CN102347693B - 具有可选降压模式操作的集成电路开关电源控制器 - Google Patents

具有可选降压模式操作的集成电路开关电源控制器 Download PDF

Info

Publication number
CN102347693B
CN102347693B CN201110218624.7A CN201110218624A CN102347693B CN 102347693 B CN102347693 B CN 102347693B CN 201110218624 A CN201110218624 A CN 201110218624A CN 102347693 B CN102347693 B CN 102347693B
Authority
CN
China
Prior art keywords
circuit
mode
integrated circuit
persistent period
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110218624.7A
Other languages
English (en)
Other versions
CN102347693A (zh
Inventor
拉胡尔·辛格
约翰·L·梅安森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN102347693A publication Critical patent/CN102347693A/zh
Application granted granted Critical
Publication of CN102347693B publication Critical patent/CN102347693B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1563Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators without using an external clock
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/382Switched mode power supply [SMPS] with galvanic isolation between input and output
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种用于开关电源的集成电路(IC)控制器,具有用于支持多个开关电源拓扑的可选工作模式。IC通过控制开关电源的周期速率来控制电流,以提供恒定或可变输出电流,该恒定或可变输出电流可提供给诸如发光二极管(LED)的照明设备。可选工作模式包括至少一降压转换器工作模式和另一工作模式,该另一工作模式可能为回扫转换器工作模式。

Description

具有可选降压模式操作的集成电路开关电源控制器
相关申请的引用
本申请要求2010年7月30日提交的序列号为61/369,202的美国临时专利申请和2010年12月20日递交的申请号为12/973,003的美国专利申请的优先权。
技术领域
本发明大体上涉及开关电源电路,并且特别涉及用于控制开关电源电路且具有可选降压工作模式的集成电路控制器。
背景技术
照明控制和电源集成电路(IC)普遍使用在电子系统和可更换的消费照明设备中,例如,替代传统白炽灯的发光二极管(LED)和节能灯(CFL)。为了提供恒定的或可变的发光强度,通常必须对供应到照明设备的电流进行控制。此外,也有其它应用需要受控电流电源。
根据不同要求,如输入电压范围、成本因素和绝缘要求等,需要使用不同的拓扑结构以实现适合不同要求的开关电源。然而,当使用集成电路(IC)控制器控制开关电源时,如果为每种不同拓扑结构生产不同的IC开关电源控制器,对于IC和最终产品都会带来成本、库存和管理要求的提高。
因此,有必要提供一种用于受控电流电源的IC控制器,且该IC控制器可以支持多个电源拓扑。
发明内容
本发明体系为一种集成电路(IC)和其工作方法。IC是一个受控电流开关电源控制器。
IC具有多个可选工作模式,包括降压转换器工作模式和另一工作模式,该另一工作模式可为回扫转换器工作模式。为了保持固定的或可变的输出电流水平,IC控制器通过控制一个或多个位于IC内部或外部的开关设备来控制转换器的周期速率。
如附图所示,本发明的上述以及其它目标、特征和优点将从本发明的优选实施方式的以下更详细的说明中体现。
附图说明
图1是描述根据本发明的实施方式的,包括有开关电源控制器IC10的回扫转换器电源电路的框图。
图2是示出图1的电路内的信号的时序图。
图3是描述根据本发明的另一实施方式的,包括有开关电源控制器IC10的降压转换器电源电路的框图。
图4是示出图3的电路内的信号的时序图。
图5是描述体现本发明的开关电源控制器IC10的细节的框图。
具体实施方式
本发明包括电源控制器集成电路(IC)和其工作方法。在特定的实施方式中,使用控制器IC的电源提供恒定的或可变的输出电流水平,输入到诸如发光二极管(LED)的照明设备。通过根据调光值改变输出电流水平,可控制LED的亮度。IC具有可选工作模式,包括降压转换器模式和另一模式,该另一模式可为回扫转换器工作模式或支持另一拓扑的模式。IC由此支持多个开关电源拓扑。
现参考图1,示出了体现本发明的回扫开关电源电路5。变压器T1是磁储存元件,能将能量转移到LEDLED1。储存元件能量经过二极管D1被转移到LEDLED1,并且转移到充电电容器C1,该充电电容器C1滤掉电源电路5的开关动作产生的脉动电压。变压器T1还在耦合到被整流的线路电压源+VS的初级侧电路与LEDLED1之间起隔离作用,该LED可为一组串联的LED。尽管此处的示例性照明设备是图中的LED,根据本发明的其它体现方式,照明设备LED1也可以是另一类型的照明设备。此外,本发明的技术可使用于其它需要受控电流电源的应用中,例如电机控制应用。
集成电路(IC)10是初级侧控制器,操作开关晶体管N1,本例中该开关晶体管N1位于IC10外部,但其也可能包括在IC10的内部。开关控制器12提供脉冲频率调制(PFM)栅极控制信号“drive”,以改变开关电源电路的周期速率。开关控制器还接收集成电路10的所选工作模式的指示值,该指示值在图中是集成电路10的一个终端提供的逻辑输入信号,当在逻辑低情况(接地)时,该逻辑输入信号选择回扫工作模式,如图所示。根据来自集成电路10内部或外部的调光值DIM,PFM开关信号控制开关晶体管N1的栅极,以控制加到变压器T1的初级线圈的能量的量。根据由电流感测电路16提供的以及从感测变压器T1的初级线圈两端电压的电压感测电路14来的反馈值,供应到LEDLED1的电流由此由开关控制器12控制,使得回扫间隔的终点(当开关晶体管N1没有在传导且次级线圈电流ISEC为非零时)可以被确定,其中,该电流感测电路16在开关晶体管N1进行传导时感测变压器T1的初级线圈电流IPRI的量。
在所示的实施例中,测量初级线圈电流IPRI时,连接在变压器N1的源极与接地之间的感测电阻器R1包括在内。电流感测电路16检测在每个周期由感测电阻器R1两端产生的电压VSENSE的峰值来确定经过变压器T1的初级线圈的峰值电流IPEAK的指示值。峰值电流IPEAK的值被保留(采样)以用于对开关控制器12的下一个开关周期进行控制。
同样在所示的实施例中,在次级线圈电流ISEC为非零且电容器C1进行充电期间,回扫间隔的持续时间由电压感测电路14确定,当变压器T1的初级线圈两端的电压为负和非零时确定,即,从晶体管N1的断开时间开始直到二极管D1停止传导为止的周期tfly的持续时间。电压感测电路14产生逻辑信号z,该逻辑信号z仅在回扫间隔tfly期间是激活的。所采样的峰值初级线圈电流Ipeak和回扫间隔tfly的持续时间都将用于确定栅极控制信号drive的下一个开关周期的周期速率。
现再参考图2,图1的电路内的示例性信号以时序图表现。由初级线圈电流IPRI在时刻t1的峰值电流IPEAK确定的时刻t0与t1之间的第一充电间隔tchg内将能量存储在变压器T1中。栅极驱动信号drive启动开关晶体管N1,并造成初级线圈电流IPRI上升。在时刻t1与t2之间的回扫间隔tfly期间,来自变压器T1的次级线圈的回扫次级电流ISEC经过二极管D1输入充电电容器C1,并向LEDLED1供电。周期时间tcyc之后,开关周期进行重复,这确定了开关电源电路的周期速率。为了使经过LEDLED1的电流IOUT,保持恒定,或用于特定调光值DIM的某个特定电流水平IOUT,(此时所供应的电流可以根据调光值DIM变化),在回扫转换器模式下,用于产生特定电流水平IOUT的周期时间tcyc由下式给出:
tcyc=0.5*N*Ipeak/IOUT*tfly
其中,N是变压器T1的匝比(次级线圈/初级线圈)。如下文所示,在降压工作模式中,用以产生特定电流水平IOUT的周期时间公式是不同的。对于控制算法,周期时间可以根据下式来控制:
tcyc=K*Ipeak*tfly
上式中仅有Ipeak和tfly是可变的。为了保证正常工作,集成电路10的工作模式必须与集成电路10所在的开关电源电路的拓扑结构对应,并且电路中的部件值必须确定用于正确操作,例如,变压器T1的芯(或以下示出的在非隔离降压转换器拓扑中使用的电感器L1)的规格必须能避免在充电间隔tchg期间饱和,以及开关电源设计和部件选择中的其它常见事项也要考虑。
现参考图3,示出了根据本发明的另一实施方式的降压开关电源电路5A。降压开关电源电路5A与图1的回扫开关电源电路5相似,所以以下将仅描述它们之间的不同之处。选择集成电路10的降压工作模式,需将输入端BUCK连接到电源电压的+VDD端。电感器L1为磁储存元件,能量通过该磁储存元件传送到LEDLED1。在降压开关电源电路5A中,二极管D10导通时,晶体管N1导电,此时电流通过LEDLED1。同样当二极管D11导通时,进入回扫间隔,电流也通过LEDLED1。因此,用于提供恒定输出电流IOUT的控制方程与图1的回扫开关电源电路5的控制方程不同。在降压开关电源电路5A中选择的降压工作模式的控制方程由下式给出:
tcyc=0.5*Ipeak/IOUT*(tchg+tfly)
对于降压控制算法,周期时间可以根据下式进行控制:
tcyc=K*Ipeak*(tchg+tfly)
降压开关电源电路5A与图1的回扫开关电源电路5的另一不同之处是回扫间隔持续时间tfly的检测方式。电感器L1上有一辅助线圈,提供电源电压+VDD,经过整流二极管D12、滤波电阻器R2和滤波电容器C10对集成电路10进行供电。由电阻器R3和R4形成的电压分压器提供输入电压信号到电压感测电路14A,该输入电压与辅助线圈电压Vaux成比例变化。如图1的回扫开关电源电路5所示,电压感测电路14A可与图1的电压感测电路14相同且可接收来自回扫转换器配置中相同的终端的输入,且通过检测电感器L1的辅助线圈两端的负电压脉冲持续时间,可以测量回扫间隔持续时间tfly)。如图3所示,根据本发明的另一实施方式,通过在变压器T1上提供辅助线圈,图3所示的辅助线圈电路可以作为替代物使用,以检测图1的电路中的初级线圈电压VPRI,该辅助线圈还可用于提供用于对集成电路10供电的电源电压+VDD,如图3所示。
现在参考图4,在时序图中示出了图3的电路内的示例性信号。图4的时序图与图2的时序图相似,所以以下仅将描述它们之间的不同之处。不同于分离初级和次级电流波形,电感器电流IL既具有正的部分,又具有负的部分,正的部分与栅极控制信号drive启动的时间对应,并且负的部分与回扫间隔tfly对应。时刻t0与t1之间的充电间隔tchg将能量存储在电感器L1中,该电感L1由在时刻t1的电感器电流IL的峰值电流Ipeak确定。经过电感器L1的电流同样与充电电流ICHG相同,该充电电流ICHG在充电间隔tchg期间对电容器C1进行充电。由于二极管D11的导通,充电电流ICHG还在回扫间隔tfly期间对电容器C1进行充电,导致充电电流ICHG的波形成三角形。
现参考图5,根据本发明的实施方式示出了集成电路10内的开关控制器12的细节。所描述的电路是示例性的,并且仅提供一个可用于实现开关控制器12的电路的特定实施例。在所描述的实施例中,电流感测电路16包括在开关控制器12中,并且由模拟-数字转换器(ADC)52以及检测峰值电流水平IPEAK的脉冲频率调制器(PFM)50内的逻辑或程序提供。电压感测电路14也包括在开关控制器12中,该电压感测电路14的功能由产生逻辑信号z、辅助(或初级)线圈电压极性的指示的比较器K1来提供。PFM50从而确定回扫间隔tfly的持续时间。根据工作模式选择信号BUCK的状态,选择降压转换器算法54A或回扫转换器算法54B,以产生栅极控制信号drive。
尽管已根据本发明的优选实施方式特别示出并且描述本发明,本领域的主要技术人员将理解:在脱离本发明的精神和范围的情况下,可以在上述和其它形式上以及细节上做出改变。

Claims (19)

1.一种用于控制产生输出电流的电源电路的集成电路,所述集成电路包括:
第一输入,用于接收从所述电源电路的磁储存元件的线圈来的信号;
检测电路,所述检测电路耦合到所述第一输入,用于处理从所述磁储存元件的线圈来的所述信号以检测回扫间隔的持续时间,并且用于确定在充电间隔终点时的所述磁储存元件中的峰值电流的指示值,在所述回扫间隔期间,所述电源电路的所述磁储存元件将电流供应到所述电源电路的输出端,在所述充电间隔期间,所述磁储存元件将从所述电源电路供应的能量存储起来;以及
控制电路,用于产生开关控制信号以根据所述集成电路的可选工作模式来控制所述电源电路的周期速率,所述可选工作模式为在降压工作模式与另一工作模式之间可选的;
其中,在所述降压工作模式下,根据依照第一算法从峰值电流的指示、所述充电间隔的持续时间和所检测的回扫间隔的持续时间计算出的第一值控制所述周期速率,以保持所述输出电流为恒定值,且其中在所述另一工作模式下,根据依照第二算法从峰值电流和所检测的回扫间隔的持续时间计算出的第二值控制所述周期速率,以保持所述输出电流为所述恒定值,其中所述第二算法与所述第一算法不同。
2.根据权利要求1所述的集成电路,其中,在所述降压工作模式中,所述控制电路控制所述电源电路的所述周期速率,以将所述峰值电流的所述指示值与所述回扫间隔的持续时间和所述充电间隔的持续时间之和的乘积保持恒定。
3.根据权利要求2所述的集成电路,其中,所述控制电路根据所述第一算法确定所述开关控制信号的周期时间,其中所述第一算法是以下公式:
tcyc=K*Ipeak*(tchg+tfly)
其中,K是常数,tcyc是所述周期时间,Ipeak是所述峰值电流的所述指示值,tchg是所述充电间隔的所述持续时间,并且tfly是所述回扫间隔的所述持续时间。
4.根据权利要求1所述的集成电路,其中,所述另一工作模式是回扫工作模式,在所述回扫工作模式中,所述控制电路控制所述电源电路的所述周期速率,以将所述峰值电流的所述指示值与所述回扫间隔的持续时间的乘积保持恒定。
5.根据权利要求4所述的集成电路,其中,所述控制电路根据所述第二算法确定所述开关控制信号的周期时间,其中所述第二算法是以下公式:
tcyc=K*Ipeak*tfly
其中,K是常数,tcyc是所述周期时间,Ipeak是所述峰值电流的所述指示值,并且tfly是所述回扫间隔的所述持续时间。
6.根据权利要求1所述的集成电路,其中,所述控制电路从调光输入端接收调光值,并且其中,所述控制电路通过所述调光值测量所述周期速率,以根据所述调光值控制所述电源电路的输出电流。
7.根据权利要求1所述集成电路,所述第一输入包括用于与所述磁储存元件的线圈耦合的输入终端,并且其中,所述检测电路耦合到所述输入终端并且对指示所述回扫间隔终点的所述线圈两端电压的变化进行检测。
8.根据权利要求1所述的集成电路,其中,所述电源包括与开关电路串联耦合的电阻器以及所述磁储存元件的线圈,并且其中所述集成电路还包括耦合到所述集成电路的第二输入的电流感测电路,用于耦合到所述电阻器并且感测所述电阻器两端的电压以确定所述峰值电流。
9.根据权利要求1所述的集成电路,还包括具有与所述开关控制信号耦合的栅极的开关晶体管,并且其中,所述集成电路还包括用于耦合所述磁储存元件的线圈的终端。
10.根据权利要求9所述的集成电路,其中,所述检测电路耦合到所述终端,并且检测指示所述回扫间隔终点的所述线圈两端电压的变化。
11.根据权利要求9所述的集成电路,还包括与所述晶体管的漏极-源极连接以及所述终端串联耦合的电阻器,并且还包括电流感测电路具有耦合到所述电阻器的输入,并且感测所述电阻器两端的电压以确定所述峰值电流。
12.一种操作集成电路控制器的方法,所述集成电路能够控制具有降压拓扑或另一拓扑的电源电路以产生恒定输出电流,所述方法包括:
接收一种指示值,该指示值显示所述集成电路控制器是安装在降压转换器电路中还是安装在另一具有另一拓扑的转换器电路中;
如果指示值指示所述集成电路控制器安装在降压转换器电路中,则选择降压工作模式;
如果指示值指示所述集成电路控制器安装在另一转换器电路中,则选择另一工作模式;
检测所述电源的回扫间隔的持续时间;
确定在所述电源的充电间隔期间供应到所述电源的磁储存元件的峰值电流的指示值;
响应于选择所述降压工作模式,根据依照第一算法从峰值电流指示、所述充电间隔的持续时间和所述回扫间隔的持续时间计算出的第一值控制所述降压转换器电路的周期速率,以保持输出电流为恒定值;以及
响应于选择另一工作模式,根据依照与所述第一算法不同的第二算法从所述峰值电流和所述回扫间隔的持续时间计算出的第二控制值控制所述另一转换器电路的所述周期速率,以保持输出电流为恒定值。
13.根据权利要求12所述的方法,其中,响应于选择所述降压工作模式,所述控制对所述电源电路的所述周期速率进行控制,以将所述峰值电流的所述指示值与所述回扫间隔的所述持续时间和所述充电间隔的持续时间之和的乘积保持恒定。
14.根据权利要求13所述的方法,其中,所述响应于选择所述降压工作模式,所述控制根据所述第一算法确定所述电源电路的周期时间,其中所述第一算法是以下公式:
tcyc=K*Ipeak*(tchg+tfly)
其中,K是恒定的,tcyc是所述周期时间,Ipeak是所述峰值电流的所述指示值,tchg是所述充电间隔的所述持续时间,并且tfly是所述回扫间隔的所述持续时间。
15.根据权利要求12所述的方法,其中,所述另一工作模式是回扫工作模式,在所述回扫工作模式中,所述控制对所述电源电路的所述周期速率进行控制,以将所述峰值电流的所述指示值与所述回扫间隔的持续时间的乘积保持恒定。
16.根据权利要求15所述的方法,其中,相应于所选择的所述回扫工作模式,所述控制根据所述第二算法确定所述电源电路的周期时间,其中所述第二算法是以下公式:
tcyc=K*Ipeak*tfly
其中,K是常数,tcyc是所述周期时间,Ipeak是所述峰值电流的所述指示值,tfly是所述回扫间隔的所述持续时间。
17.根据权利要求12所述的方法,还包括接收从调光输入端来的调光值,并且其中,所述控制根据所述调光值调整所述周期速率,以根据所述调光值控制所述电源电路的输出电流。
18.一种用于控制电源电路的集成电路,所述集成电路包括控制电路,所述控制电路用于根据所述集成电路的可选工作模式控制所述电源电路的周期速率,所述可选工作模式是在降压工作模式或另一工作模式之间可选,以产生所述电源电路的输出电流,其中,在所述降压工作模式中,根据依据由第一算法计算出的第一值确定所述周期速率,以保持所述输出电流为恒定值,其中该计算来自在所述电源电路的开关周期中通过所述电源电路的磁存储元件的线圈的峰值电流、充电间隔的持续时间和回扫间隔的持续时间;
并且其中,在所述另一工作模式中,根据依据由与所述第一算法不同的第二算法计算出的第二值确定所述周期速率,以保持所述输出电流为恒定值,其中该计算来自在该开关周期中通过所述电源电压的磁存储元件的峰值电流和回扫间隔的持续时间。
19.一种从集成电路控制器控制电源电路的方法,所述方法包括:
选择所述集成电路控制器的工作模式,其中,所述工作模式是在降压工作模式与另一工作模式之间可选的;
根据所选的工作模式控制所述电源电路的周期速率以产生所述电源电路的输出电流,其中,在所述降压工作模式中,根据依照第一算法,从在电源电路的开关周期期间通过所述电源电路的磁存储元件的线圈的峰值电流、充电间隔的持续时间和回扫间隔的持续时间计算出的第一值控制所述周期速率,以保持所述输出电流为恒定值,
并且其中,在所述另一工作模式中,根据依据与所述第一算法不同的第二算法从在该开关周期期间峰值电流通过所述电源电压的磁存储元件的线圈的峰值电流和回扫间隔的持续时间第二值确定所述周期速率,以保持所述输出电流为恒定值。
CN201110218624.7A 2010-07-30 2011-08-01 具有可选降压模式操作的集成电路开关电源控制器 Expired - Fee Related CN102347693B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US36920210P 2010-07-30 2010-07-30
US61/369,202 2010-07-30
US12/973,003 2010-12-20
US12/973,003 US8912781B2 (en) 2010-07-30 2010-12-20 Integrated circuit switching power supply controller with selectable buck mode operation

Publications (2)

Publication Number Publication Date
CN102347693A CN102347693A (zh) 2012-02-08
CN102347693B true CN102347693B (zh) 2016-06-29

Family

ID=44343353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110218624.7A Expired - Fee Related CN102347693B (zh) 2010-07-30 2011-08-01 具有可选降压模式操作的集成电路开关电源控制器

Country Status (3)

Country Link
US (1) US8912781B2 (zh)
CN (1) CN102347693B (zh)
GB (1) GB2482371B (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9386653B2 (en) 2008-12-12 2016-07-05 O2Micro Inc Circuits and methods for driving light sources
US9232591B2 (en) 2008-12-12 2016-01-05 O2Micro Inc. Circuits and methods for driving light sources
US9030122B2 (en) 2008-12-12 2015-05-12 O2Micro, Inc. Circuits and methods for driving LED light sources
US9253843B2 (en) 2008-12-12 2016-02-02 02Micro Inc Driving circuit with dimming controller for driving light sources
US8742677B2 (en) 2010-01-11 2014-06-03 System General Corp. LED drive circuit with a programmable input for LED lighting
US8698419B2 (en) 2010-03-04 2014-04-15 O2Micro, Inc. Circuits and methods for driving light sources
CN103391006A (zh) 2012-05-11 2013-11-13 凹凸电子(武汉)有限公司 光源驱动电路、控制电力转换器的控制器及方法
US9510401B1 (en) 2010-08-24 2016-11-29 Cirrus Logic, Inc. Reduced standby power in an electronic power control system
US8432109B2 (en) * 2010-10-01 2013-04-30 System General Corp. Method and apparatus for a LED driver with high power factor
EP2715924A1 (en) 2011-06-03 2014-04-09 Cirrus Logic, Inc. Control data determination from primary-side sensing of a secondary-side voltage in a switching power converter
US9351356B2 (en) 2011-06-03 2016-05-24 Koninklijke Philips N.V. Primary-side control of a switching power converter with feed forward delay compensation
CN103167665B (zh) 2011-12-08 2014-10-08 昂宝电子(上海)有限公司 用于调整发光二极管电流的系统
US9263957B2 (en) * 2012-03-26 2016-02-16 Sharp Kabushiki Kaisha Switching power supply circuit and LED illumination device
US8896383B2 (en) 2012-04-30 2014-11-25 Qualcomm Incorporated Enhanced pulse frequency modulation (PFM) control mode for switching regulators
US9420645B2 (en) 2012-05-17 2016-08-16 Dialog Semiconductor Inc. Constant current control buck converter without current sense
JP2014026954A (ja) * 2012-07-26 2014-02-06 O2 Micro Inc 光源を駆動する回路および方法
US8937435B1 (en) * 2012-08-27 2015-01-20 Marvell International Ltd. Diode bridge
CN103066872B (zh) * 2013-01-17 2015-06-17 矽力杰半导体技术(杭州)有限公司 一种集成开关电源控制器以及应用其的开关电源
US20140253090A1 (en) * 2013-03-05 2014-09-11 Atmel Corporation Configurable integrated circuit enabling multiple switched mode or linear mode power control topologies
US9166485B2 (en) 2013-03-11 2015-10-20 Cirrus Logic, Inc. Quantization error reduction in constant output current control drivers
US9521712B1 (en) * 2013-07-29 2016-12-13 Cirrus Logic, Inc. Measurements of multiple external components through a single pin of an integrated circuit
DE102014204127A1 (de) 2014-03-06 2015-09-10 Tridonic Gmbh & Co Kg LED-Treiber
AT14335U1 (de) * 2014-03-07 2015-08-15 Tridonic Gmbh & Co Kg LED-Treiber
CN103904897B (zh) * 2014-04-17 2016-08-24 矽力杰半导体技术(杭州)有限公司 开关电源控制电路、开关电源、前沿检测电路和方法
TWI562523B (en) * 2015-07-30 2016-12-11 Beyond Innovation Tech Co Ltd Boost apparatus with integration of ocp detection and ovp detection
DE202017101093U1 (de) * 2017-02-27 2018-05-29 Tridonic Gmbh & Co Kg Schaltregler zum Betreiben von Leuchtmitteln
US10530236B2 (en) * 2017-09-16 2020-01-07 Ohio State Innovation Foundation Auxiliary power supply for a gate driver
JP7168510B2 (ja) * 2019-03-29 2022-11-09 日本特殊陶業株式会社 放電制御装置および方法
US10999906B1 (en) * 2020-03-18 2021-05-04 Xiamen Eco Lighting Co. Ltd. Self-adaptive illuminating device
CN114025452B (zh) * 2021-11-15 2023-08-01 四川莱福德科技有限公司 一种恒流调节方法、装置及led调光电路

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129248B2 (en) * 2004-03-30 2006-10-31 Euro-Celtique, S.A. Process for preparing oxycodone hydrochloride having less than 25 ppm 14-hydroxycodeinone

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790878A (en) 1971-12-22 1974-02-05 Keithley Instruments Switching regulator having improved control circuiting
DE3528046A1 (de) 1985-08-05 1987-02-05 Bbc Brown Boveri & Cie Rundsteuerempfaenger
US4677366A (en) 1986-05-12 1987-06-30 Pioneer Research, Inc. Unity power factor power supply
US4683529A (en) 1986-11-12 1987-07-28 Zytec Corporation Switching power supply with automatic power factor correction
GB8817684D0 (en) 1988-07-25 1988-09-01 Astec Int Ltd Power factor improvement
US4977366A (en) 1988-10-07 1990-12-11 Lucas Weinschel Inc. High frequency power sensing device
US4941078A (en) 1989-03-07 1990-07-10 Rca Licensing Corporation Synchronized switch-mode power supply
US4940929A (en) 1989-06-23 1990-07-10 Apollo Computer, Inc. AC to DC converter with unity power factor
US5109185A (en) 1989-09-29 1992-04-28 Ball Newton E Phase-controlled reversible power converter presenting a controllable counter emf to a source of an impressed voltage
US5055746A (en) 1990-08-13 1991-10-08 Electronic Ballast Technology, Incorporated Remote control of fluorescent lamp ballast using power flow interruption coding with means to maintain filament voltage substantially constant as the lamp voltage decreases
US5278490A (en) 1990-09-04 1994-01-11 California Institute Of Technology One-cycle controlled switching circuit
JPH06209569A (ja) 1993-01-05 1994-07-26 Yokogawa Electric Corp スイッチング電源装置
US5481178A (en) 1993-03-23 1996-01-02 Linear Technology Corporation Control circuit and method for maintaining high efficiency over broad current ranges in a switching regulator circuit
US5457620A (en) 1993-07-30 1995-10-10 At&T Ipm Corp. Current estimating circuit for switch mode power supply
US5638265A (en) 1993-08-24 1997-06-10 Gabor; George Low line harmonic AC to DC power supply
US5383109A (en) 1993-12-10 1995-01-17 University Of Colorado High power factor boost rectifier apparatus
US5565761A (en) 1994-09-02 1996-10-15 Micro Linear Corp Synchronous switching cascade connected offline PFC-PWM combination power converter controller
US5747977A (en) 1995-03-30 1998-05-05 Micro Linear Corporation Switching regulator having low power mode responsive to load power consumption
JPH09140145A (ja) 1995-11-15 1997-05-27 Samsung Electron Co Ltd 力率補償回路を備えた昇圧型コンバータ
GB2307802B (en) 1995-12-01 2000-06-07 Ibm Power supply with power factor correction circuit
KR0154776B1 (ko) 1995-12-28 1998-12-15 김광호 역률 보상 회로
US5798635A (en) 1996-06-20 1998-08-25 Micro Linear Corporation One pin error amplifier and switched soft-start for an eight pin PFC-PWM combination integrated circuit converter controller
US5783909A (en) 1997-01-10 1998-07-21 Relume Corporation Maintaining LED luminous intensity
US6084450A (en) 1997-01-14 2000-07-04 The Regents Of The University Of California PWM controller with one cycle response
US5960207A (en) 1997-01-21 1999-09-28 Dell Usa, L.P. System and method for reducing power losses by gating an active power factor conversion process
US6043633A (en) 1998-06-05 2000-03-28 Systel Development & Industries Power factor correction method and apparatus
IL125328A0 (en) 1998-07-13 1999-03-12 Univ Ben Gurion Modular apparatus for regulating the harmonics of current drawn from power lines
US6140777A (en) 1998-07-29 2000-10-31 Philips Electronics North America Corporation Preconditioner having a digital power factor controller
US6091233A (en) 1999-01-14 2000-07-18 Micro Linear Corporation Interleaved zero current switching in a power factor correction boost converter
US6064187A (en) 1999-02-12 2000-05-16 Analog Devices, Inc. Voltage regulator compensation circuit and method
DE10032846A1 (de) 1999-07-12 2001-01-25 Int Rectifier Corp Leistungsfaktor-Korrektursteuerschaltung
US6304473B1 (en) 2000-06-02 2001-10-16 Iwatt Operating a power converter at optimal efficiency
US6882552B2 (en) 2000-06-02 2005-04-19 Iwatt, Inc. Power converter driven by power pulse and sense pulse
US6583550B2 (en) 2000-10-24 2003-06-24 Toyoda Gosei Co., Ltd. Fluorescent tube with light emitting diodes
FR2815790B1 (fr) 2000-10-24 2003-02-07 St Microelectronics Sa Convertisseur de tension a circuit de commande autooscillant
US6343026B1 (en) 2000-11-09 2002-01-29 Artesyn Technologies, Inc. Current limit circuit for interleaved converters
JP3371962B2 (ja) 2000-12-04 2003-01-27 サンケン電気株式会社 Dc−dcコンバ−タ
EP1215808B1 (en) 2000-12-13 2011-05-11 Semiconductor Components Industries, LLC A power supply circuit and method thereof to detect demagnitization of the power supply
US6653960B2 (en) 2001-03-08 2003-11-25 Shindengen Electric Manufacturing Co., Ltd. Stabilized power supply using delta sigma modulator
US6531854B2 (en) 2001-03-30 2003-03-11 Champion Microelectronic Corp. Power factor correction circuit arrangement
US6628106B1 (en) 2001-07-30 2003-09-30 University Of Central Florida Control method and circuit to provide voltage and current regulation for multiphase DC/DC converters
US6747443B2 (en) 2001-08-31 2004-06-08 Power Integrations, Inc. Method and apparatus for trimming current limit and frequency to maintain a constant maximum power
US6600296B2 (en) 2001-11-13 2003-07-29 Intel Corporation Method and semiconductor die with multiple phase power converter
CA2471231A1 (en) 2002-01-11 2003-07-17 Precisionh2 Inc. Power factor controller
JP3947682B2 (ja) 2002-04-26 2007-07-25 Fdk株式会社 スイッチング電源回路
SE0201432D0 (sv) 2002-04-29 2002-05-13 Emerson Energy Systems Ab A Power supply system and apparatus
US6844702B2 (en) 2002-05-16 2005-01-18 Koninklijke Philips Electronics N.V. System, method and apparatus for contact-less battery charging with dynamic control
US6728121B2 (en) 2002-05-31 2004-04-27 Green Power Technologies Ltd. Method and apparatus for active power factor correction with minimum input current distortion
US6657417B1 (en) 2002-05-31 2003-12-02 Champion Microelectronic Corp. Power factor correction with carrier control and input voltage sensing
US6781351B2 (en) 2002-08-17 2004-08-24 Supertex Inc. AC/DC cascaded power converters having high DC conversion ratio and improved AC line harmonics
US6940733B2 (en) 2002-08-22 2005-09-06 Supertex, Inc. Optimal control of wide conversion ratio switching converters
US6724174B1 (en) 2002-09-12 2004-04-20 Linear Technology Corp. Adjustable minimum peak inductor current level for burst mode in current-mode DC-DC regulators
KR100470599B1 (ko) 2002-10-16 2005-03-10 삼성전자주식회사 전자기기의 회로를 보호할 수 있는 전원공급장치
JP3705495B2 (ja) * 2003-02-03 2005-10-12 Smk株式会社 スイッチング電源回路の定電流出力制御方法と定電流出力制御装置
US6768655B1 (en) 2003-02-03 2004-07-27 System General Corp. Discontinuous mode PFC controller having a power saving modulator and operation method thereof
US6956750B1 (en) 2003-05-16 2005-10-18 Iwatt Inc. Power converter controller having event generator for detection of events and generation of digital error
US6944034B1 (en) 2003-06-30 2005-09-13 Iwatt Inc. System and method for input current shaping in a power converter
US6839247B1 (en) 2003-07-10 2005-01-04 System General Corp. PFC-PWM controller having a power saving means
US6933706B2 (en) 2003-09-15 2005-08-23 Semiconductor Components Industries, Llc Method and circuit for optimizing power efficiency in a DC-DC converter
US7266001B1 (en) 2004-03-19 2007-09-04 Marvell International Ltd. Method and apparatus for controlling power factor correction
US6977827B2 (en) 2004-03-22 2005-12-20 American Superconductor Corporation Power system having a phase locked loop with a notch filter
JP4513376B2 (ja) 2004-03-26 2010-07-28 パナソニック電工株式会社 高圧放電灯点灯装置及び照明器具
CN1684348B (zh) * 2004-04-16 2010-10-20 深圳赛意法微电子有限公司 具有便于驱动器与变换器电路配合使用的控制接口的驱动器
US7317625B2 (en) 2004-06-04 2008-01-08 Iwatt Inc. Parallel current mode control using a direct duty cycle algorithm with low computational requirements to perform power factor correction
US7259524B2 (en) 2004-06-10 2007-08-21 Lutron Electronics Co., Inc. Apparatus and methods for regulating delivery of electrical energy
EP1608206B1 (en) 2004-06-14 2009-08-12 STMicroelectronics S.r.l. Led driving device with variable light intensity
DE102004033354B4 (de) 2004-07-09 2015-06-11 Infineon Technologies Ag Verfahren zur Ansteuerung eines Schalters in einem Hochsetzsteller und Ansteuerschaltung
US20060022648A1 (en) 2004-08-02 2006-02-02 Green Power Technologies Ltd. Method and control circuitry for improved-performance switch-mode converters
JP2006067730A (ja) 2004-08-27 2006-03-09 Sanken Electric Co Ltd 力率改善回路
US7276861B1 (en) 2004-09-21 2007-10-02 Exclara, Inc. System and method for driving LED
US7292013B1 (en) 2004-09-24 2007-11-06 Marvell International Ltd. Circuits, systems, methods, and software for power factor correction and/or control
US7723964B2 (en) 2004-12-15 2010-05-25 Fujitsu General Limited Power supply device
US7221130B2 (en) 2005-01-05 2007-05-22 Fyrestorm, Inc. Switching power converter employing pulse frequency modulation control
US7102902B1 (en) 2005-02-17 2006-09-05 Ledtronics, Inc. Dimmer circuit for LED
US7378805B2 (en) 2005-03-22 2008-05-27 Fairchild Semiconductor Corporation Single-stage digital power converter for driving LEDs
KR100587022B1 (ko) 2005-05-18 2006-06-08 삼성전기주식회사 디밍 회로를 갖는 led 구동회로
US7388764B2 (en) 2005-06-16 2008-06-17 Active-Semi International, Inc. Primary side constant output current controller
US7145295B1 (en) 2005-07-24 2006-12-05 Aimtron Technology Corp. Dimming control circuit for light-emitting diodes
US7888881B2 (en) 2005-07-28 2011-02-15 Exclara, Inc. Pulsed current averaging controller with amplitude modulation and time division multiplexing for arrays of independent pluralities of light emitting diodes
US7099163B1 (en) 2005-11-14 2006-08-29 Bcd Semiconductor Manufacturing Limited PWM controller with constant output power limit for a power supply
KR101243402B1 (ko) 2005-12-27 2013-03-13 엘지디스플레이 주식회사 액정표시소자의 하이브리드 백라이트 구동 장치
US7902769B2 (en) 2006-01-20 2011-03-08 Exclara, Inc. Current regulator for modulating brightness levels of solid state lighting
US8441210B2 (en) 2006-01-20 2013-05-14 Point Somee Limited Liability Company Adaptive current regulation for solid state lighting
US7310244B2 (en) 2006-01-25 2007-12-18 System General Corp. Primary side controlled switching regulator
US20080018261A1 (en) 2006-05-01 2008-01-24 Kastner Mark A LED power supply with options for dimming
ATE467331T1 (de) * 2006-06-22 2010-05-15 Osram Gmbh Led-ansteuereinrichtung
CN101127495B (zh) 2006-08-16 2010-04-21 昂宝电子(上海)有限公司 用于为开关式电源提供控制的系统和方法
US8064179B2 (en) * 2006-09-05 2011-11-22 Silicon Laboratories Inc. Integrated circuit including a switching regulator design for power over Ethernet devices
EP1912330B1 (en) 2006-10-11 2009-11-25 Mitsubishi Electric Information Technology Centre Europe B.V. Spread-period clock generator
US7859859B2 (en) 2006-11-20 2010-12-28 Picor Corporation Primary side sampled feedback control in power converters
US7667986B2 (en) 2006-12-01 2010-02-23 Flextronics International Usa, Inc. Power system with power converters having an adaptive controller
KR101357006B1 (ko) 2007-01-18 2014-01-29 페어차일드코리아반도체 주식회사 컨버터 및 그 구동 방법
US7642762B2 (en) 2007-01-29 2010-01-05 Linear Technology Corporation Current source with indirect load current signal extraction
US8174204B2 (en) 2007-03-12 2012-05-08 Cirrus Logic, Inc. Lighting system with power factor correction control data determined from a phase modulated signal
US7480159B2 (en) 2007-04-19 2009-01-20 Leadtrend Technology Corp. Switching-mode power converter and pulse-width-modulation control circuit with primary-side feedback control
US7554473B2 (en) * 2007-05-02 2009-06-30 Cirrus Logic, Inc. Control system using a nonlinear delta-sigma modulator with nonlinear process modeling
US7974109B2 (en) 2007-05-07 2011-07-05 Iwatt Inc. Digital compensation for cable drop in a primary side control power supply controller
TW200849778A (en) 2007-06-13 2008-12-16 Richtek Technology Corp Method and device to improve the light-load performance of switching-type converter
JP4239111B2 (ja) 2007-06-14 2009-03-18 サンケン電気株式会社 Ac−dcコンバータ
CN101790708B (zh) * 2007-08-28 2012-10-10 艾沃特有限公司 混合pwm和pfm的电流限制控制
US20090108677A1 (en) 2007-10-29 2009-04-30 Linear Technology Corporation Bidirectional power converters
GB0800755D0 (en) 2008-01-16 2008-02-27 Melexis Nv Improvements in and relating to low power lighting
US7966588B1 (en) * 2008-01-26 2011-06-21 National Semiconductor Corporation Optimization of electrical circuits
US7872883B1 (en) 2008-01-29 2011-01-18 Fairchild Semiconductor Corporation Synchronous buck power converter with free-running oscillator
WO2009140525A1 (en) 2008-05-15 2009-11-19 Marko Cencur Method for dimming non-linear loads using an ac phase control scheme and a universal dimmer using the method
US8526203B2 (en) * 2008-10-21 2013-09-03 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for constant voltage mode and constant current mode in flyback power converter with primary-side sensing and regulation
US8288954B2 (en) 2008-12-07 2012-10-16 Cirrus Logic, Inc. Primary-side based control of secondary-side current for a transformer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129248B2 (en) * 2004-03-30 2006-10-31 Euro-Celtique, S.A. Process for preparing oxycodone hydrochloride having less than 25 ppm 14-hydroxycodeinone

Also Published As

Publication number Publication date
GB201109322D0 (en) 2011-07-20
GB2482371B (en) 2015-07-08
US8912781B2 (en) 2014-12-16
US20120025736A1 (en) 2012-02-02
CN102347693A (zh) 2012-02-08
GB2482371A (en) 2012-02-01

Similar Documents

Publication Publication Date Title
CN102347693B (zh) 具有可选降压模式操作的集成电路开关电源控制器
CN102832836B (zh) 一种具有独立控制的级联升压和反相降压转换器
TWI396366B (zh) 負載驅動電路、控制負載驅動電路之控制器、電子系統、以及負載驅動方法
JP5947786B2 (ja) スイッチング電流制御回路、led調光システムおよびled照明機器
TWI495247B (zh) 級聯式電力轉換器及用於控制其之方法及積體電路
CN102752907B (zh) 点亮设备和照明装置
WO2010039588A2 (en) Adjustable constant current source with continuous conduction mode ("ccm") and discontinuous conduction mode ("dcm") operation
US10122252B2 (en) Supply voltage management
EP2715924A1 (en) Control data determination from primary-side sensing of a secondary-side voltage in a switching power converter
CN101652012B (zh) 高压放电灯点亮装置和照明器具
TWI533745B (zh) 光源驅動電路、控制電力轉換器的控制器及方法
TWI505746B (zh) 發光二極體光源的供電電路、電力轉換器及供電方法
KR101536108B1 (ko) 발광 다이오드 조명 장치의 제어 회로 및 전압 생성 방법
US20130076257A1 (en) Switching mode pulsed current supply for driving leds
US10404158B2 (en) Power factor correction (PFC) module operating in discontinuous current mode (DCM), system containing the PFC module and methods of operating therefor
KR101600822B1 (ko) 전원 공급 장치와 그를 이용한 엘이디 조명장치
CN103379711A (zh) Led照明装置
US8836233B2 (en) Light source apparatus and driving apparatus thereof
EP3065507B1 (en) Method and apparatus for controlling a primary stage of a light driver device
CN103582995A (zh) 开关功率变换器和基于交流三极管的调光器的输入电压感应
JP2014131420A (ja) 電源装置
CN111096077B (zh) 用于电气负载的操作设备和方法
CN204795733U (zh) 发光二极管灯
CN102387637B (zh) Led驱动电路
KR101574942B1 (ko) 에너지 재활용 고역률 led 제어 장치 및 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20160202

Address after: The city of Eindhoven in Holland

Applicant after: Koninkl Philips Electronics NV

Address before: austin texas

Applicant before: Cirrus Logic Inc.

C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20170314

Address after: The city of Eindhoven in Holland

Patentee after: KONINKL PHILIPS NV

Address before: The city of Eindhoven in Holland

Patentee before: Koninkl Philips Electronics NV

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160629

Termination date: 20170801

CF01 Termination of patent right due to non-payment of annual fee