CN104064242A - 夹心并联式外延GaN的PIN型β辐照电池及制备方法 - Google Patents

夹心并联式外延GaN的PIN型β辐照电池及制备方法 Download PDF

Info

Publication number
CN104064242A
CN104064242A CN201410300603.3A CN201410300603A CN104064242A CN 104064242 A CN104064242 A CN 104064242A CN 201410300603 A CN201410300603 A CN 201410300603A CN 104064242 A CN104064242 A CN 104064242A
Authority
CN
China
Prior art keywords
type
ray
contact electrode
battery
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410300603.3A
Other languages
English (en)
Inventor
郭辉
黄海栗
宋庆文
王悦湖
张玉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201410300603.3A priority Critical patent/CN104064242A/zh
Publication of CN104064242A publication Critical patent/CN104064242A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种夹心并联式外延GaN的PIN型β辐照电池及制备方法,主要解决当前核电池能量转化率及输出功率低的问题。其包括:并联的上下两个PIN结和β放射源层;下PIN结自上而下依次为,P型欧姆接触电极、P型高掺杂GaN外延层、N型高掺杂4H-SiC衬底、N型低掺杂SiC外延层和N型欧姆接触电极,上PIN结自下而上的结构分布与下PIN结自上而下的结构分布相同;β放射源层夹在上下两个PIN结的P型欧姆接触电极之间,以实现对高能β粒子的充分利用。本发明具有放射源与半导体接触面积大,核原料利用率及能量收集率高,电池输出电压大的优点,可为微小电路持久供电,或为极地、沙漠场合供电。

Description

夹心并联式外延GaN的PIN型β辐照电池及制备方法
技术领域
本发明属于微电子领域,涉及半导体器件结构及制备方法,具体地说是一种碳化硅基的夹心并联式外延GaN的PIN型β辐照电池及制备方法,可用于微纳机电系统等微小电路和航空航天、深海、极地等需长期供电且无人值守的场合。
技术背景
随着人们对于低功耗、长寿命、高可靠性和小体积供电设备的需求,以及对核废料处理的关注,微型核电池变得愈发关注。微型核电池由于其突出的特点可用来解决微型管道机器人、植入式微系统、无线传感器节点网络、人工心脏起搏器和便携式移动电子产品等的长期供电问题。并有望取代太阳能电池和热电式放射性同位素电池,在航天和航空领域解决微/纳卫星、深空无人探测器和离子推进器等的长期供电问题。
1953年由Rappaport研究发现,利用同位素衰变所产生的贝塔(β-Particle)射线能在半导体内产生电子-空穴对,此现象则被称为β-Voltaic Effect。1957年,Elgin-Kidde首先将β-Voltaic Effect用在电源供应方面,成功制造出第一个同位素微电池β-Voltaic Battery。自2006年,随着宽禁带半导体材料SiC制备和工艺技术的进步,出现了基于SiC的同位素微电池的相关报道。核电池在应用中,由于激发的高能粒子利用率比较低,能量收集率低,限制了电池的输出电压。由于β放射源对人体的损伤比α放射源更小,在医学领域得到更广的应用,如,心脏起搏器。
作为一种重要的第三代半导体,近年来人们对GaN的关注越来越多。由于其禁带宽度大,热导率高,制作的器件工作温度和击穿电压高。另外,GaN材料一直被认为是一种理想的抗辐照半导体材料,随着核技术和空间技术的发展,GaN材料及其器件被用于辐射很强的极端恶劣的条件下工作。
中国专利CN101325093A中公开了由张林,郭辉等人提出的基于SiC的肖特基结式核电池。由于该肖特基结核电池中肖特基接触层覆盖整个电池区域,入射粒子到达器件表面后,都会受到肖特基接触层的阻挡,只有部分粒子能进入器件内部,而进入耗尽区的粒子才会对电池的输出功率有贡献。因此,这种结构的核电池入射粒子能量损失大,能量转换效率较低。
文献“Demonstration of a4H SiC betavoltaic cell”介绍了由美国纽约Cornell大学的C.I.Tomas,M.V.S.Chandrashekhar,Hui Li等人提出了碳化硅PN结式核电池。这种结构采用的衬底为P型高掺杂衬底,而在其衬底上生长外延层的现有工艺不成熟,因此,易引入表面缺陷,器件漏电流大,能量转换率较低。
文献“Demonstration of a tadiation resistant,hight efficiency SiC betavoltaic”介绍了由美国新墨西哥州Qynergy Corporation的C.J.Eiting,V.Krishnamoorthy和S.Rodgers,T.George等人共同提出了碳化硅p-i-n结式核电池,如图1所示。该PIN核电池自上而下依次为,放射性源7、P型欧姆接触电极6、P型高掺杂SiC层4、P型SiC层3、本征i层2、n型高掺杂SiC衬底1和N型欧姆接触电极5。这种结构中,只有耗尽层内及其附近一个少子扩散长度内的辐照生载流子能够被收集。并且,为避免欧姆接触电极阻挡入射离子,将P型欧姆电极做在器件的一个角落,使得离P型欧姆电极较远的辐照生载流子在输运过程中被复合,降低了能量转化率,减小了电池的输出电流。
发明内容
本发明的目的在于针对上述已有技术的不足,提出一种夹心并联式外延GaN的PIN型β辐照电池及制备方法,以提高β放射源的利用率,从而提高电池的输出电流和输出电压。
本发明的技术方案是这样实现的:
一.本发明的夹心并联式外延GaN的PIN型β辐照电池,包括:PIN单元和β放射源层,其特征在于:
所述PIN单元,采用由上下两个PIN结并联构成;上PIN结自上而下依次为,N型欧姆接触电极5、N型高掺杂4H-SiC衬底1、掺杂浓度为1x1015~2x1015cm-3的N型低掺杂SiC外延层2、掺杂浓度为1x1019~5x1019cm-3的P型高掺杂GaN外延层3和P型欧姆接触电极4;下PIN结自上而下依次为,P型欧姆接触电极4、掺杂浓度为1x1019~5x1019cm-3的P型高掺杂GaN外延层3、掺杂浓度为1x1015~2x1015cm-3的N型低掺杂SiC外延层2、N型高掺杂4H-SiC衬底1和N型欧姆接触电极5;
所述的β放射源层6,夹在上下两个PIN结的P型欧姆接触电极4之间,以实现对高能β粒子的充分利用。
作为优选,所述的β放射源层6采用原子质量为63的镍,即Ni63
作为优选,所述的β放射源层6采用原子质量为147的钷,即Pm147
作为优选,所述的β放射源层6的厚度h满足h≤m,其中m为β放射源所释放的高能β粒子在β放射源材料中的平均入射深度,对于β放射源为Ni63的,其取值为:g=6μm,对于β放射源为Pm147的,其取值为:g=16μm。
作为优选,所述的N型低掺杂外延层2的厚度L满足L≥g,其中,g为β放射源所释放的高能β粒子在4H-SiC中的平均入射深度,对于β放射源为Ni63的,其取值为:i=10μm,对于β放射源为Pm147的,其取值为:i=15μm。
作为优选,所述的P型高掺杂GaN外延层3的厚度为0.1~0.2μm。
作为优选,所述的衬底1采用掺杂浓度为l x1018cm-3的N型4H-SiC。
二.本发明的制备方法包括以下步骤:
第一步,制作下PIN结:
1.1)对SiC样片进行清洗,以去除表面污染物;
1.2)利用化学气相淀积CVD法在清洗后的SiC样片表面外延生长一层掺杂浓度为1x1015~2x1015cm-3,厚度为15~30μm的N型低掺杂SiC外延层;
1.3)利用化学气相淀积CVD法在N型低掺杂SiC外延层表面外延生长一层镁掺杂浓度为1x1019~5x1019cm-3,厚度为0.1~0.2μm的P型高掺杂GaN外延层;
1.4)在P型高掺杂GaN外延层表面利用电子束蒸发法淀积一层厚度为50nm/250nm的金属Ti/Au,作为P型欧姆接触电极;利用电子束蒸发法在SiC衬底未外延的背面淀积厚度为300nm的Ni金属层,作为N型欧姆接触电极;1100℃下氮气气氛中快速退火3分钟。
第二步,重复步骤1.1)到步骤1.4)制作上PIN结。
第三步,利用分子镀在下PIN结的P型欧姆接触电极或者上PIN结的P型欧姆接触电极上镀一层厚度为3.5~7μm的β放射源。
第四步,利用键合法将上PIN结的P型欧姆接触电极一面与下PIN结的P型欧姆接触电极一面压合在一起,完成夹心并联式外延GaN的PIN型β辐照电池的制作。
本发明与现有技术相比具有如下优点:
1、本发明由于采用衬底材料4H-SiC的禁带宽度比传统Si的禁带宽度大,抗辐照特性更好,可以减小高能β粒子对器件的损伤,提高电池的工作电压,同时延长电池的使用寿命;
2、本发明由于外延的N型低掺杂外延层厚度不小于β放射源所释放的高能β粒子在4H-SiC中的平均入射深度,可以减少高能β粒子在N型低掺杂外延层中的衰减,使得高能β粒子集中在P型高掺杂外延层和N型低掺杂外延层界面附近的空间电荷区,提高能量转化率;
3、本发明由于P型高掺杂外延层的厚度为0.1~0.2μm,β放射源层的厚度不大于β放射源所释放的高能β粒子在β放射源材料中的平均入射深度的两倍,可以减小高能β粒子在P型高掺杂外延层和β放射源层中的衰减,提高能量收集率;
4、本发明由于将β放射源层夹在上下两个PIN结的P型欧姆接触电极之间,较之于现有技术将放射源层置于电池的上表面,节省了β放射源材料,提高了β放射源的利用率,从而提高了电池的能量利用率;
5、本发明由于P型高掺杂GaN外延层所采用GaN材料的禁带宽度比SiC大,抗辐照特性更好,进一步提高了电池的工作电压。
6、本发明由于将两个PIN结并联放置,提高了电池的输出电压。
附图说明
图1是现有的PIN核电池的截面示意图;
图2是本发明夹心并联式外延GaN的PIN型β辐照电池的截面示意图;
图3是本发明制作夹心并联式外延GaN的PIN型β辐照电池的流程示意图。
具体实施方式
参照图2,本发明的辐照电池,包括:PIN单元和β放射源层,PIN单元由上下两个PIN结并联构成;上PIN结自上而下依次为,N型欧姆接触电极5、N型高掺杂4H-SiC衬底1、掺杂浓度为1x1015~2x1015cm-3的N型低掺杂SiC外延层2、掺杂浓度为1x1019~5x1019cm-3的P型高掺杂GaN外延层3和P型欧姆接触电极4;下PIN结自上而下依次为,P型欧姆接触电极4、掺杂浓度为1x1019~5x1019cm-3的P型高掺杂GaN外延层3、掺杂浓度为1x1015~2x1015cm-3的N型低掺杂SiC外延层2、N型高掺杂4H-SiC衬底1和N型欧姆接触电极5;β放射源层6夹在上下两个PIN结的P型欧姆接触电极4之间,其厚度h满足h≤m,其中m为α放射源所释放的高能α粒子在α放射源材料中的平均入射深度,对于α放射源为Am241的,其取值为:m=7.5μm,对于α放射源为Pu238的,其取值为:m=10μm。
电池在工作状态下,从β放射源层6放射出的高能β粒子穿过上下两个PIN结的P型欧姆接触电极4射入到P型高掺杂GaN外延层3和N型低掺杂SiC外延层2界面附近的空间电荷区,进而激发载流子,形成输出电流。
参照图3,本发明制作夹心并联式外延GaN的PIN型β辐照电池的方法给出如下三个实施例:
实施例1,制备β放射源为Ni63,β放射源层厚度为7μm的夹心并联式外延GaN的PIN型β辐照电池。
步骤1:制作下PIN结。
(1a)清洗4H-SiC样片,以去除表面污染物,如图3(a)所示。
(1a.1)将掺杂浓度为l x1018cm-3的高掺杂n型4H-SiC衬底样片在NH4OH+H2O2试剂浸泡样品10min,取出后烘干,以去除样品表面有机残余物;
(1a.2)将去除表面有机残余物后的4H-SiC样片再使用HCl+H2O2试剂浸泡样品10min,取出后烘干,以去除离子污染物。
(1b)外延生长N型低掺杂SiC外延层,如图3(b)所示。
在清洗后的SiC样片上利用化学气相淀积CVD方法外延生长氮掺杂的N型掺杂外延层。其工艺条件为:外延温度为1570℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂志源为液态氮气,得到氮掺杂浓度为1x1015cm-3,厚度为15μm的N型低掺杂SiC外延层。
(1c)外延生长P型高掺杂GaN外延层,如图3(c)所示。
(1c.1)将生长N型低掺杂SiC外延层后的样品放入化学气相淀积CVD炉中,在H2氛围下加热到1100℃,保持10min;
(1c.2)将反应室的压强设为2x104Pa,用N2和H2的混合气体作为载气,向反应室内通入流量分别为52.3μmol·min-1和0.035mol·min-1的三甲基铝和NH3,在低掺杂SiC外延层上生长60nm厚的AlN;
(1c.3)将反应室降温至1050℃,向反应室内通入流量分别为6.5μmol·min-1、8.93mmol·min-1和0.18μmol·min-1的三甲基镓、NH3和CP2Mg,完成镁掺杂浓度为1x1019cm-3,厚度为0.1μm的P型高掺杂GaN外延层。
(1d)淀积金属欧姆接触电极,如图3(d)所示。
(1d.1)对完成P型高掺杂GaN外延层生长后的SiC样片进行RCA标准清洗;
(1d.2)将清洗后的样片放入电子束蒸发镀膜机中的载玻片上,调整载玻片到靶材的距离为50cm,并将反应室压强抽至5×10-4Pa,调节束流为40mA,在SiC样片的P型高掺杂GaN外延层的表面淀积一层厚度为50nm/250nm的Ti/Au金属层,作为P型欧姆接触电极;
(1d.3)利用电子束蒸发法,在衬底SiC未外延的背面淀积厚度为300nm的Ni金属层,作为N型欧姆接触电极;
(1d.4)1100℃下,氮气气氛中快速退火3分钟。
步骤2:制作上PIN结。
重复步骤(1a)到步骤(1d),得到上PIN结。
步骤3:利用分子镀在下PIN结的P型欧姆接触电极上镀一层厚度为7μm的β放射源Ni63,如图3(e)所示。
步骤4:利用键合法,将上PIN结的P型欧姆接触电极与下PIN结的P型欧姆接触电极上的β放射源层压合在一起,得到夹心并联式外延GaN的PIN型β辐照电池,如图3(f)所示。
实施例2,制备β放射源为Ni63,β放射源层厚度为5μm的夹心并联式外延GaN的PIN型β辐照电池。
步骤一:制作下PIN结。
1a)清洗4H-SiC样片,以去除表面污染物,如图3(a)。
本步骤与实施例1的步骤(1a)相同。
1b)外延生长N型低掺杂SiC外延层,如图3(b)。
在清洗后的SiC样片上利用化学气相淀积CVD方法外延生长氮掺杂的N型掺杂外延层。其工艺条件为:外延温度为1570℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂志源为液态氮气,完成氮掺杂浓度为1.5x1015cm-3,厚度为22μm的N型低掺杂SiC外延层的生长。
1c)外延生长P型高掺杂GaN外延层,如图3(c)。
1c.1)将生长N型低掺杂SiC外延层后的样品放入化学气相淀积CVD炉中,在H2氛围下加热到1100℃,保持10min;
1c.2)将反应室的压强设为2x104Pa,用N2和H2的混合气体作为载气,向反应室内通入流量分别为52.3μmol·min-1和0.035mol·min-1的三甲基铝和NH3,在低掺杂SiC外延层上生长60nm厚的AlN;
1c.3)将反应室降温至1050℃,向反应室内通入流量分别为6.5μmol·min-1、8.93mmol·min-1和0.18μmol·min-1的三甲基镓、NH3和CP2Mg,完成镁掺杂浓度为1.5x1019cm-3,厚度为0.15μm的P型高掺杂GaN外延层。
1d)淀积金属接触电极,如图3(d)。
本步骤与实施例一的步骤(1d)相同。
步骤二:制作上PIN结。
重复步骤1a)到步骤1d),得到上PIN结。
步骤三:利用分子镀在上PIN结的P型欧姆接触电极上镀一层厚度为5μm的β放射源Ni63,如图3(e)。
步骤四:利用键合法,将上PIN结的P型欧姆接触电极上的β放射源层与下PIN结的P型欧姆接触电极压合在一起,得到夹心并联式外延GaN的PIN型β辐照电池,如图3(f)。
实施例3,制备β放射源为Pm147,β放射源层厚度为3.5μm的夹心并联式外延GaN的PIN型β辐照电池。
步骤A:制作上PIN结。
(A1)清洗4H-SiC样片,以去除表面污染物,如图3(a)。
本步骤与实施例1的步骤(1a)相同。
(A2)在清洗后的SiC样片上利用化学气相淀积CVD方法外延生长氮掺杂的N型低掺杂SiC外延层。其工艺条件为:外延温度为1570℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂志源为液态氮气。得到氮掺杂浓度为2x1015cm-3,厚度为30μm的N型低掺杂SiC外延层如图3(b)。
(A3)将生长N型低掺杂SiC外延层后的样品放入化学气相淀积CVD炉中,在H2氛围下加热到1100℃,保持10min;再将反应室的压强设为2x104Pa,用N2和H2的混合气体作为载气,向反应室内通入流量分别为52.3μmol·min-1和0.035mol·min-1的三甲基铝和NH3,在低掺杂SiC外延层上生长60nm厚的AlN;然后将反应室降温至1050℃,向反应室内通入流量分别为6.5μmol·min-1、8.93mmol·min-1和0.18μmol·min-1的三甲基镓、NH3和CP2Mg,完成镁掺杂浓度为5x1019cm-3,厚度为0.2μm的P型高掺杂GaN外延层如图3(c)。
(A4)淀积金属接触电极,如图3(d)。
本步骤与实施例一的步骤(1d)相同。
步骤B:制作上PIN结。
重复步骤(A1)到步骤(A4),得到上PIN结。
步骤C:利用分子镀在上PIN结的P型欧姆接触电极和下PIN结的P型欧姆接触电极上镀一层厚度为3μm的β放射源Pm147,如图3(e)。
步骤D:将上PIN结的P型欧姆接触电极上的β放射源层与下PIN结的P型欧姆接触电极上的β放射源层压合在一起,得到夹心并联式外延GaN的PIN型β辐照电池,如图3(f)。

Claims (8)

1.一种夹心并联式外延GaN的PIN型β辐照电池,包括:PIN单元和β放射源层,其特征在于:
所述PIN单元,采用由上下两个PIN结并联构成;上PIN结自上而下依次为,N型欧姆接触电极(5)、N型高掺杂4H-SiC衬底(1)、掺杂浓度为1x1015~2x1015cm-3的N型低掺杂SiC外延层(2)、掺杂浓度为1x1019~5x1019cm-3的P型高掺杂GaN外延层(3)和P型欧姆接触电极(4);下PIN结自上而下依次为,P型欧姆接触电极(4)、掺杂浓度为1x1019~5x1019cm-3的P型高掺杂GaN外延层(3)、掺杂浓度为1x1015~2x1015cm-3的N型低掺杂SiC外延层(2)、N型高掺杂4H-SiC衬底(1)和N型欧姆接触电极(5);
所述β放射源层(6),夹在上下两个PIN结的P型欧姆接触电极(4)之间,以实现对高能β粒子的充分利用。
2.根据权利要求1所述的电池,其特征在于β放射源层(6)采用原子质量为63的镍,即Ni63
3.根据权利要求1所述的电池,其特征在于β放射源层(6)采用原子质量为147的钷,即Pm147
4.根据权利要求1或2或3所述的电池,其特征在于β放射源层(6)的厚度h满足h≤m,其中m为β放射源所释放的高能β粒子在β放射源材料中的平均入射深度,对于β放射源为Ni63的,其取值为:g=6μm,对于β放射源为Pm147的,其取值为:g=16μm。
5.根据权利要求1所述的电池,其特征在于N型低掺杂外延层(2)的厚度L满足L≥g,其中,g为β放射源所释放的高能β粒子在4H-SiC中的平均入射深度,对于β放射源为Ni63的,其取值为:i=10μm,对于β放射源为Pm147的,其取值为:i=15μm。
6.根据权利要求1所述的电池,其特征在于P型高掺杂GaN外延层(3)的厚度为0.1~0.2μm。
7.根据权利要求1所述的电池,其特征在于衬底(1)采用掺杂浓度为l x1018cm-3的N型4H-SiC。
8.一种夹心并联式外延GaN的PIN型β辐照电池的制备方法,包括以下步骤:
第一步,制作下PIN结:
1.1)对SiC样片进行清洗,以去除表面污染物;
1.2)利用化学气相淀积CVD法在清洗后的SiC样片表面外延生长一层掺杂浓度为1x1015~2x1015cm-3,厚度为15~30μm的N型低掺杂SiC外延层;
1.3)将生长N型低掺杂SiC外延层后的样品放入化学气相淀积CVD炉中,在H2氛围下加热到1100℃并保持10min以清洁表面;再向反应室内通入流量分别为52.3μmol·min-1、0.035mol·min-1的三甲基铝和NH3,在低掺杂SiC外延层上生长60nm厚的AlN;然后将反应室降温至1050℃,向反应室内通入流量分别为6.5μmol·min-1、8.93mmol·min-1、0.18μmol·min-1的三甲基镓、NH3和CP2Mg,完成镁掺杂浓度为1x1019~5x1019cm-3,厚度为0.1~0.2μm的P型高掺杂GaN外延层;
1.4)在P型高掺杂GaN外延层表面利用电子束蒸发法淀积一层厚度为50nm/200nm的金属Ti/Au,作为P型欧姆接触电极;利用电子束蒸发法在SiC衬底未外延的背面淀积厚度为300nm的Ni金属层,作为N型欧姆接触电极;1100℃下氮气气氛中快速退火3分钟。
第二步,重复步骤1.1)到步骤1.4)制作上PIN结。
第三步,利用分子镀在下PIN结的P型欧姆接触电极或者上PIN结的P型欧姆接触电极上镀一层厚度为3.5~7μm的β放射源。
第四步,利用键合法将上PIN结的P型欧姆接触电极一面与下PIN结的P型欧姆接触电极一面压合在一起,完成夹心并联式外延GaN的PIN型β辐照电池的制作。
CN201410300603.3A 2014-06-29 2014-06-29 夹心并联式外延GaN的PIN型β辐照电池及制备方法 Pending CN104064242A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410300603.3A CN104064242A (zh) 2014-06-29 2014-06-29 夹心并联式外延GaN的PIN型β辐照电池及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410300603.3A CN104064242A (zh) 2014-06-29 2014-06-29 夹心并联式外延GaN的PIN型β辐照电池及制备方法

Publications (1)

Publication Number Publication Date
CN104064242A true CN104064242A (zh) 2014-09-24

Family

ID=51551913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410300603.3A Pending CN104064242A (zh) 2014-06-29 2014-06-29 夹心并联式外延GaN的PIN型β辐照电池及制备方法

Country Status (1)

Country Link
CN (1) CN104064242A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409127A (zh) * 2014-11-14 2015-03-11 中国工程物理研究院核物理与化学研究所 一种复合转换同位素电池
CN104485150A (zh) * 2014-12-22 2015-04-01 厦门大学 多孔硅pn结型核电池及其制备方法
CN106847361A (zh) * 2017-02-22 2017-06-13 吉林大学 氧化锌pin型核电池
CN110428922A (zh) * 2018-06-08 2019-11-08 吉林大学 一种基于碳化硅PIN结型β辐射伏特效应核电池
CN111261311A (zh) * 2020-03-30 2020-06-09 东南大学 一种基于钙钛矿晶体的辐射伏特型核电池

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4024420A (en) * 1975-06-27 1977-05-17 General Electric Company Deep diode atomic battery
US5396141A (en) * 1993-07-30 1995-03-07 Texas Instruments Incorporated Radioisotope power cells
US6238812B1 (en) * 1998-04-06 2001-05-29 Paul M. Brown Isotopic semiconductor batteries
US20040150229A1 (en) * 2003-01-31 2004-08-05 Larry Gadeken Apparatus and method for generating electrical current from the nuclear decay process of a radioactive material
US20070080605A1 (en) * 2005-08-25 2007-04-12 Chandrashekhar Mvs Betavoltaic cell
CN101527175A (zh) * 2009-04-10 2009-09-09 苏州纳米技术与纳米仿生研究所 一种pin型核电池及其制备方法
US20120161575A1 (en) * 2010-12-22 2012-06-28 Electronics And Telecommunications Research Institute Stack-type beta battery generating current from beta source and method of manufacturing the same
CN102592696A (zh) * 2012-03-05 2012-07-18 南京航空航天大学 基于液态半导体的夹层结构核电池及制备方法
CN102610289A (zh) * 2012-04-17 2012-07-25 中国工程物理研究院核物理与化学研究所 一种氮化镓基多结换能单元同位素电池
CN102737747A (zh) * 2012-07-05 2012-10-17 四川大学 一种微型氚电池及其制备方法
CN202677861U (zh) * 2011-12-05 2013-01-16 郭萍 一种多晶硅β辐射伏特效应同位素电池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4024420A (en) * 1975-06-27 1977-05-17 General Electric Company Deep diode atomic battery
US5396141A (en) * 1993-07-30 1995-03-07 Texas Instruments Incorporated Radioisotope power cells
US6238812B1 (en) * 1998-04-06 2001-05-29 Paul M. Brown Isotopic semiconductor batteries
US20040150229A1 (en) * 2003-01-31 2004-08-05 Larry Gadeken Apparatus and method for generating electrical current from the nuclear decay process of a radioactive material
US20070080605A1 (en) * 2005-08-25 2007-04-12 Chandrashekhar Mvs Betavoltaic cell
CN101527175A (zh) * 2009-04-10 2009-09-09 苏州纳米技术与纳米仿生研究所 一种pin型核电池及其制备方法
US20120161575A1 (en) * 2010-12-22 2012-06-28 Electronics And Telecommunications Research Institute Stack-type beta battery generating current from beta source and method of manufacturing the same
CN202677861U (zh) * 2011-12-05 2013-01-16 郭萍 一种多晶硅β辐射伏特效应同位素电池
CN102592696A (zh) * 2012-03-05 2012-07-18 南京航空航天大学 基于液态半导体的夹层结构核电池及制备方法
CN102610289A (zh) * 2012-04-17 2012-07-25 中国工程物理研究院核物理与化学研究所 一种氮化镓基多结换能单元同位素电池
CN102737747A (zh) * 2012-07-05 2012-10-17 四川大学 一种微型氚电池及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘挺等: "高温AlN模板上p型GaN的生长研究", 《半导体学报》, vol. 29, no. 1, 31 January 2008 (2008-01-31) *
张玉娟: "4H-SiCβ射线核电池核探测器的研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》, no. 3, 15 March 2013 (2013-03-15) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409127A (zh) * 2014-11-14 2015-03-11 中国工程物理研究院核物理与化学研究所 一种复合转换同位素电池
CN104409127B (zh) * 2014-11-14 2017-05-10 中国工程物理研究院核物理与化学研究所 一种复合转换同位素电池
CN104485150A (zh) * 2014-12-22 2015-04-01 厦门大学 多孔硅pn结型核电池及其制备方法
CN106847361A (zh) * 2017-02-22 2017-06-13 吉林大学 氧化锌pin型核电池
CN110428922A (zh) * 2018-06-08 2019-11-08 吉林大学 一种基于碳化硅PIN结型β辐射伏特效应核电池
CN111261311A (zh) * 2020-03-30 2020-06-09 东南大学 一种基于钙钛矿晶体的辐射伏特型核电池
CN111261311B (zh) * 2020-03-30 2022-09-09 东南大学 一种基于钙钛矿晶体的辐射伏特型核电池

Similar Documents

Publication Publication Date Title
Cheng et al. A high open-circuit voltage gallium nitride betavoltaic microbattery
Lu et al. Gallium nitride Schottky betavoltaic nuclear batteries
Nogay et al. Silicon-rich silicon carbide hole-selective rear contacts for crystalline-silicon-based solar cells
CN101527175B (zh) 一种pin型核电池及其制备方法
CN104064242A (zh) 夹心并联式外延GaN的PIN型β辐照电池及制备方法
WO2011063228A2 (en) Betavoltaic apparatus and method
CN102509569B (zh) I层钒掺杂的碳化硅肖特基结型核电池及其制作方法
CN105720127A (zh) 基于石墨烯/半导体异质结的多功能发电机及其制造方法
CN104051050A (zh) 并联式PIN型α辐照电池及其制备方法
CN104134480A (zh) 夹心并联式PIN型β辐照电池及其制备方法
CN104051046A (zh) 夹心串联式PIN结构β辐照电池及其制备方法
CN104051045B (zh) 串联式PIN结构α辐照电池及其制备方法
CN104051052A (zh) 沟槽隔离式外延GaN的PIN型α辐照电池及制备方法
CN104051041B (zh) 夹心并联式外延GaN的PIN型α辐照电池及制备方法
CN103137770A (zh) 一种石墨烯/Si p-n 双结太阳能电池及其制备方法
CN104051042B (zh) 并联式PIN型β辐照电池及其制备方法
CN104103333A (zh) 外延GaN的并联式PIN结构β辐照电池及其制备方法
CN104064240A (zh) 外延GaN的PIN结构β辐照电池及其制备方法
CN101527174B (zh) 肖特基型核电池及其制备方法
CN104064247A (zh) 3D式PIN结构β辐照电池及其制备方法
Bellucci et al. Defect engineering of diamond cathodes for high temperature solar cells
CN104051043B (zh) 3D式PIN结构α辐照电池及其制备方法
CN104064243A (zh) 夹心并联式PIN型α辐照电池及其制备方法
CN104051051B (zh) 外延GaN的串联式PIN结构α辐照电池及其制备方法
CN104051049A (zh) 串联夹心式外延GaN的PIN型α辐照电池及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140924

WD01 Invention patent application deemed withdrawn after publication