CN104134480A - 夹心并联式PIN型β辐照电池及其制备方法 - Google Patents

夹心并联式PIN型β辐照电池及其制备方法 Download PDF

Info

Publication number
CN104134480A
CN104134480A CN201410300602.9A CN201410300602A CN104134480A CN 104134480 A CN104134480 A CN 104134480A CN 201410300602 A CN201410300602 A CN 201410300602A CN 104134480 A CN104134480 A CN 104134480A
Authority
CN
China
Prior art keywords
type
ray
contact electrode
epitaxial loayer
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410300602.9A
Other languages
English (en)
Inventor
郭辉
黄海栗
宋庆文
张艺蒙
张玉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201410300602.9A priority Critical patent/CN104134480A/zh
Publication of CN104134480A publication Critical patent/CN104134480A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Hybrid Cells (AREA)

Abstract

本发明公开了一种夹心并联式PIN型β辐照电池及其制备方法,主要解决当前核电池能量转化率及输出功率低的问题。其包括:并联的上、下两个PIN结和β放射源层;下PIN结自下而上依次为,N型欧姆接触电极、N型高掺杂4H-SiC衬底、N型低掺杂外延层、P型高掺杂外延层和P型欧姆接触电极,上PIN结自上而下的结构分布与下PIN结自下而上的结构分布相同;β放射源层夹在上下两个PIN结的P型欧姆接触电极之间,以实现对高能β粒子的充分利用。本发明具有放射源与半导体接触面积大,核原料利用率及能量收集率高,电池输出电压大的优点,可为微小电路持久供电,或为极地、沙漠等需要长期供电但无人看守的场合供电。

Description

夹心并联式PIN型β辐照电池及其制备方法
技术领域
本发明属于微电子领域,涉及半导体器件结构及制备方法,具体地说是一种碳化硅基的夹心并联式PIN型β辐照电池及其制备方法,可用于微纳机电系统等微小电路和航空航天、深海、极地等需长期供电且无人值守的场合。
技术背景
随着人们对于低功耗、长寿命、高可靠性和小体积供电设备的需求,以及对核废料处理的关注,微型核电池变得备受关注。微型核电池由于其突出的特点可用来解决微型管道机器人、植入式微系统、无线传感器节点网络、人工心脏起搏器和便携式移动电子产品等的长期供电问题。并有望取代太阳能电池和热电式放射性同位素电池,在航天和航空领域解决微/纳卫星、深空无人探测器和离子推进器等的长期供电问题。
1953年由Rappaport研究发现,利用同位素衰变所产生的贝塔(β-Particle)射线能在半导体内产生电子-空穴对,此现象则被称为β-VoltaicEffect。1957年,Elgin-Kidde首先将β-VoltaicEffect用在电源供应方面,成功制造出第一个同位素微电池β-VoltaicBattery。自2006年,随着宽禁带半导体材料SiC制备和工艺技术的进步,出现了基于SiC的同位素微电池的相关报道。核电池在应用中,由于激发的高能粒子利用率比较低,能量收集率低,限制了电池的输出电压。由于β放射源对人体的损伤比β放射源更小,在医学领域得到更广的应用,如,心脏起搏器。
中国专利CN101325093A中公开了由张林,郭辉等人提出的基于SiC的肖特基结式核电池。由于该肖特基结核电池中肖特基接触层覆盖整个电池区域,入射粒子到达器件表面后,都会受到肖特基接触层的阻挡,只有部分粒子能进入器件内部,而进入耗尽区的粒子才会对电池的输出功率有贡献。因此,这种结构的核电池入射粒子能量损失大,能量转换效率较低。
文献“Demonstration of a4HSiC betavoltaic cell”介绍了由美国纽约Cornell大学的C.I.Tomas,M.V.S.Chandrashekhar,HuiLi等人提出了碳化硅PN结式核电池。这种结构采用的衬底为P型高掺杂衬底,而在其衬底上生长外延层的现有工艺不成熟,因此,易引入表面缺陷,器件漏电流大,能量转换率较低。
文献“Demonstration of a tadiation resistant,hight efficiency SiC betavoltaic”介绍了由美国新墨西哥州Qynergy Corporation的C.J.Eiting,V.Krishnamoorthy和S.Rodgers,T.George等人共同提出了碳化硅p-i-n结式核电池,如图1所示。该PIN核电池自上而下依次为,放射性源7、P型欧姆接触电极6、P型高掺杂SiC层4、P型SiC层3、本征i层2、n型高掺杂SiC衬底1和N型欧姆接触电极5。这种结构中,只有耗尽层内及其附近一个少子扩散长度内的辐照生载流子能够被收集。并且,为避免欧姆接触电极阻挡入射离子,将P型欧姆电极做在器件的一个角落,使得离P型欧姆电极较远的辐照生载流子在输运过程中被复合,降低了能量转化率,减小了电池的输出电流。
发明内容
本发明的目的在于针对上述已有技术的不足,提出一种夹心并联式PIN型β辐照电池及其制备方法,提高β放射源的利用率,从而提高电池的输出电流和输出电压。
本发明的技术方案是这样实现的:
一.本发明的夹心并联式PIN型β辐照电池,包括:PIN单元和β放射源层,其特征在于:
所述PIN单元,采用由上下两个PIN结并联构成;下PIN结自下而上依次为,N型欧姆接触电极5、N型高掺杂4H-SiC衬底1、N型低掺杂外延层2、P型高掺杂外延层3和P型欧姆接触电极4;上PIN结自下而上依次为,P型欧姆接触电极4、P型高掺杂外延层3、N型低掺杂外延层2、N型高掺杂4H-SiC衬底1和N型欧姆接触电极5;
所述的β放射源层6,夹在上下两个PIN结的P型欧姆接触电极4之间,以实现对高能β粒子的充分利用。
作为优选,所述的β放射源层6采用原子质量为63的镍,即Ni63
作为优选,所述的β放射源层6采用原子质量为147的钷,即Pm147
作为优选,所述的β放射源层6的厚度h满足h≤m,其中m为β放射源所释放的高能β粒子在β放射源材料中的平均入射深度,对于β放射源为Ni63的,其取值为:m=10μm,对于β放射源为Pm147的,其取值为:m=16μm。
作为优选,所述的N型低掺杂外延层2的厚度L满足L≥g,其中,g为β放射源所释放的高能β粒子在4H-SiC中的平均入射深度,对于β放射源为Ni63的,其取值为:g=10μm,对于β放射源为Pm147的,其取值为:g=15μm。
作为优选,所述的衬底1采用掺杂浓度为lx1018cm-3的N型4H-SiC,P型高掺杂外延层3和N型低掺杂外延层2均为4H-SiC外延,其中P型高掺杂外延层3的掺杂浓度为1x1019~5x1019cm-3,厚度为0.1~0.2μm,N型低掺杂外延层2的掺杂浓度为1x1015~2x1015cm-3
二.本发明的制备方法包括以下步骤:
第一步:制作下PIN结:
1.1)对SiC样片进行清洗,以去除表面污染物;
1.2)利用化学气相淀积CVD法在清洗后的SiC样片表面外延生长一层掺杂浓度为1x1015~2x1015cm-3,厚度为15~30μm的N型低掺杂外延层;
1.3)利用化学气相淀积CVD法在N型低掺杂外延层表面外延生长一层掺杂浓度为1x1019~5x1019cm-3,厚度为0.1~0.2μm的P型高掺杂外延层;
1.4)利用电子束蒸发法在P型高掺杂外延层表面和SiC衬底未外延的背面淀积厚度为300nm的Ni金属层,分别作为P型欧姆接触电极和N型欧姆接触电极;1100℃下氮气气氛中快速退火3分钟。
第二步,重复步骤1.1)到步骤1.4)制作上PIN结。
第三步,利用分子镀在下PIN结的P型欧姆接触电极或者上PIN结的P型欧姆接触电极上镀一层厚度为3.5~7μm的β放射源。
第四步,利用键合法将上PIN结的P型欧姆接触电极一面与下PIN结的P型欧姆接触电极一面压合在一起,完成夹心并联式PIN型β辐照电池的制作。
本发明与现有技术相比具有如下优点:
1、本发明由于采用衬底材料4H-SiC的禁带宽度比传统Si的禁带宽度大,抗辐照特性更好,可以减小高能β粒子对器件的损伤,提高电池的工作电压,同时延长电池的使用寿命;
2、本发明由于外延的N型低掺杂外延层厚度不小于β放射源所释放的高能β粒子在4H-SiC中的平均入射深度,可以减少高能β粒子在N型低掺杂外延层中的衰减,使得高能β粒子集中在P型高掺杂外延层和N型低掺杂外延层界面附近的空间电荷区,提高能量转化率;
3、本发明由于P型高掺杂外延层的厚度为0.1~0.2μm,β放射源层的厚度不大于β放射源所释放的高能β粒子在β放射源材料中的平均入射深度,可以减小高能β粒子在P型高掺杂外延层和β放射源层中的衰减,提高能量收集率;
4、本发明由于将β放射源层夹在上下两个PIN结的P型欧姆接触电极之间,较之于现有技术将放射源层置于电池的上表面,节省了β放射源材料,且提高了β放射源的利用率,从而提高了电池的能量利用率;
5、本发明由于将两个PIN结并联放置,提高了电池的输出电压。
附图说明
图1是现有的PIN核电池的截面示意图;
图2是本发明夹心并联式PIN型β辐照电池的截面示意图;
图3是本发明制作夹心并联式PIN型β辐照电池的流程示意图。
具体实施方式
参照图2,本发明的辐照电池,包括:PIN单元和β放射源层,PIN单元由上、下两个PIN结并联构成;下PIN结自下而上依次为,N型欧姆接触电极5、N型高掺杂4H-SiC衬底1、N型低掺杂外延层2、P型高掺杂外延层3和P型欧姆接触电极4;上PIN结自下而上依次为,P型欧姆接触电极4、P型高掺杂外延层3、N型低掺杂外延层2、N型高掺杂4H-SiC衬底1和N型欧姆接触电极5;β放射源层6夹在上下两个PIN结的P型欧姆接触电极4之间,其厚度h满足h≤m,其中m为α放射源所释放的高能α粒子在α放射源材料中的平均入射深度,对于α放射源为Am241的,其取值为:m=7.5μm,对于α放射源为Pu238的,其取值为:m=10μm。
电池在工作状态下,从β放射源层6放射出的高能β粒子穿过上下两个PIN结的P型欧姆接触电极4射入到P型高掺杂外延层3和N型低掺杂外延层2界面附近的空间电荷区,进而激发载流子,形成输出电流。
参照图3,本发明制作夹心并联式PIN型β辐照电池的方法给出如下三个实施例:
实施例1,制备β放射源为Ni63,β放射源层厚度为7μm的夹心并联式PIN型β辐照电池。
步骤1:制作下PIN结。
(1a)清洗4H-SiC样片,以去除表面污染物,如图3(a)所示。
(1a.1)将掺杂浓度为lx1018cm-3的高掺杂n型4H-SiC衬底样片在NH4OH+H2O2试剂浸泡样品10min,取出后烘干,以去除样品表面有机残余物;
(1a.2)将去除表面有机残余物后的4H-SiC样片再使用HCl+H2O2试剂浸泡样品10min,取出后烘干,以去除离子污染物。
(1b)外延生长N型低掺杂外延层,如图3(b)所示。
在清洗后的SiC样片上利用化学气相淀积CVD方法外延生长氮掺杂的N型掺杂外延层。其工艺条件为:外延温度为1570℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂志源为液态氮气,得到氮掺杂浓度为1x1015cm-3,厚度为15μm的N型低掺杂外延层。
(1c)外延生长P型高掺杂外延层,如图3(c)所示。
在生长的N型低掺杂外延层上利用化学气相淀积CVD法外延生长铝掺杂的P型高掺杂外延层,其工艺条件为:外延温度为1570℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂质源为三甲基铝,得到铝掺杂浓度为1x1019cm-3,厚度为0.1μm的P型高掺杂外延层。
(1d)淀积欧姆接触电极,如图3(d)所示。
(1d.1)对完成P型高掺杂外延层生长后的SiC样片进行RCA标准清洗;
(1d.2)将清洗后的样片放入电子束蒸发镀膜机中的载玻片上,调整载玻片到靶材的距离为50cm,并将反应室压强抽至5×10-4Pa,调节束流为40mA,在SiC样片的P型高掺杂外延层的表面淀积一层厚度为300nm的Ni金属层,作为P型欧姆接触电极;
(1d.3)利用电子束蒸发法,在衬底SiC未外延的背面淀积厚度为300nm的Ni金属层,作为N型欧姆接触电极。
步骤2:制作上PIN结。
重复步骤(1a)到步骤(1d),得到上PIN结。
步骤3:利用分子镀在下PIN结的P型欧姆接触电极上电镀一层厚度为7μm的β放射源Ni63,如图3(e)所示。
步骤4:利用键合法,将上PIN结的P型欧姆接触电极上的β放射源层与下PIN结的P型欧姆接触电极压合在一起,得到夹心并联式PIN型β辐照电池,如图3(f)所示。
实施例2,制备β放射源为Ni63,β放射源层厚度为6μm的夹心并联式PIN型β辐照电池。
步骤一:制作下PIN结。
1a)清洗4H-SiC样片,以去除表面污染物,如图3(a)。
本步骤与实施例1的步骤(1a)相同。
1b)外延生长N型低掺杂外延层,如图3(b)。
在清洗后的SiC样片上利用化学气相淀积CVD方法外延生长氮掺杂的N型掺杂外延层。其工艺条件为:外延温度为1570℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂志源为液态氮气,完成氮掺杂浓度为1.5x1015cm-3,厚度为25μm的N型低掺杂外延层的生长。
1c)外延生长P型高掺杂外延层,如图3(c)。
在生长的N型低掺杂外延层上利用化学气相淀积CVD法外延生长铝离子掺杂的P型高掺杂外延层,其工艺条件为:外延温度为1570℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂质源为三甲基铝,完成铝掺杂浓度为3x1019cm-3,厚度为0.15μm的P型高掺杂外延层的生长。
1d)淀积金属接触电极,如图3(d)。
本步骤与实施例一的步骤(1d)相同。
步骤二:制作上PIN结。
重复步骤1a)到步骤1d),得到上PIN结。
步骤三:利用分子镀在下PIN结的P型欧姆接触电极上电镀一层厚度为6μm的β放射源Ni63,如图3(e)。
步骤四:利用键合法,将上PIN结的P型欧姆接触电极与下PIN结的P型欧姆接触电极上的β放射源层压合在一起,得到夹心并联式PIN型β辐照电池,如图3(f)所示。
实施例3,制备β放射源为Pm147,β放射源层厚度为3.5μm的夹心并联式PIN型β辐照电池。
步骤A:制作上PIN结。
(A1)清洗4H-SiC样片,以去除表面污染物,如图3(a)。
本步骤与实施例1的步骤(1a)相同。
(A2)在清洗后的SiC样片上利用化学气相淀积CVD方法外延生长氮掺杂的N型低掺杂外延层。其工艺条件为:外延温度为1570℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂志源为液态氮气。得到氮掺杂浓度为2x1015cm-3,厚度为30μm的N型低掺杂外延层如图3(b)。
(A3)在生长的N型低掺杂外延层上利用化学气相淀积CVD法外延生长铝离子掺杂的P型高掺杂外延层,其工艺条件为:外延温度为1570℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂质源为三甲基铝,得到铝掺杂浓度为5x1019cm-3,厚度为0.2μm的P型高掺杂外延层如图3(c)。
(A4)淀积金属接触电极,如图3(d)。
本步骤与实施例一的步骤(1d)相同。
步骤B:制作上PIN结。
重复步骤(A1)到步骤(A4),得到上PIN结。
步骤C:利用分子镀分别在上PIN结的P型欧姆接触电极和下PIN结的P型欧姆接触电极上电镀一层厚度为3.5μm的β放射源Pm147,如图3(e)。
步骤D:将上PIN结的P型欧姆接触电极上的β放射源层与下PIN结的P型欧姆接触电极上的β放射源层压合在一起,得到夹心并联式PIN型β辐照电池,如图3(f)。

Claims (7)

1.一种夹心并联式PIN型β辐照电池,包括:PIN单元和β放射源层,其特征在于:
所述PIN单元,采用由上下两个PIN结并联构成;下PIN结自下而上依次为,N型欧姆接触电极(5)、N型高掺杂4H-SiC衬底(1)、N型低掺杂外延层(2)、P型高掺杂外延层(3)和P型欧姆接触电极(4);上PIN结自下而上依次为,P型欧姆接触电极(4)、P型高掺杂外延层(3)、N型低掺杂外延层(2)、N型高掺杂4H-SiC衬底(1)和N型欧姆接触电极(5);
所述β放射源层(6),夹在上下两个PIN结的P型欧姆接触电极(4)之间,以实现对高能β粒子的充分利用。
2.根据权利要求1所述的电池,其特征在于β放射源层(6)采用原子质量为63的镍,即Ni63
3.根据权利要求1所述的电池,其特征在于β放射源层(6)原子质量为147的钷,即Pm147
4.根据权利要求1或2或3所述的电池,其特征在于β放射源层(6)的厚度h满足h≤m,其中m为β放射源所释放的高能β粒子在β放射源材料中的平均入射深度,对于β放射源为Ni63的,其取值为:m=10μm,对于β放射源为Pm147的,其取值为:m=16μm。
5.根据权利要求1所述的电池,其特征在于N型低掺杂外延层(2)的厚度L满足L≥g,其中,g为β放射源所释放的高能β粒子在4H-SiC中的平均入射深度,对于β放射源为Ni63的,其取值为:g=10μm,对于β放射源为Pm147的,其取值为:g=15μm。
6.根据权利要求1所述的电池,其特征在于衬底(1)采用掺杂浓度为lx1018cm-3的N型4H-SiC,P型高掺杂外延层(3)和N型低掺杂外延层(2)均为4H-SiC外延,其中P型高掺杂外延层(3)的掺杂浓度为1x1019~5x1019cm-3,厚度为0.1~0.2μm,N型低掺杂外延层(2)的掺杂浓度为1x1015~2x1015cm-3
7.一种夹心并联式PIN型β辐照电池的制备方法,包括以下步骤:
第一步,制作下PIN结:
1.1)对SiC样片进行清洗,以去除表面污染物;
1.2)利用化学气相淀积CVD法在清洗后的SiC样片表面外延生长一层掺杂浓度为1x1015~2x1015cm-3,厚度为15~30μm的N型低掺杂外延层;
1.3)利用化学气相淀积CVD法在N型低掺杂外延层表面外延生长一层掺杂浓度为1x1019~5x1019cm-3,厚度为0.1~0.2μm的P型高掺杂外延层;
1.4)利用电子束蒸发法在P型高掺杂外延层表面和SiC衬底未外延的背面淀积厚度为300nm的Ni金属层,分别作为P型欧姆接触电极和N型欧姆接触电极;1100℃下氮气气氛中快速退火3分钟。
第二步,重复步骤1.1)到步骤1.4)制作上PIN结。
第三步,利用分子镀在下PIN结的P型欧姆接触电极或者上PIN结的P型欧姆接触电极上镀一层厚度为3.5~7μm的β放射源。
第四步,利用键合法将上PIN结的P型欧姆接触电极一面与下PIN结的P型欧姆接触电极一面压合在一起,完成夹心并联式PIN型β辐照电池的制作。
CN201410300602.9A 2014-06-29 2014-06-29 夹心并联式PIN型β辐照电池及其制备方法 Pending CN104134480A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410300602.9A CN104134480A (zh) 2014-06-29 2014-06-29 夹心并联式PIN型β辐照电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410300602.9A CN104134480A (zh) 2014-06-29 2014-06-29 夹心并联式PIN型β辐照电池及其制备方法

Publications (1)

Publication Number Publication Date
CN104134480A true CN104134480A (zh) 2014-11-05

Family

ID=51807127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410300602.9A Pending CN104134480A (zh) 2014-06-29 2014-06-29 夹心并联式PIN型β辐照电池及其制备方法

Country Status (1)

Country Link
CN (1) CN104134480A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795120A (zh) * 2015-01-15 2015-07-22 上海紫电能源科技有限公司 一种热核电池
CN106847361A (zh) * 2017-02-22 2017-06-13 吉林大学 氧化锌pin型核电池
CN109752750A (zh) * 2019-01-29 2019-05-14 上海交通大学 一种用于稳定释放220Rn的放射源及包含该放射源的放射装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102354540A (zh) * 2011-10-19 2012-02-15 西安电子科技大学 I层钒掺杂的pin型核电池及其制作方法
US20130033149A1 (en) * 2011-08-07 2013-02-07 Chris Thomas Low Volumetric Density Betavoltaic Power Device
US8487507B1 (en) * 2008-12-14 2013-07-16 Peter Cabauy Tritium direct conversion semiconductor device
CN103325878A (zh) * 2013-05-31 2013-09-25 西安电子科技大学 一种p-i-n型InGaN/p-n型Si双结叠层太阳电池及其制备方法
CN103730184A (zh) * 2013-10-26 2014-04-16 溧阳市浙大产学研服务中心有限公司 碳化硅肖特基结型核电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8487507B1 (en) * 2008-12-14 2013-07-16 Peter Cabauy Tritium direct conversion semiconductor device
US20130033149A1 (en) * 2011-08-07 2013-02-07 Chris Thomas Low Volumetric Density Betavoltaic Power Device
CN102354540A (zh) * 2011-10-19 2012-02-15 西安电子科技大学 I层钒掺杂的pin型核电池及其制作方法
CN103325878A (zh) * 2013-05-31 2013-09-25 西安电子科技大学 一种p-i-n型InGaN/p-n型Si双结叠层太阳电池及其制备方法
CN103730184A (zh) * 2013-10-26 2014-04-16 溧阳市浙大产学研服务中心有限公司 碳化硅肖特基结型核电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨康: "GaN-147Pm型β辐射伏特效应核电池的粒子输运研究及优化设计", 《中国优秀硕士学位论文全文数据库工程科技II辑 》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795120A (zh) * 2015-01-15 2015-07-22 上海紫电能源科技有限公司 一种热核电池
CN106847361A (zh) * 2017-02-22 2017-06-13 吉林大学 氧化锌pin型核电池
CN109752750A (zh) * 2019-01-29 2019-05-14 上海交通大学 一种用于稳定释放220Rn的放射源及包含该放射源的放射装置
CN109752750B (zh) * 2019-01-29 2024-03-26 上海交通大学 一种用于稳定释放220Rn的放射源及包含该放射源的放射装置

Similar Documents

Publication Publication Date Title
Cheng et al. A high open-circuit voltage gallium nitride betavoltaic microbattery
CN101527175B (zh) 一种pin型核电池及其制备方法
US20070080605A1 (en) Betavoltaic cell
WO2011063228A2 (en) Betavoltaic apparatus and method
CN104064242A (zh) 夹心并联式外延GaN的PIN型β辐照电池及制备方法
US20130276873A1 (en) High level injection systems
CN102509569B (zh) I层钒掺杂的碳化硅肖特基结型核电池及其制作方法
Li et al. GaN PIN betavoltaic nuclear batteries
CN104134480A (zh) 夹心并联式PIN型β辐照电池及其制备方法
CN104051050A (zh) 并联式PIN型α辐照电池及其制备方法
CN104051046A (zh) 夹心串联式PIN结构β辐照电池及其制备方法
CN104051045B (zh) 串联式PIN结构α辐照电池及其制备方法
CN104051041B (zh) 夹心并联式外延GaN的PIN型α辐照电池及制备方法
CN104051042B (zh) 并联式PIN型β辐照电池及其制备方法
CN104051052A (zh) 沟槽隔离式外延GaN的PIN型α辐照电池及制备方法
CN104103333A (zh) 外延GaN的并联式PIN结构β辐照电池及其制备方法
CN104064247A (zh) 3D式PIN结构β辐照电池及其制备方法
CN104064240A (zh) 外延GaN的PIN结构β辐照电池及其制备方法
Bellucci et al. Defect engineering of diamond cathodes for high temperature solar cells
CN104051043B (zh) 3D式PIN结构α辐照电池及其制备方法
CN104064243A (zh) 夹心并联式PIN型α辐照电池及其制备方法
CN104051047B (zh) 夹心串联式PIN结构α辐照电池及其制备方法
CN109192350B (zh) 一种基于碳化硅材料的肖特基微型核电池及其制备方法
WO2018143838A1 (en) Ionizing radiation converter with cross-linked structure and its fabrication method
CN104051049A (zh) 串联夹心式外延GaN的PIN型α辐照电池及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20141105