CN102315323B - 光伏电池以及用于形成光伏电池的背接触的方法 - Google Patents

光伏电池以及用于形成光伏电池的背接触的方法 Download PDF

Info

Publication number
CN102315323B
CN102315323B CN201110227909.7A CN201110227909A CN102315323B CN 102315323 B CN102315323 B CN 102315323B CN 201110227909 A CN201110227909 A CN 201110227909A CN 102315323 B CN102315323 B CN 102315323B
Authority
CN
China
Prior art keywords
absorbed layer
contact material
back contact
layer
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110227909.7A
Other languages
English (en)
Other versions
CN102315323A (zh
Inventor
B·A·科尔瓦尔
J·C·罗霍
F·R·艾哈迈德
D·W·韦尔努伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN102315323A publication Critical patent/CN102315323A/zh
Application granted granted Critical
Publication of CN102315323B publication Critical patent/CN102315323B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及光伏电池以及用于形成光伏电池的背接触的方法。提供了一种用于形成包括至少一个半导体层(22,24)的光伏电池(10)的背接触(12)的方法。一个方法包括在金属接触(20)上沉积至少一个背接触材料(16)。该背接触材料包括金属氮化物或金属磷化物。该方法进一步包括在该背接触材料上沉积包括镉和碲的吸收层(22)并热处理该背接触材料,使得该背接触材料与该吸收层相互作用来形成降低该光伏电池的接触电阻的夹层(30)。还提供了光伏电池(10)并且包括金属接触、设置在该金属接触上的至少一个背接触材料,以及设置在该背接触材料上的包括含镉和碲的材料的吸收层。夹层设置在该背接触材料和吸收层之间并包括该背接触材料和吸收层材料的组分梯度层(30)。该光伏电池进一步包括设置在该吸收层上的窗口层。

Description

光伏电池以及用于形成光伏电池的背接触的方法
技术领域
本发明大体上涉及光伏电池,更具体地涉及用于形成光伏电池的背接触电极的方法。
背景技术
在世界的许多地方,太阳能全年都很丰富。因此,将太阳能转换成电能的光伏(PV)器件具有在世界的许多地方提供可靠形式的清洁的可再生能量的潜力。典型地,采用它的基本形式,PV(或太阳能)电池包括用设置在衬底层上的两个或三个层制成的半导体结,以及两个用于将电能采用电流形式传递到外电路的接触(导电层)。而且,常常采用附加层来提高PV器件的转换效率。
存在多种用于PV电池的候选材料系统,其中每个都具有某些优点和缺点。碲化镉(CdTe)是突出的多晶薄膜材料,具有约1.45-1.5电子伏特的接近理想的带隙。CdTe还具有非常高的吸收率,并且CdTe的膜可以采用低成本技术制造。理论上,假如可以克服关于个体半导体层的质量和背接触电极的各种问题,对于硫化镉(CdS)/CdTe器件可以实现超过百分之二十(20%)的太阳能电池效率。
由于CdTe的高功函数,一般认为常规金属背接触是不合适的。相反,将石墨糊料(未掺杂或掺杂,例如用铜或汞)广泛地用作CdTePV电池的背接触。然而,像经加速寿命测试示出的,这些石墨糊料背接触倾向于随时间推移而显著退化。该退化典型地将它自己显现为填充系数(FF)和/或开路电压Voc随时间减小。填充系数退化典型地由分流电阻(Rsh)随时间的减小以及串联电阻(Roc)随时间的增加来驱动。在长期基础上,背接触电极的退化不期望地导致太阳能电池效率的退化。
到目前为止,没能开发低电阻接触阻碍了CdTe太阳能电池的商品化。该问题的成本有效的技术方案将去除商品化CdTe光伏模块遗留的障碍之一。
由于CdTePV器件常规采用“顶板(superstrate)”配置生长(如图5图示的),因此对于制造CdTe太阳能电池的另一个技术挑战是优化窗口层的性能。如在图5中示出的,CdTe太阳能电池80在玻璃衬底82上形成。透明导电层84,典型地TCO层84沉积在该玻璃衬底82上。接着,可选的高电阻透明导电氧化物(HRT)层86可沉积在该TCO层84上,并且典型地CdS层88沉积在该HRT层86上。CdTe层90沉积在该CdS层88上,并且形成背接触92。另外,还可包括上玻璃衬底94来提供廉价的、环保阻挡层。因此,对于采用顶板(superstrate)几何结构制造的常规CdTe电池,由于吸收层在高温的随后沉积和器件的连续高温处理,优化该窗口层是不可能的。
因此,为CdTe太阳能电池提供具有低接触电阻的背接触将是可取的。提供便于优化窗口层的性能的CdTe太阳能电池的制造方法将是进一步可取的。
发明内容
本发明的一个方面在于用于形成包括至少一个半导体层的光伏电池的背接触的方法。该方法包括在金属接触上沉积至少一个背接触材料。该背接触材料包括金属氮化物或金属磷化物。该方法进一步包括在该背接触材料上沉积包括镉和碲的吸收层并热处理该背接触材料,使得该背接触材料与该吸收层相互作用来形成夹层,其降低光伏电池的接触电阻。该方法进一步包括在该吸收层上沉积窗口层。
本发明的另一方面在于用于形成包括至少一个半导体层的光伏电池的背接触的方法。该方法包括在金属接触上沉积至少一个背接触材料。该背接触材料包括镁、锌、铜、汞、锰、铯、砷、锑、铋或其组合。该方法进一步包括在该背接触材料上沉积包括镉(Cd)和碲(Te)的吸收层并在该吸收层上沉积窗口层。
本发明的再另一方面在于包括金属接触的光伏电池。至少一个背接触材料设置在该金属接触上。该光伏电池进一步包括设置在该背接触材料上的包括含镉和碲的材料的吸收层。夹层设置在该背接触材料和该吸收层之间。该夹层包括该背接触材料和该吸收层材料的组分梯度层。该光伏电池进一步包括设置在该吸收层之上的窗口层。
本发明的另一方面在于用于形成包括至少一个半导体层的光伏电池的背接触的方法。该方法包括在金属接触上沉积至少一个背接触材料。该背接触材料包括铟、镓、铝或其组合。该方法进一步包括在该背接触材料上沉积包括镉(Cd)和碲(Te)的吸收层并在该吸收层上沉积窗口层。
附图说明
当下列详细说明参照附图(其中类似的符号在整个图中代表类似的部件)阅读时,本发明的这些和其他的特征、方面和优势将变得更好理解,其中:
图1是根据本发明的各种实施例的示例性光伏电池的示意性截面图;
图2是根据本发明的各种实施例的具有掩埋结的示例性光伏电池的示意性截面图;
图3是根据本发明的各种实施例的具有p+区的示例性光伏电池的示意性截面图;
图4是根据本发明的各种实施例的示例性光伏电池的示意性截面图,其具有在背接触材料和吸收层之间界面处形成的碲化物;
图5图示采用“顶板”配置制造的常规CdTePV电池;
图6图示根据本发明的各种实施例的形成光伏电池的背接触的方法;
图7图示根据本发明的各种实施例的形成具有掩埋结的光伏电池的背接触的方法;
图8图示根据本发明的各种实施例的形成光伏电池的背接触的另一个方法;
图9图示根据本发明的各种实施例的形成具有掩埋结的光伏电池的背接触的另一个方法。
具体实施方式
如上文指出的,CdTe的高功函数使得能够采用的用于与CdTe层形成欧姆接触的有相对一小组金属。合适的金属包括铂和金,它们对于低成本CdTePV电池不是商业上可行的候选。然而,例如钼、镍和铬等较低成本的金属典型地在背接触和CdTe层之间的界面处形成隧道势垒。由于CdTe典型地具有每立方厘米约1×1014至1×1015的载流子密度,该隧道势垒可是相对大的。因此,在没有CdTe层的背面的适当处理的情况下,与背接触的电阻可以是可观的,由此减小PV电池的填充系数(并因此减小效率)。
而且,已经证明,形成采用“衬底”配置(与上文参照图5描述的“顶板”配置相反)制造的CdTePV电池的低电阻背接触是极为困难的。本发明解决这些问题,并提供用于形成采用“衬底”配置生长的光伏电池10的改进的背接触12的方法。参照图1-4、6和7描述这些方法。对于图示的设置,与上文参照图5描述的采用常规“顶板”配置形成的电池80相比,PV电池10采用“衬底”配置形成。
如指示的,例如在图1中,光伏电池10包括至少一个半导体层22。对于图示的设置,该半导体层22包括碲化镉(CdTe)。尽管所提供的示例针对CdTe,但是本发明也可以用于形成其他半导体的改进的背接触电极。其它用于半导体层22的示例性材料非限制地包括,CdZnxTe1-x和CdSxTe1-x,其中x小于0.1。
如指示的,例如在图1和6中,用于形成光伏电池10的背接触12的方法包括,在步骤40在金属接触20上沉积至少一个背接触材料16。该背接触材料包括金属氮化物或金属磷化物。对于特别实施例,该背接触材料16包括金属氮化物。合适的金属氮化物的非限定性的示例包括氮化钽、氮化钼和氮化钨。对于特别配置,金属氮化物的1-200纳米(nm)厚的层,以及更特别地50-100nm厚的层沉积在该金属接触20上。该金属氮化物可例如通过反应溅射沉积。
对于其他实施例,背接触材料16包括金属磷化物。合适的金属磷化物的非限制性示例包括磷化镍(NiP)。对于特别配置,金属磷化物的1-200nm,以及更特别地50-100nm厚的层沉积在金属接触20上。该金属磷化物可例如通过电镀沉积。对于该实施例,磷从金属磷化物中扩散出来,形成p+区14,如例如在图3中指示的那样。
再次参照图1和6,该方法进一步包括,在步骤42在背接触材料16上沉积包括镉(Cd)和碲(Te)的吸收层22。根据特别实施例,该吸收层22包括选自碲化镉、碲化镉锌、碲化镉硫、碲化镉锰、碲化镉镁及其组合构成的组中的材料。更一般地,该吸收层22可在某些实施例中包括来自II族和VI族或III族和V族的将不会导致大带隙偏移(例如,带隙偏移≤0.1eV)的其他元素,例如,锌、硫、锰和镁。对于特定配置,CdTe中镉的原子百分比在约48-52原子百分比范围内,并且CdTe中碲的原子百分比在约45-55原子百分比范围内。所采用的CdTe可是富Te的,例如碲的原子百分比可在约52-55原子百分比范围内。对于特定配置,CdTe中的锌、硫、锰或镁的原子百分比小于约10原子百分比,并且更特别地,约8原子百分比,并且再更特别地,约6原子百分比,且具有停留在1.4-1.6eV范围内的带隙。已经假定通过增加少量原子百分比的锌,所得的本征碲化镉锌的缺陷密度相对于CdTe减小。然而,相反该缺陷状态可偏移到带中的不同能级从而导致不同的自补偿级,这是可能的,例如可导致更多的施主/受主态,或者较少深缺陷(其可提高寿命)。然而,十原子百分比的锌将使带隙达到约1.55eV。相似地,对于小的原子S百分比,硫的添加将使所得的本征碲化镉硫的带隙在约1.4-1.5eV之间改变。例如,参见D.W.Lane,“AreviewoftheopticalbandgapofthinfilmCdSxTe1-x”,SolarEnergyMaterials&SolarCells90(2006)1169-1175,以及JihuaYang等,“AlloycompositionandelectronicstructureofCd1-xZnxTebysurfacephotovoltagespectroscopy”,JournalofAppliedPhysics,Vol.91,No.2,p.703-707。
如在图1和6中指示的,该方法还包括,在步骤44热处理背接触材料16,使得该背接触材料与吸收层22相互作用以形成降低光伏电池10的接触电阻的夹层30。对于特别实施例,热处理包括在沉积吸收层22之后在吸收层22上进行加热处理(thermaltreatment),其中吸收层22的沉积和加热处理完成光伏电池10的背接触12的形成。根据更特别的实施例,加热处理包括将吸收层22退火。例如,吸收层22可在约400-600摄氏度的温度范围内的温度退火约5-30分钟。
对于其他实施例,通过沉积吸收层22的方式实现热处理,其完成光伏电池10的背接触12的形成。
再次参照图1和6,该方法进一步包括,在步骤46在吸收层22上沉积窗口层24。对于在图1中示出的配置,该窗口层24是PV器件10的结形成层。该窗口层24的添加引起产生光伏效应的电场。对于特别实施例,该窗口层24包括选自硫化镉(CdS)、硫化铟(III)(In2S3)、硫化锌(ZnS)、碲化锌(ZnTe)、硒化锌(ZnSe)、硒化镉(CdSe)、充氧硫化镉(CdS:O)、氧化铜(Cu2O)、非晶或微晶硅和Zn(O,H)及其组合构成的组中的材料。在一个非限制性示例中,该窗口层24包括CdS并具有在约50-200nm范围内且更特别地在50-100nm之间的厚度。对于某些配置,硫化镉中镉的原子百分比在约45-55原子百分比的范围内,更特别地,在约48-52原子百分比的范围内。
另外,对于图1中示出的设置,该方法进一步包括,在步骤48在窗口层24上沉积导电层26。对于某些设置,该导电层26包括透明导电氧化物(TCO)。透明导电氧化物的非限制性示例包括氧化铟锡(ITO)、掺氟氧化锡(SnO:F)或FTO、掺铟氧化镉、锡酸镉(Cd2SnO4)或CTO、以及掺杂氧化锌(ZnO),例如掺铝氧化锌(ZnO:Al)或AZO,氧化铟锌(IZO)、以及氧化锌锡(ZnSnOx)、及其组合。依赖于采用的特定TCO(及它的薄层电阻),TCO层22的厚度可在约50-600nm并且更特别地100-200nm的范围内。
对于图2和7所描述的示例性配置,该方法进一步包括,在步骤50在吸收层22和窗口层24之间的界面处形成掩埋结28。对于特别实施例,窗口层24包括CdS,并且例如通过在约400-600摄氏度的范围内的温度将半导体堆叠退火约5-30分钟来将硫从CdS层24扩散到吸收层22来形成该掩埋结28。应该注意的是,尽管图7示出步骤46和50为分开的,但是掩埋层的形成可包括沉积和退火步骤46、50。尽管图7中未示出,但是该方法可进一步包括步骤48,例如沉积导电层26,如在图2和6中指示的那样。
参照图1、8和9描述用于形成光伏电池10的背接触12的另一个方法。与上文参照图6和7所说明的第一方法相似,该PV电池10采用“衬底”配置生长。如图1中指示的,例如该PV电池10包括至少一个半导体层22、24。如例如在图8和9示出的,该方法包括,在步骤40在金属接触20上沉积至少一个背接触材料16。对于p型背接触实施例,该背接触材料包括镁、锌、铜、汞、锰、铯、砷、锑、铋或其组合。在另一个实施例中,该背接触材料包括铟(例如,In2S3或In2O3等)、铝、或镓,使得形成n+型背接触。对于该实施例,窗口层24制成p型,并且吸收层(CdTe层)22为本征的或n型的。对于该实施例,吸收层22可包括选自碲化镉、碲化镉锌、碲化镉硫、碲化镉锰、碲化镉镁及其组合构成的组中的材料。该组包括这些材料的轻掺杂形式。根据更特别的实施例,窗口层24为p型并包括选自碲化锌、碲化镁、非晶硅、非晶碳化硅;BaCuXF(其中‘X’包括硫、硒或碲),LaCuOX(其中‘X’包括硫、硒或碲);XCuO(S1-ySey)(其中‘X’包括镨、钕、或镧,并且其中y≤1),Sr2Cu2ZnO2S2,Sr2CuGaO3S及其组合或其多层构成的组中的材料。
如例如图8和9中示出的,该方法进一步包括,在步骤42中在背接触材料16上沉积包括镉(Cd)和碲(Te)的吸收层22,以及在步骤46中在该吸收层22上沉积窗口层24。对于图1中示出的设置,该方法进一步包括,在步骤48中在该窗口层24上沉积导电层26。用于该吸收层、窗口层和导电层22、24和26的示例性材料在上文描述。例如,该吸收层22可包括选自碲化镉、碲化镉锌、碲化镉硫、碲化镉锰、碲化镉镁及其组合构成的组中的材料。
如图6和8中图示的,该方法进一步可选地包括,在步骤52在沉积吸收层22之后对吸收层22进行加热处理,其中吸收层22的沉积和加热处理完成光伏电池10的背接触12的形成。对于特别实施例,该加热处理包括将吸收层22退火。例如,吸收层22可在约400-600摄氏度的范围内的温度退火约5-30分钟。有益的是,对于这些实施例,如例如在图3中指示的,在退火期间,吸收层22和背接触材料16之间的相互作用引起吸收材料与背接触材料相互作用来形成p+区14而形成低电阻接触。然而,对于其他设置,在步骤42吸收层22的沉积完成光伏电池10的背接触12的形成。例如,如例如在图3中指示的,吸收层22在相对高温(例如,500-600℃)下的沉积引起吸收材料与背接触材料相互作用来形成p+区14而形成低电阻接触。
对于图4中示出的示例性配置,背接触材料16选自镁、锌、铜、汞、锰及其组合构成的组,使得当背接触材料16与吸收层22中的碲反应时,在背接触材料16和吸收层22之间的界面处形成碲化物18。例如,碲化镉锌、碲化镉锰和碲化镉镁可在背接触材料16和吸收层22之间的界面处形成,例如如图4中示意指示的那样。根据更特别的实施例,沉积吸收层22的步骤42包括在背接触材料16上形成富碲CdTe吸收层22。对于该示例性工艺,仅背接触材料16的一部分(金属本身或杂质)与富碲CdTe吸收层22相互作用来掺杂吸收层22的背面。
对于其他设置,碲化镉可以在与背接触的界面附近富碲沉积,使得当与背接触层相互作用时,在背接触16-吸收层22界面处形成中间层18(参见图4),例如,ZnTe、MnTe、MgTe或CuxTe。
对于也由图4示意图示的另一个示例性配置,背接触材料16包括铯,使得当铯与吸收层22中的碲反应时,Cs2-xTe(其中x≥0)或掺Cs的CdxTe(18)(其中x≤1)在背接触材料16和吸收层22之间的界面处形成。对于该实施例,铯降低了吸收层22的功函数来形成低电阻接触。
对于特别设置,窗口层24包括选自硫化镉(CdS)、硫化铟(III)(In2S3)、硫化锌(ZnS)、碲化锌(ZnTe)、硒化锌(ZnSe)、硒化镉(CdSe)、充氧硫化镉(CdS:O)、氧化铜(Cu2O)、非晶或微晶硅和Zn(O,H)及其组合构成的组中的材料。对于图2和7中描绘的示例性设置,该方法进一步包括,在步骤50在吸收层22和窗口层24之间的界面处形成掩埋结28。
对于图4中示出的示例性设置,沉积吸收层22的步骤包括在背接触材料16上形成富碲CdTe吸收层22,并且背接触材料16选自砷、锑、铋及其组合构成的组,使得当背接触材料16与吸收层22中的碲反应时,碲化物18在背接触材料16和吸收层22之间的界面处形成。对于该示例性工艺,背接触材料16与富碲CdTe吸收层22反应来形成X2Te3,其中X是砷、锑或铋。
采用衬底配置生长的本发明的光伏电池10实施例参照图1和2描述。如例如图1中示出的,该PV电池10包括金属接触20,并且至少一个背接触材料16设置在该金属接触20上。该PV电池10进一步包括设置在该背接触材料16上的包括含镉和碲的材料的吸收层22,并且夹层30设置在该背接触材料16和该吸收层22之间。该夹层30包括该背接触材料以及该吸收层材料的组分梯度层30。例如,该夹层30可在约1-50nm的距离上,以及更具体地在2-20nm的距离上从该背接触材料过渡到该吸收层材料。该PV电池10进一步包括设置在该吸收层22上的窗口层24。
对于图1中示意示出的设置,PV电池10进一步包括设置在窗口层24上的导电层26。对于特别设置,该导电层26包括透明导电氧化物(TCO)。上文提供了TCO层26的示例性材料和层厚。
对于特别设置,背接触材料16包括金属氮化物或金属磷化物。上文提供了该金属氮化物和金属磷化物设置的示例性材料和厚度。
上文提供了吸收层22和窗口层24的示例性材料。对于特别设置,吸收层22包括选自碲化镉、碲化镉锌、碲化镉硫、碲化镉锰、碲化镉镁及其组合构成的组中的材料,并且窗口层24包括选自硫化镉(CdS)、硫化铟(III)(In2S3)、硫化锌(ZnS)、碲化锌(ZnTe)、硒化锌(ZnSe)、硒化镉(CdSe)、充氧硫化镉(CdS:O),氧化铜(Cu2O)、非晶或微晶硅和Zn(O,H)及其组合构成的组中的材料。
对于图2中描绘的示例性设置,光伏电池10进一步包括设置在吸收层22和窗口层24之间界面处的掩埋结28。上文参照图2描述了该掩埋结28。
有益的是,本发明提供采用“衬底”配置生长的CdTePV器件的改进的背接触。通过方便采用“衬底”配置的CdTePV电池的生长,本发明进一步通过避免吸收层的后续高温沉积而实现CdTePV器件中窗口层的性能的优化,该后续高温沉积能够具有对窗口层的性能的有害影响。采用该方式,能够实现具有相对低接触电阻和最佳窗口层性能的CdTePV器件。
尽管本文仅图示和描述本发明的某些特征,本领域内技术人员将想到许多修改和改变。因此,要理解附上的权利要求意在涵盖所有这样的修改和改变,它们作为落入本发明的真正精神内。
部件列表
10光伏电池30夹层
12背接触40沉积背接触材料的步骤
14P+区42沉积吸收层的步骤
16背接触材料44热处理背接触材料的步骤
18碲化物46沉积窗口层的步骤
20金属接触48沉积导电层的步骤
22吸收层50形成掩埋结的步骤
24窗口层52加热处理吸收层的步骤
26导电层80具有顶板几何结构的CdTePV
电池
28掩埋结82玻璃衬底
84TCO90CdTe
86HRT92背接触
88CdS94上玻璃层

Claims (10)

1.一种用于形成包括至少一个半导体层(22,24)的光伏电池(10)的背接触(12)的方法,所述方法包括:
在金属接触(20)上沉积至少一个背接触材料(16),其中所述背接触材料包括金属氮化物或金属磷化物;
在所述背接触材料(16)上沉积包括镉和碲的吸收层(22);
热处理所述背接触材料(16),使得所述背接触材料与所述吸收层(22)相互作用来形成降低所述光伏电池(10)的接触电阻的夹层(30);以及
在所述吸收层(22)上沉积窗口层(24),
其中所述热处理包括在沉积所述吸收层(22)期间或者在沉积所述吸收层(22)之后,在所述吸收层(22)上进行加热处理,其中所述吸收层(22)的所述沉积和加热处理完成所述光伏电池(10)的所述背接触(12)的形成。
2.如权利要求1所述的方法,其中所述吸收层(22)包括选自碲化镉、碲化镉锌、碲化镉硫、碲化镉锰、碲化镉镁及其组合构成的组中的材料,并且其中所述窗口层(24)包括选自硫化镉(CdS)、硫化铟(Ⅲ)(In2S3)、硫化锌(ZnS)、碲化锌(ZnTe)、硒化锌(ZnSe)、硒化镉(CdSe)、充氧硫化镉(CdS:O),氧化铜(Cu2O)、非晶或微晶硅和Zn(O,H)及其组合构成的组中的材料,所述方法进一步包括在所述吸收层(22)和所述窗口层(24)之间的界面处形成掩埋结(28)。
3.一种用于形成包括至少一个半导体层(22,24)的光伏电池(10)的背接触(12)的方法,所述方法包括:
在金属接触(20)上沉积至少一个背接触材料(16),其中所述背接触材料包括镁、锌、铜、汞、锰、铯、砷、锑、铋或其组合;
在所述背接触材料(16)上沉积包括镉(Cd)和碲(Te)的吸收层(22);
在沉积所述吸收层(22)期间或者在沉积所述吸收层(22)之后,在所述吸收层(22)上进行加热处理,其中所述吸收层(22)的所述沉积和加热处理完成所述光伏电池(10)的所述背接触(12)的形成;以及
在所述吸收层(22)上沉积窗口层(24)。
4.如权利要求3所述的方法,其中所述背接触材料(16)选自镁、锌、铜、汞、铋、锰及其组合构成的组,使得当所述背接触材料与所述吸收层中的碲反应时,在所述背接触材料(16)和所述吸收层(22)之间的界面处形成碲化物(18),其中沉积所述吸收层(22)的步骤包括在所述背接触材料(16)上形成富碲CdTe吸收层(22)。
5.如权利要求3所述的方法,其中所述背接触材料(16)包括铯,使得当所述铯与所述吸收层中的碲反应时,在所述背接触材料(16)和所述吸收层(22)之间的界面处形成Cs2-xTe,其中x≥0,或形成掺Cs的CdxTe(18),其中x≤1。
6.如权利要求3所述的方法,其中沉积所述吸收层(22)的步骤包括在所述背接触材料(16)上形成富碲CdTe吸收层(22),其中所述背接触材料(16)选自砷、锑、铋及其组合构成的组,使得当所述背接触材料与所述吸收层中的碲反应时,在所述背接触材料(16)和所述吸收层(22)之间的界面处形成碲化物(18)。
7.一种光伏电池(10),包括:
金属接触(20);
设置在所述金属接触(20)上的至少一个背接触材料(16);
设置在所述背接触材料(16)上的包括含镉和碲的材料的吸收层(22);
夹层(30),设置在所述背接触材料(16)和所述吸收层(22)之间并包括所述背接触材料和所述吸收层材料的组分梯度层(30);以及
设置在所述吸收层(22)上的窗口层(24),
其中在沉积所述吸收层(22)期间或者在沉积所述吸收层(22)之后,在所述吸收层(22)上进行加热处理,其中所述吸收层(22)的所述沉积和加热处理完成所述光伏电池(10)的所述背接触(12)的形成。
8.一种用于形成包括至少一个半导体层(22,24)的光伏电池(10)的背接触(12)的方法,所述方法包括:
在金属接触(20)上沉积至少一个背接触材料(16),其中所述背接触材料包括铟、镓、铝或其组合;
在所述背接触材料(16)上沉积包括镉(Cd)和碲(Te)的吸收层(22);
在沉积所述吸收层(22)期间或者在沉积所述吸收层(22)之后,在所述吸收层(22)上进行加热处理,其中所述吸收层(22)的所述沉积和加热处理完成所述光伏电池(10)的所述背接触(12)的形成;以及
在所述吸收层(22)上沉积窗口层(24)。
9.如权利要求8所述的方法,其中所述吸收层(22)包括选自碲化镉、碲化镉锌、碲化镉硫、碲化镉锰、碲化镉镁及其组合构成的组中的材料,并且其中所述窗口层(24)包括选自碲化锌、碲化镁、非晶硅、非晶碳化硅;BaCuXF,LaCuOX;XCuO(S1-ySey),Sr2Cu2ZnO2S2,Sr2CuGaO3S及其组合或其多层构成的组中的材料,所述BaCuXF中的“X”包括硫、硒或碲,所述LaCuOX中的“X”包括硫、硒或碲,所述XCuO(S1-ySey)中的“X”包括镨、钕或镧,且其中y≤1。
10.如权利要求9所述的方法,进一步包括在所述吸收层(22)和所述窗口层(24)之间的界面处形成掩埋结(28)。
CN201110227909.7A 2010-06-29 2011-06-29 光伏电池以及用于形成光伏电池的背接触的方法 Expired - Fee Related CN102315323B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/826,234 US20110315220A1 (en) 2010-06-29 2010-06-29 Photovoltaic cell and methods for forming a back contact for a photovoltaic cell
US12/826234 2010-06-29

Publications (2)

Publication Number Publication Date
CN102315323A CN102315323A (zh) 2012-01-11
CN102315323B true CN102315323B (zh) 2015-11-25

Family

ID=44907601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110227909.7A Expired - Fee Related CN102315323B (zh) 2010-06-29 2011-06-29 光伏电池以及用于形成光伏电池的背接触的方法

Country Status (4)

Country Link
US (1) US20110315220A1 (zh)
EP (1) EP2403001A3 (zh)
CN (1) CN102315323B (zh)
AU (1) AU2011203136B2 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524524B2 (en) 2010-04-22 2013-09-03 General Electric Company Methods for forming back contact electrodes for cadmium telluride photovoltaic cells
US20110284078A1 (en) * 2010-05-21 2011-11-24 EncoreSolar, Inc. Method of forming cadmium telluride thin film
US20120024360A1 (en) * 2010-07-28 2012-02-02 General Electric Company Photovoltaic device
CN103208557A (zh) * 2012-01-13 2013-07-17 上海凯世通半导体有限公司 太阳能电池的制作方法及太阳能电池
WO2013119550A1 (en) 2012-02-10 2013-08-15 Alliance For Sustainable Energy, Llc Thin film photovoltaic devices with a minimally conductive buffer layer
WO2013173633A1 (en) * 2012-05-16 2013-11-21 Alliance For Sustainable Energy, Llc Methods and materials for the improvement of photovoltaic device performance
CN102751345A (zh) * 2012-05-25 2012-10-24 陕西师范大学 碲化镉/硫化镉太阳能电池
US8728855B2 (en) 2012-09-28 2014-05-20 First Solar, Inc. Method of processing a semiconductor assembly
US20150270423A1 (en) 2012-11-19 2015-09-24 Alliance For Sustainable Energy, Llc Devices and methods featuring the addition of refractory metals to contact interface layers
US20140246083A1 (en) 2013-03-01 2014-09-04 First Solar, Inc. Photovoltaic devices and method of making
EP2973731A1 (en) * 2013-03-15 2016-01-20 First Solar, Inc Photovoltaic device having improved back electrode and method of formation
US9406829B2 (en) 2013-06-28 2016-08-02 First Solar, Inc. Method of manufacturing a photovoltaic device
TWI504006B (zh) * 2013-07-09 2015-10-11 Neo Solar Power Corp 具摻雜碳化矽層之結晶矽太陽能電池及其製造方法
CN104518044B (zh) * 2013-09-26 2019-07-23 中国建材国际工程集团有限公司 用来制造CdTe薄层太阳能电池的背接触层的方法
US10784383B2 (en) 2015-08-07 2020-09-22 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
CN106784036A (zh) * 2016-12-28 2017-05-31 成都中建材光电材料有限公司 一种掺杂碲化镉薄膜电池及其制作方法
CN107039541A (zh) * 2016-12-28 2017-08-11 成都中建材光电材料有限公司 一种柔性碲化镉薄膜电池及其制作方法
CN108878551B (zh) * 2018-06-25 2022-01-21 成都中建材光电材料有限公司 一种碲化镉薄膜电池及制备方法
EP3903352B1 (en) 2018-12-27 2022-03-30 First Solar, Inc. Photovoltaic devices and methods of forming the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730941A (zh) * 2007-07-09 2010-06-09 费罗公司 含铝、和硼、钛、镍、锡、银、镓、锌、铟及铜中的至少一种的太阳能电池接触层

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982260A (en) * 1975-08-01 1976-09-21 Mobil Tyco Solar Energy Corporation Light sensitive electronic devices
MY104396A (en) * 1988-02-05 1994-03-31 Minnesota Mining & Mfg Method for manufacturing an amorphous silicon thin film solar cell and schottky barrier diode on a common substrate.
WO2002091483A2 (en) * 2001-05-08 2002-11-14 Bp Corporation North America Inc. Improved photovoltaic device
EP1433207B8 (en) * 2001-10-05 2009-10-07 SOLAR SYSTEMS & EQUIOMENTS S.R.L. A process for large-scale production of cdte/cds thin film solar cells
US20080280030A1 (en) * 2007-01-31 2008-11-13 Van Duren Jeoren K J Solar cell absorber layer formed from metal ion precursors
CN101785112A (zh) * 2007-12-13 2010-07-21 第一太阳能有限公司 光伏模块的并联互连接的系统和方法
US8410357B2 (en) * 2008-03-18 2013-04-02 Solexant Corp. Back contact for thin film solar cells
JP2011515852A (ja) * 2008-03-18 2011-05-19 ソレクサント・コーポレイション 薄膜太陽電池の改善されたバックコンタクト
US8143512B2 (en) * 2008-03-26 2012-03-27 Solexant Corp. Junctions in substrate solar cells
CA2744774C (en) * 2008-07-17 2017-05-23 Uriel Solar, Inc. High power efficiency, large substrate, polycrystalline cdte thin film semiconductor photovoltaic cell structures grown by molecular beam epitaxy at high deposition rate for use in solar electricity generation
US20100307568A1 (en) * 2009-06-04 2010-12-09 First Solar, Inc. Metal barrier-doped metal contact layer
WO2011057189A1 (en) * 2009-11-08 2011-05-12 First Solar, Inc. Back contact deposition using water-doped gas mixtures

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730941A (zh) * 2007-07-09 2010-06-09 费罗公司 含铝、和硼、钛、镍、锡、银、镓、锌、铟及铜中的至少一种的太阳能电池接触层

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Formation of a stable ohmic contact to CdTe thin films through the diffusion of P from NiP";B Ghosh, et al;《semiconductor science and technology》;19940915;第10卷(第1期);第71-76页 *

Also Published As

Publication number Publication date
AU2011203136A1 (en) 2012-01-19
EP2403001A3 (en) 2015-07-01
CN102315323A (zh) 2012-01-11
AU2011203136B2 (en) 2016-02-04
EP2403001A2 (en) 2012-01-04
US20110315220A1 (en) 2011-12-29

Similar Documents

Publication Publication Date Title
CN102315323B (zh) 光伏电池以及用于形成光伏电池的背接触的方法
US8084682B2 (en) Multiple band gapped cadmium telluride photovoltaic devices and process for making the same
AU2011201778B2 (en) Photovoltaic cells with cadmium telluride intrinsic layer
US9608144B2 (en) Photovoltaic devices and method of making
US20080023059A1 (en) Tandem solar cell structures and methods of manufacturing same
US20130104985A1 (en) Photovoltaic device with mangenese and tellurium interlayer
CN103329277A (zh) 用于光伏电池的导电基材
CN101853888A (zh) 用于薄膜光伏器件的层和由其制成的太阳能电池
EP2482329A2 (en) Photovoltaic device
CN103855232B (zh) 光伏器件及其制造方法
KR20160005072A (ko) 광기전력 전지 또는 모듈용 후방 접촉 기판
US20120192924A1 (en) Monolithic integration of super-strate thin film photovoltaic modules
US9691927B2 (en) Solar cell apparatus and method of fabricating the same
CN104081544A (zh) 用于硅基光电装置的高功函数缓冲层
WO2014184661A2 (en) Photovoltaic devices and method of making
CN104051565B (zh) 制造光伏器件的方法
US20120285508A1 (en) Four terminal multi-junction thin film photovoltaic device and method
US11417785B2 (en) Photovoltaic devices and method of making
EP2413384A2 (en) Photovoltaic device
CN105706244A (zh) 用于光伏电池或模块的背接触基板
US20150007890A1 (en) Photovoltaic device comprising heat resistant buffer layer, and method of making the same
JP2003008039A (ja) 化合物太陽電池の製造方法
TWI611591B (zh) 形成緩衝層之方法
KR101180998B1 (ko) 태양전지 및 이의 제조방법
CN113471332A (zh) 一种载流子有效分离的铜基薄膜太阳电池p-n结结构设计的方法及制备得到的太阳电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151125

Termination date: 20170629