚类数为18个。
表4
Figure BDA0000069052070000072
Figure BDA0000069052070000081
8.按照第7步中的最终聚类结果,对该城市东部地区进行区域划分,将每个类中的所有压力节点划归为一个分区,将不是一个类中的压力节点划归到不同的分区。通过中心线法确定最后的分区结果,并在相应的软件系统中加载。图2为最终加载结果图示意图。

Claims (11)

1.一种基于实时水压信息的城市供水区域动态划分控制方法,其特征在于,利用SCADA系统从供水管网采集供水管网压力节点的压力数据,然后利用数据挖掘手段对数据进行预处理,之后对压力数据样本进行系统聚类分析并根据聚类结果及区块规模进行区域规模指标聚类,最后利用地理连通图进行区块的合并和分割,形成最终划分结果;
所述划分控制方法具体包括以下步骤:
第一步、通过数据采集与监视控制系统对供水管网压力节点进行数据采集,得到采集供水区域内各压力节点的压力数据;
第二步、将采集到的压力数据进行无效数据剔除处理,然后计算每个压力节点的数据变化值并作为该压力节点的附加属性;
第三步、以供水区域内的所有压力节点及其相互之间管线直接联通与否作为元素值建立地理连通图矩阵;
第四步、每一个压力节点称为一个样本,对所有样本进行聚类计算,得到类间距离平均值及类内距离平均值;
第五步、根据类间距离平均值和类内距离平均值选择较优聚类数目;
第六步、根据区块规模,进行区域规模指标聚类;
第七步、依据第三步中得到的地理连通图矩阵对聚类结果进行校正处理,并根据聚类结果,按类对所有压力节点分成若干不同的分区;
第八步、利用中心线法确定第七步中的分区界限作为最终分区结果并在城市供水监控、管理系统中加载,实现基于实时水压信息的供水区域动态划分,并实时显示区域划分图。
2.根据权利要求1所述的基于实时水压信息的城市供水区域动态划分控制方法,其特征是,所述的无效数据剔除处理是指:对所有压力数据进行时间指标归一化,然后依次选取所有压力节点在任一时刻T的压力数据,当在该时刻T没有压力数据时,则进行数据校正和/或坏点剔除。
3.根据权利要求2所述的基于实时水压信息的城市供水区域动态划分控制方法,其特征是,所述的数据校正是指:判断当任一时刻T的前后给定误差时间范围Δt内是否存在压力数据,当存在则选取T+Δt和T-Δt时刻的压力数据并求平均后作为T时刻压力节点的压力数据;所述的坏点剔除是指:当连续10个采样时刻无数据时,则判定该时刻的压力数据为坏点,相应删除该压力节点及其对应的压力数据。
4.根据权利要求1所述的基于实时水压信息的城市供水区域动态划分控制方法,其特征是,所述的附加属性通过以下方式得到:对校正及坏点剔除后的数据,计算每个压力节点T时刻的压力值与T-1时刻的压力值之差,将所有T时刻与T-1的压力值差值作为该压力节点的附加属性。
5.根据权利要求1所述的基于实时水压信息的城市供水区域动态划分控制方法,其特征是,所述的第三步具体为:对供水区域内的n个压力节点pi,i=1,2,...,n,n为自然常数,建立压力节点管线的地理连通图矩阵An×n,其中:地理连通图矩阵中元素aij在压力节点pi与pj之间存在管线直接联通时取1,否则为0。
6.根据权利要求1所述的基于实时水压信息的城市供水区域动态划分控制方法,其特征是,所述的聚类计算的步骤如下:
4.1)先将n个样本分为n类,计算每一类的中心压力值CPi且i=1,2,…ncn,其中:ncn为当前聚类数,类内距离平均值
Figure FDA00002200020300021
m为一个压力节点类中的压力节点数,Xi为每个压力节点的压力特性且i=1,2,…m;
4.2)找出距离最近的两个类并将其合并成一个新类,重新计算新类的中心压力值,并计算该次聚类过程的类间距离平均值和类内距离平均值;
4.3)重复步骤4.1和步骤4.2,直到所有的压力节点聚为一类。
7.根据权利要求6所述的基于实时水压信息的城市供水区域动态划分控制方法,其特征是,所述的压力特性包括压力值和压力变化值。
8.根据权利要求1所述的基于实时水压信息的城市供水区域动态划分控制方法,其特征是,所述的较优聚类数目,是指:当聚类数从M减为M-1时,反映类内聚合性优劣的类内距离平均值出现超过5%的减小,或反映类间分离性优劣的类间距离平均值出现超过5%的增加时的聚类数目。
9.根据权利要求1所述的基于实时水压信息的城市供水区域动态划分控制方法,其特征是,所述的第六步具体包括步骤如下:
6.1)指定类的最大规模,通常根据城市规模、人口密度等设定在5-10内,选取出超过规模的类进行区域规模指标聚类;
6.2)单独取出超过规模的类中的压力节点,依照K-Mean聚类法,将其分为两类,判断新划分的两类是否规模都符合给定要求:当符合要求,则用新划分的两类替换原先的一类,完成区域规模指标聚类;当不符合要求,依次增加分类数,重复上述过程,直到所有分类均符合给定规模。
10.根据权利要求1所述的基于实时水压信息的城市供水区域动态划分控制方法,其特征是,所述的校正处理是指:针对某一个已经确定的类,随机选取其中一个压力节点作为起始节点,以地理连通图作为压力节点之间的连通关系,依照图的遍历方法,判断是否能够遍历该类中所有的节点;当有压力节点无法遍历,则将不能遍历的压力节点取出,组成新类,重复上述过程,直到每一个类中所有压力节点都能够遍历。
11.根据权利要求1所述的基于实时水压信息的城市供水区域动态划分控制方法,其特征是,所述的中心线法是指:选择相邻的两个区域,计算每个区域的分类中心,确定它们连线的中点,依次遍历所有两两相邻的区域,确定中点,对所有邻近中点进行连线,得到最终的区域划分结果。
CN 201110165113 2011-06-17 2011-06-17 基于实时水压信息的城市供水区域动态划分控制方法 Active CN102385313B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110165113 CN102385313B (zh) 2011-06-17 2011-06-17 基于实时水压信息的城市供水区域动态划分控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110165113 CN102385313B (zh) 2011-06-17 2011-06-17 基于实时水压信息的城市供水区域动态划分控制方法

Publications (2)

Publication Number Publication Date
CN102385313A CN102385313A (zh) 2012-03-21
CN102385313B true CN102385313B (zh) 2013-01-16

Family

ID=45824813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110165113 Active CN102385313B (zh) 2011-06-17 2011-06-17 基于实时水压信息的城市供水区域动态划分控制方法

Country Status (1)

Country Link
CN (1) CN102385313B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103955872B (zh) * 2014-05-21 2017-03-15 广东粤海控股有限公司 一种结合蚁群算法和压力相似性分析的管网压力分区方法
CN104616328B (zh) * 2015-01-28 2017-05-10 广州市自来水公司 一种供水压力分布图的绘制方法
CN105894130B (zh) * 2016-04-25 2019-08-09 杭州电子科技大学 一种用于城市供水管网监测点的优化布置方法
CN107767449B (zh) * 2017-10-16 2020-12-18 苏州蜗牛数字科技股份有限公司 一种基于球面顶点的球体区域划分方法
CN108332059B (zh) * 2018-01-16 2019-05-31 浙江大学 服务于供水管网爆管监测的测压点优化布置方法
CN108846232A (zh) * 2018-06-28 2018-11-20 上海交通大学 一种城市供水爆管界定方法
CN108984873B (zh) * 2018-06-28 2023-10-24 武汉新烽光电股份有限公司 供水管网实时漏损检测方法、设备、系统及存储介质
CN109869638B (zh) * 2019-03-25 2021-03-09 杭州电子科技大学 一种供水管网爆管漏失初定位的方法
CN111897810B (zh) * 2020-07-29 2024-03-29 上海地听信息科技有限公司 建立定量化不同尺度区域间大气污染联防联控方案的方法
CN113074324B (zh) * 2021-04-09 2023-01-24 天津大学 基于城市供水管网运行安全动态预警的数据库及建立方法
CN113591259B (zh) * 2021-08-11 2022-05-03 华北电力大学 一种供热管道动态等值建模方法
CN117236657A (zh) * 2023-11-14 2023-12-15 山东辰智电子科技有限公司 基于实时水压的城市供水区域动态划分控制系统及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806396A (zh) * 2010-04-24 2010-08-18 上海交通大学 城市供水管网压力分布图的生成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0823656D0 (en) * 2008-12-30 2009-02-04 I2O Water Ltd Mains water supply processing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806396A (zh) * 2010-04-24 2010-08-18 上海交通大学 城市供水管网压力分布图的生成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《聚类算法在供水管网节点选择中的应用》;李雅洁等;《计算机工程》;20100830;第36卷(第8期);245-246,250 *
李雅洁等.《聚类算法在供水管网节点选择中的应用》.《计算机工程》.2010,第36卷(第8期),

Also Published As

Publication number Publication date
CN102385313A (zh) 2012-03-21

Similar Documents

Publication Publication Date Title
CN102385313B (zh) 基于实时水压信息的城市供水区域动态划分控制方法
CN108764573B (zh) 一种面向内陆干旱区的水资源多维均衡配置系统
Xin et al. Identifying key areas of imbalanced supply and demand of ecosystem services at the urban agglomeration scale: A case study of the Fujian Delta in China
CN101976842B (zh) 基于电气分区的关键断面自动获取方法
Geng et al. Application of multi-criterion decision making analysis to integrated water resources management
CN102426674B (zh) 一种基于马尔科夫链的电力系统负荷预测方法
CN103544533A (zh) 一种调水工程水资源优化配置动态模型构建系统
CN102509173B (zh) 一种基于马尔科夫链的电力系统负荷准确预测方法
CN104318058B (zh) 基于雨量监测的泥石流预警方法
CN102819677A (zh) 基于单场降雨类型的降雨站点相似性评价方法
CN113177189A (zh) 一种梯级水库分级分期旱限库容的计算方法
CN106056252A (zh) 一种页岩气田井组划分三级优化方法
CN103440525A (zh) 基于Vague值相似度量改进算法的城市湖库水华应急治理多目标多层次决策方法
CN110135730A (zh) 一种基于熵权法估算城市圈资源环境承载力的方法
CN109299853B (zh) 一种基于联合概率分布的水库调度函数提取方法
CN109002946B (zh) 一种河湖补水的“两库—两站”系统水资源优化调度方法
CN106651011A (zh) 一种基于粒子群算法的渠系优化配水方法
Ahmed et al. Water sharing, governance, and management among the provinces in Pakistan using evidence-based decision support system
CN112906762A (zh) 一种水资源系统临界状态的定义及辨识方法和系统
CN106354886A (zh) 在推荐系统中利用潜在邻居关系图筛选最近邻居的方法
CN114091140B (zh) 一种城市空间密度数据的网络构建方法
CN111415103A (zh) 一种基于psr的流域水安全度量方法
Wang et al. Flood season division with an improved fuzzy C-mean clustering method in the Taihu lake basin in China
Bo et al. Research of Typical Line Loss Rate in Transformer District Based on Data-Driven Method
Xu et al. Spatiotemporal evolution and the detection of key drivers in the resilience of cultivated land system in major grain‐producing regions of China

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant