RU2659618C1 - Преобразователь ионизирующих излучений с сетчатой объемной структурой и способ его изготовления - Google Patents

Преобразователь ионизирующих излучений с сетчатой объемной структурой и способ его изготовления Download PDF

Info

Publication number
RU2659618C1
RU2659618C1 RU2017103167A RU2017103167A RU2659618C1 RU 2659618 C1 RU2659618 C1 RU 2659618C1 RU 2017103167 A RU2017103167 A RU 2017103167A RU 2017103167 A RU2017103167 A RU 2017103167A RU 2659618 C1 RU2659618 C1 RU 2659618C1
Authority
RU
Russia
Prior art keywords
converter
plate
horizontal
channels
type
Prior art date
Application number
RU2017103167A
Other languages
English (en)
Inventor
Виктор Николаевич Мурашев
Сергей Александрович Леготин
Андрей Андреевич Краснов
Сергей Иванович Диденко
Ксения Андреевна Кузьмина
Мария Владимировна Синева
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority to RU2017103167A priority Critical patent/RU2659618C1/ru
Priority to JP2019541228A priority patent/JP2020507073A/ja
Priority to PCT/RU2017/000663 priority patent/WO2018143838A1/en
Priority to EA201900377A priority patent/EA201900377A1/ru
Priority to CN201780089174.1A priority patent/CN110494929A/zh
Priority to KR1020197024967A priority patent/KR102595089B1/ko
Priority to DE112017006974.2T priority patent/DE112017006974T5/de
Application granted granted Critical
Publication of RU2659618C1 publication Critical patent/RU2659618C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21HOBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
    • G21H1/00Arrangements for obtaining electrical energy from radioactive sources, e.g. from radioactive isotopes, nuclear or atomic batteries
    • G21H1/06Cells wherein radiation is applied to the junction of different semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Изобретение относится к области преобразователей энергии ионизирующих излучений изотопных источников в электрическую энергию Э.Д.С. Такие источники отличаются от конденсаторов и аккумуляторов много большей энергией, приходящейся на единицу объема, но малой выделяемой мощностью в единицу времени. Он способен обеспечить прямую зарядку мощного аккумулятора или конденсатора при отсутствии солнечного излучения при минимальном его весе и размере, при этом срок службы изотопного преобразователя определяется периодом полураспада радиационного материала, который для 63Ni порядка 100 лет. Изобретение обеспечивает увеличение удельной выходной мощности преобразователя, упрощение и удешевление технологии его изготовления. Это достигаются за счет оригинальной конструкции преобразователя бета излучения и технологии его изготовления, в которой реализуется максимально большая излучающая поверхность изотопа при минимальной площади высококачественного планарного горизонтального p-n перехода. Это обстоятельство позволяет минимизировать темновой ток и соответственно увеличить напряжение холостого хода и удельную мощность преобразователя. 2 н.п. ф-лы, 4 ил.

Description

Изобретение относится к области преобразователей энергии ионизирующих излучений в электрическую энергию (Э.Д.С.) и может быть использовано в беспилотных летательных аппаратах, взрывоопасных помещениях - шахтах, ночных индикаторах, расположенных в труднодоступных местах, медицине (кардиостимуляторах) и т.д.
Интерес к таким источникам в значительной степени обусловлен плотностью энергии радиоизотопных элементов, которая сопоставима с плотностью энергии в литиевых аккумуляторах, а также возможностью встраивания радиоизотопных батарей в микроэлектромеханические системы, технология которых бурно развивается в настоящее время. Автономные источники питания на основе бета-вольтаических батарей необходимы во многих областях:
- в медицине - для имплантированных датчиков и стимуляторов, которые, например, устанавливаются непосредственно в сердце (кардиостимуляторы). Разрабатываемый источник питания с длительным сроком службы (не менее 25 лет автономной работы) позволит обойтись без повторных операций пациентов для замены источника питания в кардиостимуляторе;
- для датчиков, встраиваемых в строительные конструкции, в частности, для энергопитания метеостанций, устанавливаемых в труднодоступных регионах, которые автономно измеряют температуру, атмосферное давление и скорость ветра фиксирующими самопишущими приборами;
- в космической технике, а именно, в качестве вспомогательных источников электроэнергии в навигационных спутниках, поскольку в космосе требуются источники, которые способны вырабатывать электричество в течение длительного времени, в условиях резкого и очень сильного перепада температур;
- в оборонной промышленности, например в микророботехнике, в качестве источника питания аппаратов как наземного применения, так и летательных микроаппаратах для ведения разведки и выполнения других тактических задач.
Известна конструкция (US 20140225472, опубл. 14.08.2014), в которой содержится слаболегированная полупроводниковая пластина n(р) типа проводимости, в которой расположена сильнолегированная n++) область, на поверхности которой расположен электропроводящий электрод катода (анода), на верхней поверхности пластины расположена сильнолегированная р+(n+) область образующая с полупроводниковой пластиной р-n переход, на поверхности р+(n+) области расположен слой изолирующего диэлектрика и электропроводящий электрод анода (катода), являющийся радиоактивным изотопом.
Недостатками конструкции являются относительно малый объем облучаемого полупроводникового материала из-за малой облучаемой планарной поверхности и ограниченной глубины проникания ионизирующего бета-излучения (менее 25 мкм) и низкое время жизни неосновных носителей заряда, вызванное структурными дефектами при легировании рабочей области ванадием.
Известен полупроводниковый преобразователь бета-излучений в электроэнергию (RU 2452060, опубл. 27.06.2014), в котором пластина полупроводника, имеющей текстурированную поверхность в виде множества сквозных микроканалов, сквозные микроканалы имеют форму круга, овала, прямоугольника или другую произвольную форму, толщина стенок h между микроканалами соизмерима с шириной микроканалов. Поверхность стенок микроканалов а также лицевая и тыльная стороны пластины полупроводника имеют микрорельеф, практически вся поверхность пластины полупроводника, за исключением боковой поверхности, содержит легированный слой, образующий р-n-переход и диодную структуру, легированный слой покрыт токопроводящим радиоактивным слоем, выполняющим роль токосъемного контакта к диодной структуре и являющимся источником бета-излучения, легированный слой и нижний слой повторяют профиль текстурированной поверхности, контакт к базовой области пластины полупроводника расположен на боковой поверхности.
Недостатками полупроводникового преобразователя являются сложная технология изготовления и заполнения сквозных каналов твердотельным радиоизотопом. Низкое качество текстурированной поверхности сквозных каналов и соответственно высокий уровень утечек, не позволяет получить высокую удельную мощность преобразователя.
Прототипом первого объекта предложенного изобретения является 3D конструкция полупроводникового бетавольтаического преобразователя в электрическую энергию (US 20080199736, опубл. 21.08.2008), в которой на верхней поверхности слаболегированной полупроводниковой пластины n(р) типа проводимости расположены вертикальные каналы, на поверхности которых расположены сильнолегированные р+(n+) области образующие вертикальные р-n переходы с полупроводниковой пластиной, каналы заполнены электропроводящим материалом радиоактивного изотопа, образующий электрод анода (катода) диода преобразователя, а на нижней поверхности пластины расположен горизонтальный сильно легированный контактный n++) типа слой, на поверхности, которого расположен металлический электрод катода (анода).
Недостатками данной конструкции являются низкое качество поверхности и соответственно высокий уровень обратных токов р-n перехода в микроканалах, что не позволяет получить высокую удельную мощность преобразователя.
Прототипом второго объекта предложенного изобретения является способ изготовления 3D конструкция полупроводникового диода-бетавольтаического преобразователя бета излучений изотопа никеля-63 в электрическую энергию (US 20080199736, опубл. 21.08.2008), который включает формирование на нижней поверхности слаболегированной пластины n(р) типа проводимости горизонтального сильнолегированного слоя n++) типа проводимости, формирование вертикальных каналов путем травления верхней поверхности полупроводниковой пластины верхней, легирование поверхности каналов, осаждение на верхнюю поверхность пластины и в полость каналов слоя металла радиоактивного изотопа электрода анода (катода), осаждении на нижнюю поверхность пластины слоя металла электрода катода (анода).
Недостатками данного способа являются сложная и плохо воспроизводимая технология изготовления р-n переходов в каналах, что приводит к уменьшению коэффициента полезного действия преобразователя, а главное высокий уровень "темнового" тока (Iт) "объемного" р-n перехода, что приводит к резкому снижению уровня напряжения "холостого хода" (Uxx) и соответственно максимальной выходной мощности (Рмах), поскольку
Figure 00000001
где
Figure 00000002
здесь фт - температурный потенциал;
Iкз - ток короткого замыкания генерируемый радиоактивным излучением.
В первом объекте предложенного изобретения технический результат заключается в увеличении удельной энергии - Еуд, приходящейся на единицу объема преобразователя из-за большой излучающей поверхности радиоактивного изотопа (Sиз) и соответственно площади объемного р-n перехода (Spn, об).
Указанный технический результат в первом объекте изобретения достигается следующим образом.
Конструкция преобразователя ионизирующих излучений с сетчатой объемной структурой содержит слаболегированную полупроводниковую пластину n(р) типа проводимости, в ее объеме содержатся вертикальные каналы примыкающие с одной стороны к поверхности пластины на поверхности каналов расположены сильнолегированные р+(n+) области образующие вертикальные р-n переходы с полупроводниковой пластиной.
При этом каналы заполнены электропроводящим материалом радиоактивного изотопа образующего электрод анода (катода) диода преобразователя, а на нижней поверхности пластины расположен горизонтальный сильно легированный контактный n++) типа слой, на поверхности которого расположен металлический электрод катода анода преобразователя.
На верхней поверхности пластины расположена сильнолегированная горизонтальная область р+(n+) типа проводимости, образующая горизонтальный р-n переход. Поверхность вертикальных каналов имеет слаболегированный n(р) тип проводимости, при этом вертикальные каналы с одной стороны выходят на нижнюю поверхность пластины, а с другой - донной частью находятся на расстоянии от верхней поверхности пластины превышающим суммарную глубину горизонтального р-n перехода и образуемой им области пространственного заряда.
Во втором объекте предложенного изобретения технический результат заключается в упрощении технологии изготовления.
Указанный технический результат во втором объекте изобретения достигается следующим образом.
Способ изготовления включает формирование на нижней поверхности слаболегированной пластины n(р) типа проводимости горизонтального сильно легированного слоя n++) типа проводимости, формирование вертикальных каналов осуществляется путем травления поверхности полупроводниковой пластины, легирование поверхности каналов, осаждение на верхнюю поверхность пластины и в полость каналов слоя металла радиоактивного изотопа электрода анода (катода), осаждения на нижнюю поверхность пластины слоя металла электрода катода (анода).
Формируются вертикальные каналы путем травления нижней поверхности слаболегированной полупроводниковой пластины n(р) типа проводимости, затем проводится легирование поверхности каналов донорной (акцепторной), примесью, затем на верхней поверхности пластины формируется горизонтальный р-n переход легированием акцепторной (донорной) примесью.
Изобретение поясняется чертежом, где показаны примеры конструкции преобразователя, на фигуре 1 показан разрез структуры преобразователя, первый пример конструкции; на фигуре 2 - вид снизу структуры преобразователя, первый пример конструкции; на фигуре 3 - разрез структуры преобразователя, второй пример конструкции, на фигуре 4 - вид снизу структуры преобразователя, второй пример конструкции.
Конструкция состоит из слаболегированной полупроводниковой пластины 1 n(р) типа проводимости, на ее нижней поверхности расположен контактный n++) слой 2, в объеме пластины расположены вертикальные каналы 3, примыкающие с одной стороны к нижней стороне пластины, на верхней поверхности пластины расположена р+(n+) область 4 горизонтального р-n перехода, образующая область 5 пространственного заряда с пластиной, на поверхности р+(n+) области расположен - металлический радиоактивный изотоп являющийся анодом 6 диода, на нижней поверхности пластины и в полости каналов расположен металлический радиоактивный изотоп являющийся катодом 7.
Принцип действия преобразователя основан на ионизации полупроводникового материала (например, кремния) бета излучением изотопов: никеля, трития, стронция, кобальта и т.д. Образующиеся при этом электронно-дырочные пары разделяются полем р-n перехода в области пространственного заряда (ОПЗ) и создают разность потенциалов на р+ и n-областях преобразователя (фотогальваническую Э.Д.С.). При этом часть электронно-дырочных пар может быть собрана полем р-n перехода также в квазинейтральной (КНО) области на расстоянии равном диффузионной длине.
Установлено, что для эффективной (оптимальной) работы преобразователя необходимо использование высококачественного кремния диффузионной длиной для неосновных носителей тока Ld превышающей толщину кремниевой пластины hпл т.е. Ld>hпл.
При этом расстояние между каналами должно превышать глубину проникновения бета излучения для электронов изотопа 63Ni со средней энергией Е=17,5 кэВ.
Возможны различные примеры конструкций бета преобразователей, отличающихся по техническим параметрам, так преобразователь, показанный на фиг. 1, 2 имеет максимальную удельную мощность, но имеет относительно высокую стоимость из-за большого объема никеля в каналах. Преобразователь показанный на фиг. 3, 4 использует существенно меньшее количество 63Ni, и соответственно стоимость при меньшей соответственно удельной мощности.
Примеры практической реализации конструкции преобразователя показанных на фиг. 1 - 4 могут быть реализованы на пластинах кремния КЭФ 5 кОм × см, диаметром 100 мм, толщиной hпл=420 мкм, ориентацией (100), со временем жизни т=2 мс, диффузионной длиной Ld>1,0 см.
В качестве изотопного источника может быть выбран 63Ni имеющий большой период времени полураспада 50 лет испускающий электронное излучение со средней энергией 17 кэВ и максимальной энергией 64 кэВ, практически безопасный для здоровья человека. Такая энергия электронов меньше энергии дефектообразования в кремнии 160 кэВ. При этом глубина поглощения в кремнии электронов со средней энергией 17 кэВ составляет примерно 3,0 мкм, а для 90% поглощения 12 мкм. Данные размеры должны соответствовать глубинам залегания р-n переходов и величине ОПЗ, что достигается на типовых кремниевых структурах. Следует отметить, что в качестве радиоактивного изотопа может быть использованы иные материалы, например тритий и т.д. Также важно отметить, что в качестве источника излучения может быть использован не только источники бета излучения, но альфа источники, например, 238U, со средней энергией 6 МэВ и проникающий на порядка 20-25 мкм в кремний, что не позволяет им повредить р-n переход.
Способ изготовления преобразователя по изобретению состоит из следующей последовательности технологических операций.
Проводят термическое окисление (до 0,6 мкм) поверхности партии кремниевых пластин кэВ 5 кОм × см с ориентацией (100) диаметром 100 мм, проводят "0"-ю фотолитографию по обратной стороне пластин, реактивным ионным травлением формируют вертикальные каналы, проводят диффузию фосфора в поверхность щелей.
Проводят 1-ю фотолитографию n+ охранных областей по верхней стороне пластин, проводят диффузию фосфора и формируют n+ охранные области на верхней (лицевой) поверхности и контактный n+ слой на нижней поверхности.
Проводят 2-ю фотолитографию и формируют р+ контактную область ионным легированием бора дозой D=600 мкКл с энергией Е=30 кэВ, проводят термический отжиг имплантированной примеси при температуре Т=1050°С, t=40 минут, выращивают термический оксид на полупроводниковой пластине при температуре Т=950°С, t=40 минут толщиной 0,3 мкм.
Проводят 3-ю фотолитографию р-слоя р-n перехода, который формируют ионным легированием бора, проводят термический отжиг имплантированной примеси при температуре Т=950°С, t=40 минут.
Проводят 4-ю фотолитографию контактных окон к р+-слою.
Проводят осаждение изотопа никеля-63 на верхнюю лицевую сторону пластин и проводят 5-ю фотолитографию формирования электрода анода.
Проводят утонение нижней пластины химико-механической полировкой, затем осаждают электролизом радиоактивный 63Ni на нижнюю сторону пластин, режут пластины на отдельные кристаллы - чипы.
Следует отметить, что возможен более простой вариант технологического маршрута, т.е. с проведением фотолитографии вертикальных каналов в конце маршрута после осаждения никеля-63 на верхнюю сторону пластин. Однако в этом случае исключается операция утонения пластин.
Экспериментальные исследования кремниевых преобразователей с объемной конструкцией прототипа и планарной конструкцией при мощности излучения изотопа 63Ni с мощностью дозы Р=2,7 мКюри/см2 показали, что горизонтальный планарный р-n переход площадью (Sрп, пл), расположенный на полированной верхней поверхности пластины, имеет малый уровень темнового тока утечки.
Figure 00000003
Ток утечки р-n перехода равной площади сформированного в канале на три порядка больше.
Figure 00000004
Что соответствовало напряжению "холостого хода" для планарного Uхх,пл=0,1 В и объемного Uхх,обм=4 мВ р-n переходов
Figure 00000005
Здесь фт - температурный потенциал;
- Iкз - ток короткого замыкания, генерируемый бета излучением.
Мощности преобразователя определяется следующим соотношением
Figure 00000006
Для планарного р-n перехода Рмах.пл равна 1,7 нВт и соответственно объемного Рмах.об равны 0,08 нВт.
Технические преимущества изобретения - заключаются в увеличении удельной мощности ЭДС преобразователя, а также упрощении и удешевлении технологии его изготовления.
Это достигаются за счет конструкции преобразователя бета излучения и технологии его изготовления, в которой принципиально возможна реализация эквивалентной излучающая поверхность изотопа - (Sиз) как в прототипе имеющего 3D объемную структуру, однако в качестве приемника ионизационного тока используется горизонтальный (а не вертикальный) р-n переход относительно малой площади (Sp-п, пл) расположенный на высоко качественной полированной верхней поверхности пластины, что позволяет минимизировать темновой ток и увеличить напряжение холостого хода и соответственно удельную мощность преобразователя.

Claims (2)

1. Преобразователь ионизирующих излучений с сетчатой объемной структурой, содержащий слаболегированную полупроводниковую пластину n(р) типа проводимости, в ее объеме содержатся вертикальные каналы, созданные с нижней стороны к поверхности пластины, на поверхности каналов расположены сильнолегированные n++) области, при этом каналы заполнены электропроводящим материалом радиоактивного изотопа, образующего электрод анода (катода) диода преобразователя, а на верхней поверхности пластины расположен горизонтальный сильнолегированный контактный р+(n+) типа слой, на поверхности которого расположен металлический электрод катода (анода) преобразователя, отличающийся тем, что на верхней поверхности пластины расположена сильнолегированная горизонтальная область р+(n+) типа проводимости, образующая горизонтальный р-n переход, а поверхность вертикальных каналов имеет слаболегированный n(р) тип проводимости, при этом вертикальные каналы с одной стороны выходят на нижнюю поверхность пластины, а с другой - донной частью находятся на расстоянии от верхней поверхности пластины, превышающем суммарную глубину горизонтального р-n перехода и образуемой им области пространственного заряда.
2. Способ его изготовления, включающий формирование на нижней поверхности слаболегированной полупроводниковой пластины n(р) типа проводимости, горизонтального сильнолегированного контактного слоя р+(n+) типа проводимости, формирование вертикальных каналов осуществляется путем травления поверхности полупроводниковой пластины, легирование поверхности каналов, осаждение на нижнюю поверхность пластины и в полость каналов слоя металла радиоактивного изотопа электрода анода (катода), осаждение на верхнюю поверхность пластины слоя металла электрода катода (анода), отличающийся тем, что формируют вертикальные каналы путем травления нижней поверхности слаболегированной полупроводниковой пластины n(р) типа проводимости, затем проводят легирование поверхности каналов донорной (акцепторной) примесью, затем на верхней поверхности пластины формируют горизонтальный р-n переход легированием акцепторной (донорной) примесью.
RU2017103167A 2017-01-31 2017-01-31 Преобразователь ионизирующих излучений с сетчатой объемной структурой и способ его изготовления RU2659618C1 (ru)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2017103167A RU2659618C1 (ru) 2017-01-31 2017-01-31 Преобразователь ионизирующих излучений с сетчатой объемной структурой и способ его изготовления
JP2019541228A JP2020507073A (ja) 2017-01-31 2017-09-11 架橋構造を有する電離放射線コンバータおよびその製造方法
PCT/RU2017/000663 WO2018143838A1 (en) 2017-01-31 2017-09-11 Ionizing radiation converter with cross-linked structure and its fabrication method
EA201900377A EA201900377A1 (ru) 2017-01-31 2017-09-11 Преобразователь ионизирующих излучений с сетчатой объемной структурой и способ его изготовления
CN201780089174.1A CN110494929A (zh) 2017-01-31 2017-09-11 具有交联结构的电离辐射转换器及其制造方法
KR1020197024967A KR102595089B1 (ko) 2017-01-31 2017-09-11 가교 구조의 이온화 방사선 변환기 및 이의 제조 방법
DE112017006974.2T DE112017006974T5 (de) 2017-01-31 2017-09-11 Konverter für ionisierende Strahlung mit einer Netzstruktur sowie Verfahren zu seiner Herstellung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017103167A RU2659618C1 (ru) 2017-01-31 2017-01-31 Преобразователь ионизирующих излучений с сетчатой объемной структурой и способ его изготовления

Publications (1)

Publication Number Publication Date
RU2659618C1 true RU2659618C1 (ru) 2018-07-03

Family

ID=62815832

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017103167A RU2659618C1 (ru) 2017-01-31 2017-01-31 Преобразователь ионизирующих излучений с сетчатой объемной структурой и способ его изготовления

Country Status (7)

Country Link
JP (1) JP2020507073A (ru)
KR (1) KR102595089B1 (ru)
CN (1) CN110494929A (ru)
DE (1) DE112017006974T5 (ru)
EA (1) EA201900377A1 (ru)
RU (1) RU2659618C1 (ru)
WO (1) WO2018143838A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203330A (zh) * 2021-12-13 2022-03-18 中国核动力研究设计院 一种超薄镍-63辐射源及其制备方法、应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113223743B (zh) * 2021-05-08 2023-10-20 西北核技术研究所 一种基于微孔阵列准直器的α放射源核电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080199736A1 (en) * 2007-02-16 2008-08-21 Gadeken Larry L Apparatus for generating electrical current from radioactive material and method of making same
US7939986B2 (en) * 2005-08-25 2011-05-10 Cornell Research Foundation, Inc. Betavoltaic cell
RU2605783C1 (ru) * 2015-08-10 2016-12-27 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Тольяттинский государственный университет Планарный высоковольтный фото- и бетавольтаический преобразователь и способ его изготовления
RU2608311C2 (ru) * 2015-05-14 2017-01-17 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Преобразователь оптических и радиационных излучений и способ его изготовления
RU2608313C2 (ru) * 2015-05-14 2017-01-17 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Высоковольтный преобразователь ионизирующих излучений и способ его изготовления

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125988A (ja) * 1987-11-11 1989-05-18 Hitachi Ltd 太陽電池素子の製造方法
US5642014A (en) * 1995-09-27 1997-06-24 Lucent Technologies Inc. Self-powered device
US20040154656A1 (en) * 2003-02-10 2004-08-12 Science & Technology Corporation @ Unm Nuclear radiation fueled power cells
US7138701B2 (en) * 2003-10-02 2006-11-21 International Business Machines Corporation Electrostatic discharge protection networks for triple well semiconductor devices
CN100414719C (zh) * 2005-10-24 2008-08-27 西北工业大学 微电池及其制作方法
US20100071751A1 (en) * 2008-09-22 2010-03-25 Electronics And Telecommunications Research Institute Photo-induced metal-insulator-transition material complex for solar cell, solar cell and solar cell module comprising the same
RU2452060C2 (ru) * 2010-05-27 2012-05-27 Виталий Викторович Заддэ Полупроводниковый преобразователь бета-излучения в электроэнергию
KR20120071241A (ko) * 2010-12-22 2012-07-02 한국전자통신연구원 베타소스로부터 전류를 생성하는 적층형 베타전지 및 그 제작방법
CN102354540B (zh) * 2011-10-19 2013-08-14 西安电子科技大学 I层钒掺杂的pin型核电池及其制作方法
US10699820B2 (en) * 2013-03-15 2020-06-30 Lawrence Livermore National Security, Llc Three dimensional radioisotope battery and methods of making the same
RU2539109C1 (ru) * 2013-09-26 2015-01-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Многопереходный кремниевый монокристаллический преобразователь оптических и радиационных излучений
CN104051050A (zh) * 2014-06-29 2014-09-17 西安电子科技大学 并联式PIN型α辐照电池及其制备方法
CN105448376B (zh) * 2015-11-16 2017-11-03 长安大学 采用α放射源的碳化硅肖特基结型同位素电池及其制造方法
RU168184U1 (ru) * 2016-04-22 2017-01-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева" (СибГАУ) Планарный преобразователь ионизирующих излучений с накопительным конденсатором

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939986B2 (en) * 2005-08-25 2011-05-10 Cornell Research Foundation, Inc. Betavoltaic cell
US20080199736A1 (en) * 2007-02-16 2008-08-21 Gadeken Larry L Apparatus for generating electrical current from radioactive material and method of making same
RU2608311C2 (ru) * 2015-05-14 2017-01-17 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Преобразователь оптических и радиационных излучений и способ его изготовления
RU2608313C2 (ru) * 2015-05-14 2017-01-17 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Высоковольтный преобразователь ионизирующих излучений и способ его изготовления
RU2605783C1 (ru) * 2015-08-10 2016-12-27 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Тольяттинский государственный университет Планарный высоковольтный фото- и бетавольтаический преобразователь и способ его изготовления

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203330A (zh) * 2021-12-13 2022-03-18 中国核动力研究设计院 一种超薄镍-63辐射源及其制备方法、应用

Also Published As

Publication number Publication date
KR102595089B1 (ko) 2023-10-26
EA201900377A1 (ru) 2019-12-30
CN110494929A (zh) 2019-11-22
WO2018143838A1 (en) 2018-08-09
JP2020507073A (ja) 2020-03-05
KR20190109495A (ko) 2019-09-25
DE112017006974T5 (de) 2019-10-17

Similar Documents

Publication Publication Date Title
Bormashov et al. High power density nuclear battery prototype based on diamond Schottky diodes
US6774531B1 (en) Apparatus and method for generating electrical current from the nuclear decay process of a radioactive material
US8866152B2 (en) Betavoltaic apparatus and method
US5642014A (en) Self-powered device
US6949865B2 (en) Apparatus and method for generating electrical current from the nuclear decay process of a radioactive material
US4024420A (en) Deep diode atomic battery
US20110079791A1 (en) Betavoltaic cell
US6753469B1 (en) Very high efficiency, miniaturized, long-lived alpha particle power source using diamond devices for extreme space environments
KR20120071241A (ko) 베타소스로부터 전류를 생성하는 적층형 베타전지 및 그 제작방법
US9099212B2 (en) Low volumetric density betavoltaic power device
US8937360B1 (en) Beta voltaic semiconductor diode fabricated from a radioisotope
CN101101797A (zh) 一种同位素电池制作方法及结构
RU2659618C1 (ru) Преобразователь ионизирующих излучений с сетчатой объемной структурой и способ его изготовления
US4010534A (en) Process for making a deep diode atomic battery
Duggirala et al. 3D silicon betavoltaics microfabricated using a self-aligned process for 5 milliwatt/cc average, 5 year lifetime microbatteries
KR100935351B1 (ko) 방사선전지의 전하량 증가방법과 이를 이용한 고효율 구조베타전지
RU168184U1 (ru) Планарный преобразователь ионизирующих излучений с накопительным конденсатором
JP6720413B2 (ja) ベータボルタ電池
RU2608313C2 (ru) Высоковольтный преобразователь ионизирующих излучений и способ его изготовления
EA042001B1 (ru) Преобразователь ионизирующих излучений с сетчатой объемной структурой и способ его изготовления
CN104051046A (zh) 夹心串联式PIN结构β辐照电池及其制备方法
RU2605783C1 (ru) Планарный высоковольтный фото- и бетавольтаический преобразователь и способ его изготовления
RU2608311C2 (ru) Преобразователь оптических и радиационных излучений и способ его изготовления
Murashev et al. Improvement of Si-betavoltaic batteries technology
RU2608058C1 (ru) Бета-вольтаический полупроводниковый генератор электроэнергии