CN102354540B - I层钒掺杂的pin型核电池及其制作方法 - Google Patents

I层钒掺杂的pin型核电池及其制作方法 Download PDF

Info

Publication number
CN102354540B
CN102354540B CN2011103190019A CN201110319001A CN102354540B CN 102354540 B CN102354540 B CN 102354540B CN 2011103190019 A CN2011103190019 A CN 2011103190019A CN 201110319001 A CN201110319001 A CN 201110319001A CN 102354540 B CN102354540 B CN 102354540B
Authority
CN
China
Prior art keywords
type
layer
epitaxial loayer
doped
type sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2011103190019A
Other languages
English (en)
Other versions
CN102354540A (zh
Inventor
郭辉
张克基
张玉明
张玉娟
韩超
石彦强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN2011103190019A priority Critical patent/CN102354540B/zh
Publication of CN102354540A publication Critical patent/CN102354540A/zh
Priority to US14/349,933 priority patent/US9728292B2/en
Priority to PCT/CN2012/076325 priority patent/WO2013056556A1/zh
Application granted granted Critical
Publication of CN102354540B publication Critical patent/CN102354540B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21HOBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
    • G21H1/00Arrangements for obtaining electrical energy from radioactive sources, e.g. from radioactive isotopes, nuclear or atomic batteries
    • G21H1/06Cells wherein radiation is applied to the junction of different semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/0495Schottky electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种I层钒掺杂的PIN型核电池及其制作方法,主要解决现有技术中制作碳化硅PIN结核电池中I层掺杂浓度高的问题。本发明的PIN型核电池自上而下包括放射性同位素源层(1)、SiO2致密绝缘层(2)、SiO2钝化层(3)、p型欧姆接触电极(4)、掺杂浓度为1×1019~5×1019cm-3的p型SiC外延层(5)、n型SiC外延层(6)、掺杂浓度为1×1018~7×1018cm-3的n型SiC衬底(7)和n型欧姆接触电极(8)。该n型SiC外延层(6)是通过注入能量为2000KeV~2500KeV,剂量为5×1013~1×1015cm-2的钒离子形成掺杂浓度为1×1013~5×1014cm-3的n型SiC外延层。本发明具有电子空穴对收集率,器件的开路电压和能量转换效率高的优点,可作为微系统的片上电源、心脏起搏器的电源和手机备用电源。

Description

I层钒掺杂的PIN型核电池及其制作方法
技术领域
本发明属于微电子领域,尤其涉及一种I层钒掺杂的PIN型核电池,可用于将同位素放射的核能直接转换为电能。
技术背景
1953年由Rappaport研究发现,利用同位素衰变所产生的贝他(β-Particle)粒子能在半导体内产生电子空穴对,此现象则被称为β-Voltaic Effect。之后不久,Elgin-Kidde在1957年首先将β-Voltaic Effect用在电源供应方面,成功实验制造出第一个同位素微电池β-Voltaic Battery。从1989年以来,GaN,GaP,AlGaAs,多晶硅等材料相继被利用作为β-Voltaic电池的材料。随着宽禁带半导体材料SiC的制备和工艺技术的进步,2006年开始,国内外上相继出现了基于SiC的同位素微电池的相关报道。
中国专利CN 101325093A中公开了由张林,郭辉等人提出的基于SiC的肖特基结式核电池,如图2所示,该肖特基结式核电池自上而下依次包括键合层1、肖特基金属层13、SiO2钝化层4、n型低掺杂SiC外延层5、n型高掺杂SiC衬底6、欧姆接触电极7。该肖特基结核电池肖特基接触层覆盖整个电池区域,入射粒子到达器件表面后,都会受到肖特基接触层的阻挡,只有部分粒子能进入器件内部,而进入耗尽区的粒子才会对电池的输出功率有贡献,因此,这种结构的核电池入射粒子能量损失大,能量转换效率较低
文献“APPLIED PHYSICS LETTERS 88,033506(2006)《Demonstration of a 4HSiC betavoltaic cell》”介绍了由美国纽约Cornell大学的M.V.S.Chandrashekhar,C.I.Tomas,Hui Li,M.G.Spencer and Amit Lal等人提出了碳化硅p-i-n结式核电池,如图1所示,该p-i-n结式核电池自上而下依次包括放射性同位素源3、p型欧姆接触层12、p型高掺杂SiC层9、p型SiC层11、本征I层10、n高掺杂SiC衬底6、欧姆接触电极7。在这种结构中,衬底为p型高掺杂衬底,在上面生长外延层的工艺不成熟,易引入表面缺陷,器件漏电流增大,能量转换率较低,同时p型低掺杂SiC层是通过非故意掺杂外延生长形成的,掺杂浓度偏高,得到的耗尽区宽度偏小,产生的载流子不能被全部收集,器件开路电压变小,能量转换效率降低。
发明内容
本发明的目的在于避免上述已有技术的不足,提出一种I层钒掺杂的PIN型核电池及其制作方法,以减少I层的载流子浓度,增大耗尽区宽度,提高产生的电子空穴对的收集率,进而提高器件的开路电压和能量转换效率。
为实现上述目的,本发明提供的I层钒掺杂的PIN型核电池,依次包括放射性同位素源层1、SiO2钝化层2、SiO2致密绝缘层3、p型欧姆接触电极4、p型SiC外延层5、n型SiC外延层6、n型SiC衬底样片7和n型欧姆接触电极8,其特征在于:p型SiC外延层5的掺杂浓度为1×1019~5×1019cm-3,n型SiC衬底样片7的掺杂浓度为1×1018~7×1018cm-3,n型SiC外延层6是通过注入能量为2000KeV~2500KeV,剂量为5×1013~1×1015cm-2的钒离子形成掺杂浓度为1×1013~5×1014cm-3
为实现上述目的,本发明提供的I层钒掺杂的PIN型核电池的制作方法,包括如下步骤:
(1)在掺杂浓度为1×1018~7×1018cm-3的高掺杂n型SiC衬底样片上,外延生长厚度为3um~5um,掺氮浓度为1×1015~5×1015cm-3的初始n型SiC外延层;
(2)在初始n型SiC外延层上再进行注入能量为2000KeV~2500KeV,注入剂量为5×1013~1×1015cm-2的钒离子注入,然后在1450℃~1650℃的高温下热退火20~40分钟,进而得到掺杂浓度为1×1013~5×1014cm-3的n型SiC外延层;
(3)在掺杂浓度为1×1013~5×1014cm-3的n型SiC外延层上生长厚度为0.2um~0.5um,掺铝浓度为1×1019~5×1019cm-3的高掺杂p型外延层;
(4)在高掺杂p型外延层上采用电感耦合等离子体刻蚀法刻蚀出0.2um~0.6um的台面;
(5)对刻蚀后的样片进行RCA标准清洗,干氧氧化2小时,形成厚度为10nm~20nm的SiO2致密氧化层;
(6)在SiO2致密氧化层上采用低压热壁化学气相淀积法淀积厚度为0.3um~0.5um的SiO2钝化层;
(7)在SiO2钝化层上涂胶,光刻制作阻挡层,用浓度为5%的HF酸腐蚀10秒开窗;
(8)在开窗后的样片正面涂胶,使用含p型电极形状的光刻版,光刻产生电极金属区,然后通过磁控溅射淀积Ti/Al/Au合金,再进行剥离,形成p型电极图形;
(9)在样片背面通过磁控溅射淀积Ni/Cr/Au合金,形成n型接触电极;
(10)将整个样片在1050℃下氮气气氛中快速热退火3分钟,同时形成p型和n型欧姆接触电极;
(11)在高掺杂p型外延层上选择性的镀上同位素源,完成I层钒掺杂的PIN型核电池的制作。
本发明与现有技术相比具有如下优点:
本发明制作的PIN核电池,由于I层是采用掺氮外延生长,然后对外延层再进行钒离子注入对外延层能级上的自由载流子进行补偿,故I层的载流子掺杂浓度极低,增大耗尽区宽度,提高了产生电子空穴对的收集率,进而提高器件的开路电压和能量转换效率;同时由于p型外延层为0.2um~0.5um的薄层,有效降低了外延层对入射粒子的阻挡作用,能有效的提高能量转换效率;此外由于本发明采用n型碳化硅衬底,故价格便宜且外延层的生长工艺成熟,操作简单,易于实现。
附图说明
图1是现有的p-i-n结构核电池截面示意图;
图2是现有的肖特基结结构核电池截面示意图;
图3是本发明核电池的剖面结构示意图;
图4是本发明核电池制作工艺流程示意图。
具体实施方式
参照图3,本发明的核电池包括放射性同位素源层1,SiO2钝化层2,SiO2致密绝缘层3,p型欧姆接触电极4,p型SiC外延层5,n型SiC外延层6,n型SiC衬底样片7和n型欧姆接触电极8,其中n型SiC衬底样片7的掺杂浓度为1×1018~7×1018cm-3,它的背面是由厚度分别为200nm/50nm/100nm的Ni/Cr/Au合金组成的n型欧姆接触电极8,正面是厚度为3um~5um,掺杂浓度为1×1013~5×1014cm-3的n型SiC外延层6,该n型SiC外延层6通过钒离子注入形成,n型SiC外延层6的左右上方是厚度为10nm~20nm的SiO2致密绝缘层3,SiO2致密绝缘层3上面是厚度为0.3um~0.5um的SiO2钝化层2,n型SiC外延层6的正上方为掺杂浓度为1×1019~5×1019cm-3,厚度为0.2um~0.5um的高掺杂p型SiC外延层5,高掺杂p型SiC外延层5上面左半边是由厚度分别为50nm/100nm/100nm的Ti/Al/Au合金组成的p型欧姆接触电极4,右半边是放射性同位素源层1。
参照图4,本发明的制作方法给出如下三种实施例。
实施例1
第1步:在SiC高掺杂n型衬底样片上外延n型外延层,如图4a。
选用掺杂浓度为1×1018cm-3高掺杂n型SiC衬底样片7,清洗后,在高掺杂n型SiC衬底样片上外延生长厚度为4um,氮离子掺杂的初始n型外延层,其掺杂浓度为1×1015cm-3,外延温度为1570℃,压强100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂质源为液态氮气。
第2步:对掺杂浓度为1×1015cm-3初始n型SiC外延层进行钒离子注入,如图4b。
(2.1)对掺杂浓度为1×1015cm-3的初始n型SiC外延层进行钒离子注入,其钒离子注入条件为:离子注入的能量为2200KeV,注入剂量为5×1013cm-2
(2.2)对离子注入后的n型SiC外延层进行高温热退火,使注入离子重新分布,降低晶格损伤,进而得到掺杂浓度为1×1013cm-3的低掺杂n型SiC外延层6,其高温热退火的条件为:退火温度为1450℃,退火时间为30分钟。
第3步:外延生长高掺杂p型外延层,如图4c。
在所述的低掺杂n型SiC外延层上外延生长厚度为0.5um,铝离子掺杂的p型外延层5,其掺杂浓度为5×1019cm-3,外延温度为1570℃,压力为100mbar,反应气体为硅烷和丙烷,载气为纯氢气,杂质源为三甲基铝。
第4步:光刻形成台面,如图4d。
(4.1)将p型外延层5生长好的样片采用RCA清洗标准进行清洗;
(4.2)样片清洗完后,在掺杂浓度为5×1019cm-3的高掺杂p型外延层5上,用磁控溅射铝膜作为刻蚀掩膜层,使用光刻版进行光刻,形成刻蚀所需要的图案;
(4.3)在刻蚀的图案上用电感耦合等离子体方法刻蚀形成台面,台面刻蚀深度为0.6um。
第5步:在进行了台面刻蚀后的样片表面上形成SiO2致密绝缘层,如图4e。
在1100±50℃温度下,对在进行台面刻蚀后的样片表面进行两小时的干氧氧化,形成10nm的SiO2致密绝缘层3。
第6步:在SiO2致密绝缘层上再生长SiO2钝化层,如图4f。
在温度为600℃,压强为80Pa条件下,通过低压热壁化学气相淀积法在SiO2致密绝缘层3上淀积一层厚度为0.5um的SiO2钝化层2,其反应气体为硅烷和氧气,载气为氮气。
第7步:在SiO2钝化层2上涂胶,光刻制作阻挡层,用HF酸腐蚀开窗,如图4g。
(7.1)在SiO2钝化层上旋涂光刻胶;
(7.2)在光刻胶上利用光刻版光刻制作阻挡层;
(7.3)用浓度为5%的缓冲HF酸腐蚀10秒,在SiO2钝化层中开窗,开窗的区域作为核电池的有效区域。
第9步:在开窗完的样片正面涂胶,使用带p型电极的光刻板,光刻出电极图形,通过磁控溅射淀积厚度分别为50nm/100nm/100nm的Ti/Al/Au合金,通过超声波剥离形成p型电极接触图形,同时通过磁控溅射在样片衬底背面淀积Ni/Cr/Au合金,其厚度分别为200nm/50nm/100nm,形成n型接触电极,如图4h。
第10步:在1100±50℃温度下的氮气气氛中,对整个样片进行快速热退火3分钟,同时形成p型和n型欧姆接触电极。
第11步:在高掺杂p型外延层上选择性的电镀上同位素源,如图4i。
实施例2
步骤一:在SiC高掺杂n型衬底样片上外延n型外延层,如图4a。
选用掺杂浓度为5×1018cm-3高掺杂n型SiC衬底样片7,清洗后,在高掺杂n型SiC衬底样片上外延生长厚度为3um,氮离子掺杂的初始n型外延层,其掺杂浓度为5×1015cm-3,外延温度为1570℃,压强100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂质源为液态氮气。
步骤二:对掺杂浓度为5×1015cm-3初始n型SiC外延层进行钒离子注入,如图4b。
(2.1)对掺杂浓度为5×1015cm-3的初始n型SiC外延层进行钒离子注入,其钒离子注入条件为:离子注入的能量为2000KeV,注入剂量为1×1015cm-2
(2.2)对离子注入后的n型SiC外延层进行高温热退火,使注入离子重新分布,降低晶格损伤,进而得到掺杂浓度为5×1014cm-3的低掺杂n型SiC外延层6,其高温热退火的条件为:退火温度为1550℃,退火时间为40分钟。
步骤三:外延生长高掺杂p型外延层,如图4c。
在所述的低掺杂外延层上外延生长厚度为0.4um,铝离子掺杂的p型外延层5,其掺杂浓度为1×1019em-3,外延温度为1570℃,压力为100mbar,反应气体为硅烷和丙烷,载气为纯氢气,杂质源为三甲基铝。
步骤四:光刻形成台面,如图4d。
(4.1)将p型外延层5生长好的样片采用RCA清洗标准进行清洗;
(4.2)样片清洗完后,在掺杂浓度为1×1019cm-3的高掺杂p型外延层5上,用磁控溅射铝膜作为刻蚀掩膜层,使用光刻版进行光刻,形成刻蚀所需要的图案;
(4.3)在刻蚀的图案上用电感耦合等离子体方法刻蚀形成台面,台面刻蚀深度为0.6um。
步骤五:在进行了台面刻蚀后的样片表面上形成SiO2致密绝缘层,如图4e。
在1100±50℃温度下,对在进行台面刻蚀后的样片表面进行两小时的干氧氧化,形成20nm的SiO2致密绝缘层3。
步骤六:在SiO2致密绝缘层上再生长SiO2钝化层,如图4f。
在温度为600℃,压强为80Pa条件下,通过低压热壁化学气相淀积法在SiO2致密绝缘层3上淀积一层厚度为0.4um的SiO2钝化层2,其反应气体为硅烷和氧气,载气为氮气。
步骤七:在SiO2钝化层2上涂胶,光刻制作阻挡层,用HF酸腐蚀开窗,如图4g。
(7.1)在SiO2钝化层上旋涂光刻胶;
(7.2)在光刻胶上利用光刻版光刻制作阻挡层;
(7.3)用浓度为5%的缓冲HF酸腐蚀10秒,在SiO2钝化层中开窗,开窗的区域作为核电池的有效区域。
步骤八:在开窗完的样片正面涂胶,使用带p型电极的光刻板,光刻出电极图形,通过磁控溅射淀积厚度分别为50nm/100nm/100nmTi/Al/Au合金,通过超声波剥离形成p型电极接触图形,同时通过磁控溅射在样片衬底背面淀积Ni/Cr/Au合金,其厚度分别为200nm/50nm/100nm,形成n型接触电极,如图4h。
步骤九:在1100±50℃温度下的氮气气氛中,对整个样片进行快速热退火3分钟,同时形成p型和n型欧姆接触电极。
步骤十:在高掺杂p型外延层上选择性的分子镀上同位素源,如图4i。
实施例3
步骤A:在SiC高掺杂n型衬底样片上外延n型外延层,如图4a。
选用掺杂浓度为7×1018cm-3高掺杂n型SiC衬底样片7,清洗后,在高掺杂n型SiC衬底样片上外延生长厚度为5um,氮离子掺杂的初始n型外延层,其掺杂浓度为2×1015cm-3,外延温度为1570℃,压强100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂质源为液态氮气。
步骤B:对掺杂浓度为2×1015cm-3初始n型SiC外延层进行钒离子注入,如图4b。
(B1)对掺杂浓度为2×1015cm-3的初始n型SiC外延层进行钒离子注入,其钒离子注入条件为:离子注入的能量为2500KeV,注入剂量为1×1014cm-2
(B2)对离子注入后的n型SiC外延层进行高温热退火,使注入离子重新分布,降低晶格损伤,进而得到掺杂浓度为5×1013cm-3的低掺杂n型SiC外延层6,其高温热退火的条件为:退火温度为1650℃,退火时间为20分钟。
步骤C:外延生长高掺杂p型外延层,如图4c。
在所述的低掺杂外延层上外延生长厚度为0.2um,铝离子掺杂的p型外延层5,其掺杂浓度为2×1019cm-3,外延温度为1570℃,压力为100mbar,反应气体为硅烷和丙烷,载气为纯氢气,杂质源为三甲基铝。
步骤D:光刻形成台面,如图4d。
(D1)将p型外延层5生长好的样片采用RCA清洗标准进行清洗;
(D2)样片清洗完后,在掺杂浓度为2×1019cm-3的高掺杂p型外延层5上,用磁控溅射铝膜作为刻蚀掩膜层,使用光刻版进行光刻,形成刻蚀所需要的图案;
(D3)在刻蚀的图案上用电感耦合等离子体方法刻蚀形成台面,台面刻蚀深度为0.5um。
步骤E:在进行了台面刻蚀后的样片表面上形成SiO2致密绝缘层,如图4e。
在1100±50℃温度下,对在进行台面刻蚀后的样片表面进行两小时的干氧氧化,形成15nm的SiO2致密绝缘层3。
步骤F:在SiO2致密绝缘层上再生长SiO2钝化层,如图4f。
在温度为600℃,压强为80Pa条件下,通过低压热壁化学气相淀积法在SiO2致密绝缘层3上淀积一层厚度为0.3um的SiO2钝化层2,其反应气体为硅烷和氧气,载气为氮气。
步骤G:在SiO2钝化层2上涂胶,光刻制作阻挡层,用HF酸腐蚀开窗,如图4g。
(G1)在SiO2钝化层上旋涂光刻胶;
(G2)在光刻胶上利用光刻版光刻制作阻挡层;
(G3)用浓度为5%的缓冲HF酸腐蚀10秒,在SiO2钝化层中开窗,开窗的区域作为核电池的有效区域。
步骤H:在开窗完的样片正面涂胶,使用带p型电极的光刻板,光刻出电极图形,通过磁控溅射淀积厚度分别为50nm/100nm/100nmTi/Al/Au合金,通过超声波剥离形成p型电极接触图形,同时通过磁控溅射在样片衬底背面淀积Ni/Cr/Au合金,其厚度分别为200nm/50nm/100nm,形成n型接触电极,如图4h。
步骤I:在1100±50℃温度下的氮气气氛中,对整个样片进行快速热退火3分钟,同时形成p型和n型欧姆接触电极。
步骤J:在高掺杂p型外延层上选择性的化学镀上同位素源,如图4i。
上述实施例不构成对本发明的任何限制,特别是钒离子注入的能量和剂量,需根据实际需要的载流子浓度来确定。

Claims (10)

1.一种I层钒掺杂的PIN型核电池,自上而下依次包括放射性同位素源层(1)、SiO2钝化层(2)、SiO2致密绝缘层(3)、p型欧姆接触电极(4)、p型SiC外延层(5)、n型SiC外延层(6)、n型SiC衬底样片(7)和n型欧姆接触电极(8),其特征在于:p型SiC外延层(5)的掺杂浓度为1×1019~5×1019cm-3,n型SiC衬底样片(7)的掺杂浓度为1×1018~7×1018cm-3,n型SiC外延层(6)的掺杂浓度为1×1013~5×1014cm-3,且通过注入能量为2000KeV~2500KeV,剂量为5×1013~1×1015cm-2的钒离子形成。
2.根据权利要求1所述的一种I层钒掺杂的PIN型核电池,其特征在于所述的n型SiC外延层(6)的厚度为3um~5um。
3.根据权利要求1所述的一种I层钒掺杂的PIN型核电池,其特征在于所述的p型SiC外延层(5)的厚度为0.2um~0.5um。
4.根据权利要求1所述的一种I层钒掺杂的PIN型核电池,其特征在于所述的SiO2致密绝缘层(3)的厚度为10nm~20nm。
5.根据权利要求1所述的一种I层钒掺杂的PIN型核电池,其特征在于所述的SiO2钝化层(2)的厚度为0.3um~0.5um。
6.一种I层钒掺杂的PIN型核电池的制作方法,包括如下步骤:
(1)在掺杂浓度为1×1018~7×1018cm-3的高掺杂n型SiC衬底样片上,外延生长厚度为3um~5um,掺氮浓度为1×1015~5×1015cm-3的初始n型SiC外延层;
(2)在初始n型SiC外延层上再进行注入能量为2000KeV~2500KeV,注入剂量为5×1013~1×1015cm-2的钒离子注入,然后在1450℃~1650℃的高温下热退火20~40分钟,进而得到掺杂浓度为1×1013~5×1014cm-3的n型SiC外延层;
(3)在掺杂浓度为1×1013~5×1014cm-3的n型SiC外延层上生长厚度为0.2um~0.5um,掺铝浓度为1×1019~5×1019cm-3的高掺杂p型外延层;
(4)在高掺杂p型外延层上采用电感耦合等离子体刻蚀法刻蚀出0.2um~0.6um的台面;
(5)对刻蚀后的样片进行RCA标准清洗,干氧氧化2小时,形成厚度为10nm~20nm的SiO2致密氧化层;
(6)在SiO2致密氧化层上采用低压热壁化学气相淀积法淀积厚度为0.3um~0.5um的SiO2钝化层;
(7)在SiO2钝化层上涂胶,光刻制作阻挡层,用浓度为5%的HF酸腐蚀10秒开窗;
(8)在开窗后的样片正面涂胶,使用含p型电极形状的光刻版,光刻产生电极金属区,然后通过磁控溅射淀积Ti/Al/Au合金,再进行剥离,形成p型电极图形;
(9)在样片背面通过磁控溅射淀积Ni/Cr/Au合金,形成n型接触电极;
(10)将整个样片在1050℃下氮气气氛中快速热退火3分钟,同时形成p型和n型欧姆接触电极;
(11)在高掺杂p型外延层上选择性的镀上同位素源,完成I层钒掺杂的PIN型核电池的制作。
7.根据权利要求6所述的一种I层钒掺杂的PIN型核电池的制作方法,其特征在于注入钒离子的最高浓度大于掺氮后的外延层的掺杂浓度。
8.根据权利要求6所述的I层钒掺杂的PIN型核电池的制作方法,其特征在于步骤(8)所述的磁控溅射淀积Ti/Al/Au合金,其厚度分别为50nm/100nm/100nm。
9.根据权利要求6所述的I层钒掺杂的PIN型核电池的制作方法,其特征在于步骤(9)所涉及的磁控溅射淀积Ni/Cr/Au合金,其厚度分别为200nm/50nm/100nm。
10.根据权利要求6所述的I层钒掺杂的PIN型核电池的制作方法,其特征在于步骤(11)中所述的同位素源,是通过电镀或化学镀或分子镀镀在高掺杂p型外延层上。
CN2011103190019A 2011-10-19 2011-10-19 I层钒掺杂的pin型核电池及其制作方法 Expired - Fee Related CN102354540B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011103190019A CN102354540B (zh) 2011-10-19 2011-10-19 I层钒掺杂的pin型核电池及其制作方法
US14/349,933 US9728292B2 (en) 2011-10-19 2012-05-31 I-layer vanadium-doped PIN type nuclear battery and the preparation process thereof
PCT/CN2012/076325 WO2013056556A1 (zh) 2011-10-19 2012-05-31 I层钒掺杂的pin型核电池及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011103190019A CN102354540B (zh) 2011-10-19 2011-10-19 I层钒掺杂的pin型核电池及其制作方法

Publications (2)

Publication Number Publication Date
CN102354540A CN102354540A (zh) 2012-02-15
CN102354540B true CN102354540B (zh) 2013-08-14

Family

ID=45578081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103190019A Expired - Fee Related CN102354540B (zh) 2011-10-19 2011-10-19 I层钒掺杂的pin型核电池及其制作方法

Country Status (3)

Country Link
US (1) US9728292B2 (zh)
CN (1) CN102354540B (zh)
WO (1) WO2013056556A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102354540B (zh) 2011-10-19 2013-08-14 西安电子科技大学 I层钒掺杂的pin型核电池及其制作方法
JP2015056560A (ja) * 2013-09-12 2015-03-23 株式会社東芝 半導体装置
CN103646677A (zh) * 2013-10-26 2014-03-19 溧阳市浙大产学研服务中心有限公司 一种包括铌掺杂的n型SiC外延层的PIN型同位素核电池
CN103594138A (zh) * 2013-10-26 2014-02-19 溧阳市浙大产学研服务中心有限公司 Pin型同位素核电池的制作方法
CN103646679A (zh) * 2013-10-26 2014-03-19 溧阳市浙大产学研服务中心有限公司 Pin型同位素核电池
CN103730182A (zh) * 2013-10-26 2014-04-16 溧阳市浙大产学研服务中心有限公司 包括铌掺杂的n型SiC外延层的PIN型同位素核电池的制造方法
CN104134480A (zh) * 2014-06-29 2014-11-05 西安电子科技大学 夹心并联式PIN型β辐照电池及其制备方法
CN104051052A (zh) * 2014-06-29 2014-09-17 西安电子科技大学 沟槽隔离式外延GaN的PIN型α辐照电池及制备方法
RU2599274C1 (ru) * 2015-05-14 2016-10-10 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Планарный преобразователь ионизирующих излучений и способ его изготовления
CN105845746B (zh) * 2016-04-01 2017-06-13 西安电子科技大学 基于碳化硅PIN二极管结构的γ辐照闪烁体探测器
CN105789336B (zh) * 2016-04-01 2017-06-20 西安电子科技大学 基于碳化硅PIN二极管结构的α辐照闪烁体探测器
RU168184U1 (ru) * 2016-04-22 2017-01-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева" (СибГАУ) Планарный преобразователь ионизирующих излучений с накопительным конденсатором
US10304579B2 (en) * 2017-01-25 2019-05-28 Bor-Ruey Chen PI-orbital semiconductor quantum cell
RU2659618C1 (ru) * 2017-01-31 2018-07-03 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Преобразователь ионизирующих излучений с сетчатой объемной структурой и способ его изготовления
JP7009147B2 (ja) * 2017-09-29 2022-01-25 富士電機株式会社 炭化珪素半導体基板、炭化珪素半導体基板の製造方法および炭化珪素半導体装置
CN110444313A (zh) * 2018-06-08 2019-11-12 吉林大学 一种基于碳化硅PN结型β辐射伏特效应核电池
RU2714783C2 (ru) * 2019-05-29 2020-02-19 Общество с ограниченной ответственностью "БетаВольтаика" Способ формирования полупроводниковых структур для преобразования энергии радиохимического распада с-14 в электрическую
US11495707B2 (en) * 2020-04-17 2022-11-08 Changchun Institute Of Optics, Fine Mechanics And Physics, Chinese Academy Of Sciences AlGaN unipolar carrier solar-blind ultraviolet detector and manufacturing method thereof
CN114038900B (zh) * 2021-09-27 2022-06-10 安徽芯旭半导体有限公司 Tvs芯片及其生产方法
CN113990549B (zh) * 2021-10-09 2023-08-08 西安电子科技大学 具有减薄P型区的分布电极PiN型β辐照电池及制备方法
CN113990546B (zh) * 2021-10-09 2023-08-04 西安电子科技大学 一种具有钝化层表面场的沟槽PiN型β辐照电池及制备方法
CN113990547B (zh) * 2021-10-09 2024-01-23 西安电子科技大学 一种具有栅电极表面场的平面PiN型β辐照电池及制备方法
CN113990550B (zh) * 2021-10-09 2023-08-08 西安电子科技大学 一种具有钝化层表面场的平面PiN型β辐照电池及制备方法
CN113990548B (zh) * 2021-10-09 2024-01-23 西安电子科技大学 一种具有栅电极表面场的沟槽PiN型β辐照电池及制备方法
CN114203330B (zh) * 2021-12-13 2024-09-10 中国核动力研究设计院 一种超薄镍-63辐射源及其制备方法、应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606213A (en) * 1993-04-21 1997-02-25 Ontario Hydro Nuclear batteries
US5642014A (en) * 1995-09-27 1997-06-24 Lucent Technologies Inc. Self-powered device
KR100861317B1 (ko) * 2007-01-15 2008-10-01 이진민 방사성동위원소 전지 및 그 제조방법
CN101527175A (zh) * 2009-04-10 2009-09-09 苏州纳米技术与纳米仿生研究所 一种pin型核电池及其制备方法
CN101599308A (zh) * 2009-06-30 2009-12-09 西北工业大学 具有保护环结构的微型核电池及其制作方法
CN101916608A (zh) * 2010-07-06 2010-12-15 西安电子科技大学 碳化硅指状肖特基接触式核电池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5709745A (en) * 1993-01-25 1998-01-20 Ohio Aerospace Institute Compound semi-conductors and controlled doping thereof
JP4752168B2 (ja) * 2000-03-13 2011-08-17 ソニー株式会社 光エネルギー変換装置
US6753469B1 (en) * 2002-08-05 2004-06-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Very high efficiency, miniaturized, long-lived alpha particle power source using diamond devices for extreme space environments
US7663288B2 (en) * 2005-08-25 2010-02-16 Cornell Research Foundation, Inc. Betavoltaic cell
US8552616B2 (en) * 2005-10-25 2013-10-08 The Curators Of The University Of Missouri Micro-scale power source
CN101236794A (zh) * 2007-01-29 2008-08-06 北京行者多媒体科技有限公司 非晶硅碳薄膜核电池
CN102354540B (zh) * 2011-10-19 2013-08-14 西安电子科技大学 I层钒掺杂的pin型核电池及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606213A (en) * 1993-04-21 1997-02-25 Ontario Hydro Nuclear batteries
US5642014A (en) * 1995-09-27 1997-06-24 Lucent Technologies Inc. Self-powered device
KR100861317B1 (ko) * 2007-01-15 2008-10-01 이진민 방사성동위원소 전지 및 그 제조방법
CN101527175A (zh) * 2009-04-10 2009-09-09 苏州纳米技术与纳米仿生研究所 一种pin型核电池及其制备方法
CN101599308A (zh) * 2009-06-30 2009-12-09 西北工业大学 具有保护环结构的微型核电池及其制作方法
CN101916608A (zh) * 2010-07-06 2010-12-15 西安电子科技大学 碳化硅指状肖特基接触式核电池

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
一种基于PIN结的硅基微型核电池研究;乔大勇等;《物理学报》;20110228;第60卷(第2期);020701-1-020701-9 *
一种复合型核电池的理论设计;彭振驯等;《核技术》;20100430;第33卷(第4期);308-311 *
乔大勇等.一种基于PIN结的硅基微型核电池研究.《物理学报》.2011,第60卷(第2期),020701-1-020701-9.
彭振驯等.一种复合型核电池的理论设计.《核技术》.2010,第33卷(第4期),308-311.

Also Published As

Publication number Publication date
CN102354540A (zh) 2012-02-15
US9728292B2 (en) 2017-08-08
WO2013056556A1 (zh) 2013-04-25
US20140225472A1 (en) 2014-08-14

Similar Documents

Publication Publication Date Title
CN102354540B (zh) I层钒掺杂的pin型核电池及其制作方法
CN102254581B (zh) 碳化硅环状电极pin型核电池的制作方法
CN102280157B (zh) 碳化硅网格状电极pin型核电池及其制作方法
CN105742391B (zh) 一种隧穿硅氧氮层钝化接触太阳能电池及其制备方法
CN102509569B (zh) I层钒掺杂的碳化硅肖特基结型核电池及其制作方法
JP6352939B2 (ja) 酸窒化シリコン誘電層を備える太陽電池のエミッタ領域
EP2385561A2 (en) Solar Cell
CN101916608B (zh) 碳化硅指状肖特基接触式核电池
US20130174896A1 (en) Tandem solar cell using a silicon microwire array and amorphous silicon photovoltaic layer
WO2015137152A1 (ja) ヘテロ接合太陽電池とその製造方法
CN103730182A (zh) 包括铌掺杂的n型SiC外延层的PIN型同位素核电池的制造方法
CN103730181A (zh) 碳化硅肖特基结型核电池的制造方法
CN101923905B (zh) 碳化硅环状肖特基接触式核电池
CN103646679A (zh) Pin型同位素核电池
CN103730184A (zh) 碳化硅肖特基结型核电池
CN101923906B (zh) 碳化硅栅状肖特基接触式核电池
CN103594138A (zh) Pin型同位素核电池的制作方法
JPH0878709A (ja) 太陽電池
CN104051052A (zh) 沟槽隔离式外延GaN的PIN型α辐照电池及制备方法
CN104051043B (zh) 3D式PIN结构α辐照电池及其制备方法
CN113990547A (zh) 一种具有栅电极表面场的平面PiN型β辐照电池及制备方法
CN104051051B (zh) 外延GaN的串联式PIN结构α辐照电池及其制备方法
CN103646677A (zh) 一种包括铌掺杂的n型SiC外延层的PIN型同位素核电池
CN103646678A (zh) 包括铌掺杂n型外延层的碳化硅肖特基结型核电池
CN104103333A (zh) 外延GaN的并联式PIN结构β辐照电池及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130814

Termination date: 20181019

CF01 Termination of patent right due to non-payment of annual fee