US20150270423A1 - Devices and methods featuring the addition of refractory metals to contact interface layers - Google Patents
Devices and methods featuring the addition of refractory metals to contact interface layers Download PDFInfo
- Publication number
- US20150270423A1 US20150270423A1 US14/443,251 US201314443251A US2015270423A1 US 20150270423 A1 US20150270423 A1 US 20150270423A1 US 201314443251 A US201314443251 A US 201314443251A US 2015270423 A1 US2015270423 A1 US 2015270423A1
- Authority
- US
- United States
- Prior art keywords
- cdte
- layer
- contact
- contact interface
- cds
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 239000003870 refractory metal Substances 0.000 title description 8
- 229910004613 CdTe Inorganic materials 0.000 claims abstract description 83
- 239000002184 metal Substances 0.000 claims abstract description 41
- 229910052751 metal Inorganic materials 0.000 claims abstract description 41
- 238000005247 gettering Methods 0.000 claims abstract description 38
- 239000000463 material Substances 0.000 claims abstract description 32
- 239000002019 doping agent Substances 0.000 claims abstract description 25
- 229910007709 ZnTe Inorganic materials 0.000 claims description 36
- 238000000151 deposition Methods 0.000 claims description 18
- 238000001465 metallisation Methods 0.000 claims description 15
- 150000001875 compounds Chemical class 0.000 claims description 14
- 238000005477 sputtering target Methods 0.000 claims description 13
- 239000000843 powder Substances 0.000 claims description 12
- 229910008561 TiTe2 Inorganic materials 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052735 hafnium Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 4
- 238000003754 machining Methods 0.000 claims description 3
- 230000000153 supplemental effect Effects 0.000 claims 4
- 229910052760 oxygen Inorganic materials 0.000 abstract description 37
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 36
- 239000001301 oxygen Substances 0.000 abstract description 36
- 239000010949 copper Substances 0.000 description 53
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 18
- 238000009792 diffusion process Methods 0.000 description 17
- 230000008569 process Effects 0.000 description 15
- 230000008021 deposition Effects 0.000 description 13
- 230000008901 benefit Effects 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 238000007792 addition Methods 0.000 description 5
- 239000008187 granular material Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- YKYOUMDCQGMQQO-UHFFFAOYSA-L cadmium dichloride Chemical compound Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 description 4
- AYTAKQFHWFYBMA-UHFFFAOYSA-N chromium dioxide Chemical compound O=[Cr]=O AYTAKQFHWFYBMA-UHFFFAOYSA-N 0.000 description 4
- 150000002736 metal compounds Chemical class 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000001627 detrimental effect Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910004262 HgTe Inorganic materials 0.000 description 2
- 229910016021 MoTe2 Inorganic materials 0.000 description 2
- 229910002665 PbTe Inorganic materials 0.000 description 2
- 229910005642 SnTe Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010960 commercial process Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 229910052949 galena Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052950 sphalerite Inorganic materials 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- DZKDPOPGYFUOGI-UHFFFAOYSA-N tungsten dioxide Inorganic materials O=[W]=O DZKDPOPGYFUOGI-UHFFFAOYSA-N 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- 229910002531 CuTe Inorganic materials 0.000 description 1
- 229910007746 Zr—O Inorganic materials 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000013082 photovoltaic technology Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/022441—Electrode arrangements specially adapted for back-contact solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
- H01J37/3429—Plural materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022466—Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0392—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
- H01L31/03925—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1828—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02551—Group 12/16 materials
- H01L21/02562—Tellurides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0296—Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
- H01L31/02963—Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/543—Solar cells from Group II-VI materials
Definitions
- Thin-film photovoltaic (PV) devices based on CdS/CdTe technology represent one of the fastest-growing segments of all PV technologies.
- Most CdS/CdTe devices are configured in one or more variations of a superstrate design.
- a typical superstrate design light enters the device through a transparent glass “superstrate,” is transmitted through one or more transparent conducting oxide (TCO) layers, one or more buffer layers and through an n-type CdS and/or CdS-alloy window layer. The light is then absorbed in a CdTe absorber layer.
- TCO transparent conducting oxide
- a superstrate configured CdS/CdTe device must also include an ohmic contact in electrical communication with the CdTe absorber layer opposite the CdS window. This contact is commonly referred to as the “back contact.”
- a back contact is necessary to establish a low-resistance pathway for electrons to enter the CdTe layer during device operation. It is now known however, that certain back contact formation process will also significantly alter the electrical properties of the underlying CdTe layer, thereby significantly affecting device functionality. In particular, an as-deposited CdTe layer is often of insufficient electrical quality for effective junction operation. Many factors affect the suitability of a CdTe layer, including the CdTe source material used, the specifics of the CdTe deposition steps and selected treatment processes.
- the net acceptor density of the CdTe layer will be too low for optimal device operation.
- the CdTe material may be n-type prohibiting device operation. Even if the acceptor density is sufficiently high in the CdTe as deposited, the minority-carrier lifetime is often too short for efficient operation.
- One back contact structure which has been shown to be particularly advantageous includes a ZnTe contact interface layer doped with copper, referred to herein as a ZnTe:Cu contact interface layer. After deposition, some or all of the ZnTe:Cu contact interface layer is then overlaid with a deposited metal contact.
- Cu must diffuse from the contact interface layer into the CdTe layer to improve CdS/CdTe device functionality by causing the CdTe layer to become p-type and possibly by changing other electrical properties of the CdTe layer.
- any process that prevents or limits Cu diffusion can be detrimental to the process reproducibility and ultimate device efficiency.
- oxidation of Cu to form CuO during or after deposition of the contact interface layer can limit diffusion of any Cu contained within an oxide.
- Some disclosed embodiments are methods of forming a back contact in a CdS/CdTe PV device.
- the methods include providing a sputter-deposition target made of at least a contact interface material, a p-type dopant and a gettering metal, depositing a contact interface layer from the target to a CdTe device layer and depositing an outer metallization layer to the contact interface layer.
- the gettering metal in the target is provided as a non-oxide compound of the gettering metal that exhibits a smaller negative enthalpy than an oxide of the gettering metal.
- the gettering metal may be, but is not limited to one of Ti, Zr and Hf.
- the gettering metal may be provided in the target as TiTe 2 .
- the contact interface material in the target may be provided as ZnTe or another suitable contact interface material.
- the p-type dopant may be Cu or another suitable dopant.
- Method embodiments may more specifically include providing a target powder, pressing the target powder into a deposition target in an inert or reducing atmosphere and machining the target in an inert or reducing atmosphere.
- the contact interface layer may also be deposited from the target in an inert or reducing atmosphere.
- Alternative embodiments include a CdS/CdTe PV device comprising a superstrate; one or more TCO layers in physical contact with the superstrate; an n-type CdS layer in electrical contact with at least one TCO layer; a CdTe layer in electrical contact with the CdS layer; a process that includes CdCl 2 or other suitable material to improve the quality of the CdTe layer and/or electrical junction; a process to remove residues remaining from the CdCl 2 processing; a contact interface layer comprising a contact interface material, a dopant and a gettering metal in electrical contact with the CdTe layer; and an outer metallization layer in electrical contact with the contact interface layer.
- the gettering metal may be, but is not limited to one of Ti, Zr and Hf.
- the dopant may be, but is not limited to Cu.
- the contact interface material may include Te, for example, the contact interface material may be, but is not limited to ZnTe.
- Alternative embodiments include a back contact for a CdS/CdTe PV device comprising a contact interface layer comprising a contact interface material, a dopant and a gettering metal; and an outer metallization layer in electrical contact with the contact interface layer as described above.
- FIG. 1 is a schematic diagram of a CdS/CdTe device as disclosed herein, immediately after deposition of back contact layers, before Cu diffusion occurs.
- FIG. 2 is a flowchart illustration of a disclosed method.
- a CdS/CdTe PV device 100 includes a superstrate 102 which is usually a glass superstrate.
- the device also includes one or more TCO layers 104 in physical contact with the superstrate; an n-type CdS layer 106 in electrical contact with at least one TCO layer 104 , and a CdTe layer 108 in electrical contact with the CdS layer 106 .
- a superstrate configured CdS/CdTe device 100 also includes a back ohmic contact in electrical contact with the CdTe layer 108 .
- a back contact includes at least a contact interface layer 110 and an outer metallization layer 112 although fewer or more contact layers may be provided.
- the contact interface layer 110 provides for suitable adhesion between the CdTe layer and any metal outer contact. More importantly, with respect to the present disclosure, a contact interface layer 110 can be deposited from materials and according to techniques designed to significantly impact the operational properties of a device. The methods and structures disclosed herein may also be implemented to create or enhance the back contact of a CdS/CdTe PV device prepared in a substrate configuration.
- certain back contact formation processes will significantly alter the electrical properties of the underlying CdTe layer, thereby significantly affecting device functionality.
- An as-deposited CdTe layer is usually of insufficient electrical quality to support effective junction operation.
- Certain back contacting processes can be used to diffuse one or more dopant species, for example Cu, into the CdTe layer. Dopants diffused in this manner can improve the electrical quality of an uncontacted CdTe layer. For example, successful Cu diffusion into the CdTe layer causes the CdTe layer to become sufficiently p-type to establish a strong field in the CdTe regions near to the CdS layer.
- the contact interface layer 110 may be composed of a compound with a group VI material as the anion, for example O, S, Se, and Te.
- a group VI material for example O, S, Se, and Te.
- the contact interface layer overlies the CdTe layer and the “common anion rule” suggests that two discrete layers with common anions are preferred if the interface benefits from nearly continuous valance bands.
- Valance-band continuity is an important attribute for low-resistance hole conduction, especially when it is difficult for the semiconductor absorber material to be made highly p-type, as is the case with CdTe.
- contact interface layers include: ZnTe, HgTe, Cu x Te (x being a subscript between 0 and 2), PbTe, SnTe, MoTe 2 , CrO 2 , WO 2 , CdS, ZnS, PbS, Mo x O y (x and y between 1 and 3), and CdO.
- contact interface materials any of the foregoing or similar materials that are either doped or undoped, which can be used to form a contact interface layer are referred to as “contact interface materials.”
- One back contact structure which has been shown to be advantageous includes a ZnTe contact interface layer doped with copper, referred to herein as a ZnTe:Cu contact interface layer.
- any processing step or natural occurrence which prevents, limits, or alters the reproducible diffusion of Cu into the CdTe layer can be detrimental to optimizing the final device efficiency.
- the oxidation of Cu to form CuO during or after deposition of a contact interface layer prohibits diffusion of the Cu as desired. Oxidation of Cu may result within the pre-deposited source, during deposition, or during one or more post-deposition processes.
- Ti is more adherent to the ZnTe:Cu contact interface layer than some other refractory metals, such as Ni.
- Ti can be chemically etched selectively from the ZnTe:Cu layer.
- devices having Ti metallization yield consistently higher voltages (about 100 mV+higher) when compared to substantially identical devices using Ni or another metal in as the outer contact.
- Applicants have determined that one, or possibly the primary cause of increased device voltage due to the use of Ti metallization is the effectiveness of Ti as an oxygen getter.
- a “getter” is any substance, typically a metal, which readily combines with oxygen and serves to semi-permanently bind oxygen during any stage of device fabrication or use to prevent the oxygen from undesirably oxidizing another element or compound.
- a source of the oxygen which forms TiO 2 at or near the Ti/ZnTe:Cu interface is oxygen diffusing out of the ZnTe:Cu layer.
- Ti metallization getters oxygen from the ZnTe:Cu layer causing there to be less oxygen remaining within the ZnTe:Cu layer to form CuO. Accordingly, Cu diffusion into the CdTe layer is more reproducible, and the gettering ability of Ti directly enhances the electrical properties of the device noted above.
- Ti is an effective oxygen getter in part because it can oxidize rapidly to form TiO 2 .
- Ti is an effective getter even though CuO has a relatively strong bond between the Cu and oxygen.
- the enthalpy of the CuO bond is approximately ⁇ 38 to ⁇ 40 kcal/mole, which demonstrates why Cu bound into CuO is unavailable to the CdTe layer.
- the enthalpy of a CuTe bond is only about ⁇ 6 kcal/mole. However, the CuO bond it is not as strong as a TiO 2 bond at ⁇ 226 kcal/mol.
- Typical ZnTe:Cu contact deposition processes provide sufficient thermal energy to enable oxygen diffusion, as well as the disassociation of some of the CuO bonds. There is not, however sufficient thermal energy available to disassociate any TiO 2 bonds. Therefore, oxygen that diffuses to a Ti surface will be permanently gettered at the process and operating temperatures of the CdS/CdTe device.
- CdS/CdTe devices having a Ti metallization layer tend to produce higher voltages.
- one important role of the Ti (or other refractory metal) layer is to getter oxygen from the ZnTe:Cu contact interface layer and possibly also to getter oxygen from the CdTe layer. This insight suggests that device performance could be further enhanced with alternative contacts specifically designed to getter oxygen more effectively.
- the benefits of the Ti layer as a gettering surface can only be realized if oxygen can diffuse all the way through the contact interface to the Ti layer. Also, once the Ti surface is oxidized, the rate at which the Ti layer getters additional oxygen is reduced. Furthermore, a reasonable degree of oxygen diffusion is possible during the production of research devices were the duration of high temperature contacting processes is relatively long (typically 1-4 hours). On the contrary, relatively long-distance oxygen diffusion during production becomes much less likely in a rapid-cycle commercial process which may take 1 minute or less. In a rapid commercial process sequence, any Ti getter surface would be much more effective if it were located closer to the detrimental oxygen, or along a likely oxygen diffusion path.
- Certain embodiments disclosed herein feature an alternative contact design that better meets the needs of a commercial device.
- the disclosed contacts have Ti or another refractory metal distributed throughout the contact interface layer, which may be, but is not limited to a ZnTe:Cu contact interface layer.
- the methods described herein can be implemented with any suitable getter metal compound, dopant and contact-interface material.
- a certain metal (Ti), a specific contact interface material (ZnTe) and a specific dopant (Cu) are discussed in significant detail. These particular material choices are discussed in detail to conveniently illustrate the underlying principles disclosed herein. Therefore, the discussion of Ti, ZnTe and Cu herein should not be construed as limiting the embodiments disclosed to any particular getter metal, contact interface material or dopant.
- a contact having Ti or another refractory metal distributed throughout a contact interface or other layer could possibly be fabricated by mixing Ti granules into the powder used to make the pressed-powder sputtering target used to deposit the contact interface layer.
- this fabrication method presents a problem for commercial implementation. It is difficult to mix pure Ti granules into the ZnTe+Cu powder used to form an evaporation/sublimation source or sputtering target. Unless the target powder preparation was performed under reducing or ultra-high vacuum conditions, the Ti granules would oxidize quickly and form stable TiO 2 granules during the mixing process.
- TiO 2 has exceptionally high negative enthalpy as noted above, a typical sputtering process will not fractionate a significant portion of the TiO 2 into elemental Ti and oxygen. Furthermore, any elemental Ti that was fractionated would quickly reform TiO 2 with the oxygen just released, destroying the ability of the inclusion to getter additional oxygen.
- Another problem anticipated with a method based upon mixing elemental Ti into the target powder is the potential for rapid oxidation of Ti during any stage of the target preparation process which could be an extremely hazardous situation.
- a suitable target may be prepared by first selecting a potential gettering metal having a large negative enthalpy for its metal oxide(s) and possibly other useful parameters (step 200 ).
- a suitable non-oxide compound of the metal may be identified which has a lower negative enthalpy than the metal oxide (Step 202 ).
- the negative enthalpy of the selected non-oxide metal compound will be low enough that the metal and the additional element(s) will substantially fractionate at the energies and/or temperatures required to deposit the contact layers.
- an appropriate amount of the selected compound may be mixed into a target powder along with a semiconductor and dopant, for example, ZnTe and Cu (step 204 ).
- the target powder may then be pressed into a deposition target by any suitable process (step 206 ).
- the target may be machined or otherwise prepared for use (step 208 ).
- the target may then be used to deposit a contact interface layer or other contact layer on the CdTe layer of a CdS/CdTe device (step 210 ).
- one or more of the mixing, pressing, machining or deposition steps may be wholly or partially performed in an inert or reducing atmosphere to avoid oxygen contamination.
- a CdS/CdTe device 100 might thus be produced having a contact interface layer 110 with a necessary dopant such as Cu (illustrated as Cu circles 114 ) and a gettering metal such as Ti (illustrated as Ti squares 116 ) distributed throughout the contact interface layer in a quantity controlled by the target preparation steps.
- a necessary dopant such as Cu (illustrated as Cu circles 114 )
- a gettering metal such as Ti (illustrated as Ti squares 116 ) distributed throughout the contact interface layer in a quantity controlled by the target preparation steps.
- the deposited atoms of Cu, the gettering metal and oxygen will diffuse between the contact interface layer 110 , the CdTe layer 112 and possibly other layers.
- Oxygen can also diffuse into the device from any processing atmosphere containing oxygen or from the air during use or storage. These highly generalized diffusion pathways are represented on FIG. 1 as arrows. After some diffusion has occurred, the device becomes as schematically illustrated in FIG. 3 . In particular, a significant portion of the oxygen present in the contact interface layer 110 and potentially the CdTe layer 108 becomes permanently bound to the gettering metal (as shown by TiO 2 rectangles 118 ) on FIG. 3 .
- the oxygen can be bound in the contact interface layer 110 or near the contact interface layer in the CdTe layer 108 since a small amount of elemental Ti may diffuse into the CdTe layer. Because enough of the oxygen within the device has been effectively gettered, the Cu 114 is free to diffuse from the contact interface layer 110 to the CdTe layer 108 as is required for optimum device performance. In addition, additional oxygen diffusing into the device during storage or use can be gettered by surplus gettering metal. Thus, the back contact metallization 112 can be implemented with a metal which is not an effective getter, if desired.
- a suitable Ti compound for the formation of a deposition target as described in FIG. 2 , steps 204 - 208 should have the following qualities: a) higher stability to oxidation than pure Ti; b) does not contain oxygen; and c) does not have a high negative enthalpy. These criteria should provide for the compound to be ground or otherwise processed to the proper size for target pressing without significant oxidization. The foregoing criteria also allow fractionation of the selected compound into atomic species during sputtering, thereby causing Ti to be incorporated into the contact layers as a getter. For example, the compound TiTe 2 has a heat of formation of about ⁇ 50 kcal/mole and therefore meets the criteria outlined above.
- the target By adding a small amount of extra Te in the form of TiTe 2 , the target not only produces a film with an appropriate amount of Ti getter, but also yields a ZnTe:Cu film that is enriched in Te or at least less likely to be Te deficient. Te that diffuses from the ZnTe:Cu contact interface layer into the CdTe layer could be optimized to improve the CdTe quality if Te vacancies were present.
- the deposition temperature be selected to control evaporation of the low melting-point/high vapor pressure Te as the sputtering process heats the various surfaces involved.
- the most important plasma, surface, and bulk reactions that are expected to progress during sputtering of a TiTe 2 containing ZnTe:Cu target are as follows:
- TiTe 2 +Sputtering Ti+2Te (Fractionation of TiTe 2 during sputtering);
- Ti+2CuO TiO 2 +2Cu (Gettering of oxygen to release Cu);
- Te+V Te Te Te (Elimination of V Te defects in ZnTe:Cu or CdTe).
- the embodiments disclosed herein will work equally well with other Group 4 A refractory metals such as Zr and Hf. Further, in some applications, it may be beneficial to choose gettering addition(s) that enhance other electrical, structural, or optical material properties of the device. In these cases, the effectiveness of the additional element(s) as a getter may be a balance between the enthalpy of the resulting metal oxide, and other required properties. It is expected that metals such as Mg, Ca, Sr, Ba, Sc, Y, La, Ac, V, Nb, Ta, Cr, Mo, and W would be useful in certain applications.
- Cu acts as a Group IB, p-type dopant by substituting onto a Cd lattice site.
- a gettering addition from Group 1 A of the periodic table may provide not only oxygen gettering function, but also provide p-type doping similar to Cu.
- the choice of an appropriate getter metal compound added to a target in the manner of TiTe 2 can be guided, in part, by the ability to find compounds that could be added to a sputtering target which would be expected to sputter atomically. For example, a compound such as ZrO 2 that will tend to sputter with a significant fraction of Zr—O dimers or trimers (two or more atoms rather than one atom) may be unsuitable.
- ZnTe As the contact interface material.
- the foregoing principles can be applied to any suitable contact interface material, including but not limited to ZnTe, HgTe, Cu x Te (x being a subscript between 0 and 2), PbTe, SnTe, MoTe 2 , CrO 2 , WO 2 , CdS, ZnS, PbS, Mo x O y (x and y between 1 and 3 ), and CdO.
- These alternative interface materials may also be doped to attain necessary electrical parameters for the intended contact application.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
- This application claims priority to, and the benefit under 35 USC section 119 of, U.S. Provisional Application No. 61/728,001 filed on Nov. 19, 2012 and entitled “Devices and Methods Featuring the Addition of Refractory Metals to Contact Interface Layers” the content of which is hereby incorporated by reference in its entirety and for all purposes
- The United States Government has rights in this invention under Contract No. DE-AC36-08G028308 between the United States Department of Energy and the Alliance for Sustainable Energy, LLC, the manager and operator of the National Renewable Energy Laboratory.
- Thin-film photovoltaic (PV) devices based on CdS/CdTe technology represent one of the fastest-growing segments of all PV technologies. Most CdS/CdTe devices are configured in one or more variations of a superstrate design. In a typical superstrate design, light enters the device through a transparent glass “superstrate,” is transmitted through one or more transparent conducting oxide (TCO) layers, one or more buffer layers and through an n-type CdS and/or CdS-alloy window layer. The light is then absorbed in a CdTe absorber layer.
- A superstrate configured CdS/CdTe device must also include an ohmic contact in electrical communication with the CdTe absorber layer opposite the CdS window. This contact is commonly referred to as the “back contact.” A back contact is necessary to establish a low-resistance pathway for electrons to enter the CdTe layer during device operation. It is now known however, that certain back contact formation process will also significantly alter the electrical properties of the underlying CdTe layer, thereby significantly affecting device functionality. In particular, an as-deposited CdTe layer is often of insufficient electrical quality for effective junction operation. Many factors affect the suitability of a CdTe layer, including the CdTe source material used, the specifics of the CdTe deposition steps and selected treatment processes. Often, the net acceptor density of the CdTe layer will be too low for optimal device operation. Also, the CdTe material may be n-type prohibiting device operation. Even if the acceptor density is sufficiently high in the CdTe as deposited, the minority-carrier lifetime is often too short for efficient operation.
- The foregoing problems can be addressed by back contacting processes that diffuse one or more dopant species into the CdTe layer. Although Cu has been historically used for the active diffusing dopant species, other group I species (for example Au or Ag) or group V species (for example N, P, As, Sb, or Bi) have been found to demonstrate potential for this use. Although the precise defect formation that occurs during dopant diffusion remains debated, it is known that a successful diffusion alters the electrical properties of the underlying CdTe layer so that it becomes sufficiently p-type to establish a strong field in the device regions near the n-type CdS layer. Furthermore, Cu diffusion at an appropriate temperature has been found to increase carrier lifetime within the CdTe layer.
- One back contact structure which has been shown to be particularly advantageous includes a ZnTe contact interface layer doped with copper, referred to herein as a ZnTe:Cu contact interface layer. After deposition, some or all of the ZnTe:Cu contact interface layer is then overlaid with a deposited metal contact. As noted above, Cu must diffuse from the contact interface layer into the CdTe layer to improve CdS/CdTe device functionality by causing the CdTe layer to become p-type and possibly by changing other electrical properties of the CdTe layer. Thus, any process that prevents or limits Cu diffusion can be detrimental to the process reproducibility and ultimate device efficiency. For example, oxidation of Cu to form CuO during or after deposition of the contact interface layer can limit diffusion of any Cu contained within an oxide.
- The embodiments disclosed herein are intended to overcome one or more of the limitations described above. The foregoing examples of the related art and limitations related therewith are intended to be illustrative and not exclusive. Other limitations of the related art will become apparent to those of skill in the art upon a reading of the specification and a study of the drawings.
- The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods which are meant to be exemplary and illustrative, not limiting in scope. In various embodiments, one or more of the above-described problems have been reduced or eliminated, while other embodiments are directed to other improvements.
- Some disclosed embodiments are methods of forming a back contact in a CdS/CdTe PV device. The methods include providing a sputter-deposition target made of at least a contact interface material, a p-type dopant and a gettering metal, depositing a contact interface layer from the target to a CdTe device layer and depositing an outer metallization layer to the contact interface layer. In some instances, the gettering metal in the target is provided as a non-oxide compound of the gettering metal that exhibits a smaller negative enthalpy than an oxide of the gettering metal. The gettering metal may be, but is not limited to one of Ti, Zr and Hf. For example, the gettering metal may be provided in the target as TiTe2. The contact interface material in the target may be provided as ZnTe or another suitable contact interface material. The p-type dopant may be Cu or another suitable dopant.
- Method embodiments may more specifically include providing a target powder, pressing the target powder into a deposition target in an inert or reducing atmosphere and machining the target in an inert or reducing atmosphere. The contact interface layer may also be deposited from the target in an inert or reducing atmosphere. These steps reduce the risk of prematurely oxidizing the gettering metal along with other advantages.
- Alternative embodiments include a CdS/CdTe PV device comprising a superstrate; one or more TCO layers in physical contact with the superstrate; an n-type CdS layer in electrical contact with at least one TCO layer; a CdTe layer in electrical contact with the CdS layer; a process that includes CdCl2 or other suitable material to improve the quality of the CdTe layer and/or electrical junction; a process to remove residues remaining from the CdCl2 processing; a contact interface layer comprising a contact interface material, a dopant and a gettering metal in electrical contact with the CdTe layer; and an outer metallization layer in electrical contact with the contact interface layer.
- In a device embodiment, the gettering metal may be, but is not limited to one of Ti, Zr and Hf. The dopant may be, but is not limited to Cu. The contact interface material may include Te, for example, the contact interface material may be, but is not limited to ZnTe.
- Alternative embodiments include a back contact for a CdS/CdTe PV device comprising a contact interface layer comprising a contact interface material, a dopant and a gettering metal; and an outer metallization layer in electrical contact with the contact interface layer as described above.
- In addition to the exemplary aspects and embodiments described above, further aspects and embodiments will become apparent by reference to the drawings and by study of the following descriptions.
- Exemplary embodiments are illustrated in referenced figures of the drawings. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than limiting.
-
FIG. 1 is a schematic diagram of a CdS/CdTe device as disclosed herein, immediately after deposition of back contact layers, before Cu diffusion occurs. -
FIG. 2 is a flowchart illustration of a disclosed method. -
FIG. 3 is a schematic diagram of the CdS/CdTe device ofFIG. 1 , after Cu diffusion occurs. - Unless otherwise indicated, all numbers expressing quantities of ingredients, dimensions, reaction conditions and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about”.
- In this application and the claims, the use of the singular includes the plural unless specifically stated otherwise. In addition, use of “or” means “and/or” unless stated otherwise. Moreover, the use of the term “including”, as well as other forms, such as “includes” and “included”, is not limiting. Also, terms such as “component” encompass both components comprising one unit and components that comprise more than one unit unless specifically stated otherwise.
- Certain embodiments disclosed herein are methods useful for the manufacture of high efficiency CdS/CdTe PV devices. Other embodiments include specific CdS/CdTe PV devices and device layers. As generally shown in
FIG. 1 , a CdS/CdTe PV device 100 includes asuperstrate 102 which is usually a glass superstrate. The device also includes one or more TCO layers 104 in physical contact with the superstrate; an n-type CdS layer 106 in electrical contact with at least oneTCO layer 104, and aCdTe layer 108 in electrical contact with theCdS layer 106. A superstrate configured CdS/CdTe device 100 also includes a back ohmic contact in electrical contact with theCdTe layer 108. In one embodiment, a back contact includes at least acontact interface layer 110 and anouter metallization layer 112 although fewer or more contact layers may be provided. Thecontact interface layer 110 provides for suitable adhesion between the CdTe layer and any metal outer contact. More importantly, with respect to the present disclosure, acontact interface layer 110 can be deposited from materials and according to techniques designed to significantly impact the operational properties of a device. The methods and structures disclosed herein may also be implemented to create or enhance the back contact of a CdS/CdTe PV device prepared in a substrate configuration. - In particular, certain back contact formation processes will significantly alter the electrical properties of the underlying CdTe layer, thereby significantly affecting device functionality. An as-deposited CdTe layer is usually of insufficient electrical quality to support effective junction operation. Certain back contacting processes can be used to diffuse one or more dopant species, for example Cu, into the CdTe layer. Dopants diffused in this manner can improve the electrical quality of an uncontacted CdTe layer. For example, successful Cu diffusion into the CdTe layer causes the CdTe layer to become sufficiently p-type to establish a strong field in the CdTe regions near to the CdS layer.
- The
contact interface layer 110 may be composed of a compound with a group VI material as the anion, for example O, S, Se, and Te. As noted above the contact interface layer overlies the CdTe layer and the “common anion rule” suggests that two discrete layers with common anions are preferred if the interface benefits from nearly continuous valance bands. Valance-band continuity is an important attribute for low-resistance hole conduction, especially when it is difficult for the semiconductor absorber material to be made highly p-type, as is the case with CdTe. Some specific examples of suitable contact interface layers include: ZnTe, HgTe, CuxTe (x being a subscript between 0 and 2), PbTe, SnTe, MoTe2, CrO2, WO2, CdS, ZnS, PbS, MoxOy (x and y between 1 and 3), and CdO. As used herein, any of the foregoing or similar materials that are either doped or undoped, which can be used to form a contact interface layer are referred to as “contact interface materials.” One back contact structure which has been shown to be advantageous includes a ZnTe contact interface layer doped with copper, referred to herein as a ZnTe:Cu contact interface layer. - Any processing step or natural occurrence which prevents, limits, or alters the reproducible diffusion of Cu into the CdTe layer can be detrimental to optimizing the final device efficiency. For example, the oxidation of Cu to form CuO during or after deposition of a contact interface layer prohibits diffusion of the Cu as desired. Oxidation of Cu may result within the pre-deposited source, during deposition, or during one or more post-deposition processes.
- Applicants have determined that the use of Ti, deposited as the outer metallization layer over a ZnTe:Cu contact interface layer for polycrystalline CdTe devices provides several performance advantages. Initially it may be noted that Ti is more adherent to the ZnTe:Cu contact interface layer than some other refractory metals, such as Ni. Second, Ti can be chemically etched selectively from the ZnTe:Cu layer. In addition, devices having Ti metallization yield consistently higher voltages (about 100 mV+higher) when compared to substantially identical devices using Ni or another metal in as the outer contact.
- Applicants have determined that one, or possibly the primary cause of increased device voltage due to the use of Ti metallization is the effectiveness of Ti as an oxygen getter. As used herein, a “getter” is any substance, typically a metal, which readily combines with oxygen and serves to semi-permanently bind oxygen during any stage of device fabrication or use to prevent the oxygen from undesirably oxidizing another element or compound. With respect to the CdS/CdTe device having Ti metallization described above, Applicant believes that one source of the oxygen which forms TiO2 at or near the Ti/ZnTe:Cu interface is oxygen diffusing out of the ZnTe:Cu layer. Thus, the use of Ti metallization getters oxygen from the ZnTe:Cu layer causing there to be less oxygen remaining within the ZnTe:Cu layer to form CuO. Accordingly, Cu diffusion into the CdTe layer is more reproducible, and the gettering ability of Ti directly enhances the electrical properties of the device noted above.
- Ti is an effective oxygen getter in part because it can oxidize rapidly to form TiO2. Ti is an effective getter even though CuO has a relatively strong bond between the Cu and oxygen. The enthalpy of the CuO bond is approximately −38 to −40 kcal/mole, which demonstrates why Cu bound into CuO is unavailable to the CdTe layer. The enthalpy of a CuTe bond is only about −6 kcal/mole. However, the CuO bond it is not as strong as a TiO2 bond at −226 kcal/mol. Typical ZnTe:Cu contact deposition processes provide sufficient thermal energy to enable oxygen diffusion, as well as the disassociation of some of the CuO bonds. There is not, however sufficient thermal energy available to disassociate any TiO2 bonds. Therefore, oxygen that diffuses to a Ti surface will be permanently gettered at the process and operating temperatures of the CdS/CdTe device.
- The foregoing observations explain why CdS/CdTe devices having a Ti metallization layer tend to produce higher voltages. In summary, one important role of the Ti (or other refractory metal) layer is to getter oxygen from the ZnTe:Cu contact interface layer and possibly also to getter oxygen from the CdTe layer. This insight suggests that device performance could be further enhanced with alternative contacts specifically designed to getter oxygen more effectively.
- In a CdS/CdTe device having a Ti metallization layer as described above, the benefits of the Ti layer as a gettering surface can only be realized if oxygen can diffuse all the way through the contact interface to the Ti layer. Also, once the Ti surface is oxidized, the rate at which the Ti layer getters additional oxygen is reduced. Furthermore, a reasonable degree of oxygen diffusion is possible during the production of research devices were the duration of high temperature contacting processes is relatively long (typically 1-4 hours). On the contrary, relatively long-distance oxygen diffusion during production becomes much less likely in a rapid-cycle commercial process which may take 1 minute or less. In a rapid commercial process sequence, any Ti getter surface would be much more effective if it were located closer to the detrimental oxygen, or along a likely oxygen diffusion path.
- Certain embodiments disclosed herein feature an alternative contact design that better meets the needs of a commercial device. The disclosed contacts have Ti or another refractory metal distributed throughout the contact interface layer, which may be, but is not limited to a ZnTe:Cu contact interface layer. The methods described herein can be implemented with any suitable getter metal compound, dopant and contact-interface material. In much of the comprehensive disclosure below, a certain metal (Ti), a specific contact interface material (ZnTe) and a specific dopant (Cu) are discussed in significant detail. These particular material choices are discussed in detail to conveniently illustrate the underlying principles disclosed herein. Therefore, the discussion of Ti, ZnTe and Cu herein should not be construed as limiting the embodiments disclosed to any particular getter metal, contact interface material or dopant.
- A contact having Ti or another refractory metal distributed throughout a contact interface or other layer could possibly be fabricated by mixing Ti granules into the powder used to make the pressed-powder sputtering target used to deposit the contact interface layer. Unfortunately, this fabrication method presents a problem for commercial implementation. It is difficult to mix pure Ti granules into the ZnTe+Cu powder used to form an evaporation/sublimation source or sputtering target. Unless the target powder preparation was performed under reducing or ultra-high vacuum conditions, the Ti granules would oxidize quickly and form stable TiO2 granules during the mixing process.
- Also, because TiO2 has exceptionally high negative enthalpy as noted above, a typical sputtering process will not fractionate a significant portion of the TiO2 into elemental Ti and oxygen. Furthermore, any elemental Ti that was fractionated would quickly reform TiO2 with the oxygen just released, destroying the ability of the inclusion to getter additional oxygen. Another problem anticipated with a method based upon mixing elemental Ti into the target powder is the potential for rapid oxidation of Ti during any stage of the target preparation process which could be an extremely hazardous situation.
- Accordingly, certain embodiments disclosed herein incorporate Ti or other refractory metal atoms into a sputtered film without adding elemental Ti to a sputter target. In particular, as illustrated in
FIG. 2 , a suitable target may be prepared by first selecting a potential gettering metal having a large negative enthalpy for its metal oxide(s) and possibly other useful parameters (step 200). Next, a suitable non-oxide compound of the metal may be identified which has a lower negative enthalpy than the metal oxide (Step 202). Ideally, the negative enthalpy of the selected non-oxide metal compound will be low enough that the metal and the additional element(s) will substantially fractionate at the energies and/or temperatures required to deposit the contact layers. Once a suitable metal compound is selected, an appropriate amount of the selected compound may be mixed into a target powder along with a semiconductor and dopant, for example, ZnTe and Cu (step 204). The target powder may then be pressed into a deposition target by any suitable process (step 206). Similarly, the target may be machined or otherwise prepared for use (step 208). The target may then be used to deposit a contact interface layer or other contact layer on the CdTe layer of a CdS/CdTe device (step 210). In certain instances one or more of the mixing, pressing, machining or deposition steps (steps 204-210) may be wholly or partially performed in an inert or reducing atmosphere to avoid oxygen contamination. - If the non-oxide compound of the gettering metal is selected to have a suitably low negative bond enthalpy, the compound will fractionate during deposition resulting in substantially elemental atoms of the gettering metal deposited within and distributed throughout the deposited contact layers. As schematically illustrated in
FIG. 1 , a CdS/CdTe device 100 might thus be produced having acontact interface layer 110 with a necessary dopant such as Cu (illustrated as Cu circles 114) and a gettering metal such as Ti (illustrated as Ti squares 116) distributed throughout the contact interface layer in a quantity controlled by the target preparation steps. - During and after deposition, the deposited atoms of Cu, the gettering metal and oxygen will diffuse between the
contact interface layer 110, theCdTe layer 112 and possibly other layers. Oxygen can also diffuse into the device from any processing atmosphere containing oxygen or from the air during use or storage. These highly generalized diffusion pathways are represented onFIG. 1 as arrows. After some diffusion has occurred, the device becomes as schematically illustrated inFIG. 3 . In particular, a significant portion of the oxygen present in thecontact interface layer 110 and potentially theCdTe layer 108 becomes permanently bound to the gettering metal (as shown by TiO2 rectangles 118) onFIG. 3 . The oxygen can be bound in thecontact interface layer 110 or near the contact interface layer in theCdTe layer 108 since a small amount of elemental Ti may diffuse into the CdTe layer. Because enough of the oxygen within the device has been effectively gettered, theCu 114 is free to diffuse from thecontact interface layer 110 to theCdTe layer 108 as is required for optimum device performance. In addition, additional oxygen diffusing into the device during storage or use can be gettered by surplus gettering metal. Thus, theback contact metallization 112 can be implemented with a metal which is not an effective getter, if desired. - As noted above, a suitable Ti compound for the formation of a deposition target as described in
FIG. 2 , steps 204-208 should have the following qualities: a) higher stability to oxidation than pure Ti; b) does not contain oxygen; and c) does not have a high negative enthalpy. These criteria should provide for the compound to be ground or otherwise processed to the proper size for target pressing without significant oxidization. The foregoing criteria also allow fractionation of the selected compound into atomic species during sputtering, thereby causing Ti to be incorporated into the contact layers as a getter. For example, the compound TiTe2 has a heat of formation of about −50 kcal/mole and therefore meets the criteria outlined above. - One potential concern with adding TiTe2 granules to a ZnTe+Cu target mixture is that the target powder mixture would become overly enriched in Te. Fortunately, Te enrichment may be of benefit for several reasons. Material defect calculations suggest that CdTe and ZnTe layers that can be deficient in Te, and this deficiency can cause the formation of Te vacancies within the CdTe material, and these vacancies can act as donors and/or mid-gap recombination sites. These donors and/or recombination sites are undesirable in CdTe used for PV applications because they are known to limit the performance of the device. By adding a small amount of extra Te in the form of TiTe2, the target not only produces a film with an appropriate amount of Ti getter, but also yields a ZnTe:Cu film that is enriched in Te or at least less likely to be Te deficient. Te that diffuses from the ZnTe:Cu contact interface layer into the CdTe layer could be optimized to improve the CdTe quality if Te vacancies were present. To preserve the foregoing benefits, it is important that the deposition temperature be selected to control evaporation of the low melting-point/high vapor pressure Te as the sputtering process heats the various surfaces involved. The most important plasma, surface, and bulk reactions that are expected to progress during sputtering of a TiTe2 containing ZnTe:Cu target are as follows:
-
(1) -
TiTe2+Sputtering=Ti+2Te (Fractionation of TiTe2 during sputtering); -
(2) -
Ti+2CuO=TiO2+2Cu (Gettering of oxygen to release Cu); -
(3) -
Te+VTe=TeTe (Elimination of VTe defects in ZnTe:Cu or CdTe). - Although the above description has been presented using Ti as the getter species, the embodiments disclosed herein will work equally well with other Group 4A refractory metals such as Zr and Hf. Further, in some applications, it may be beneficial to choose gettering addition(s) that enhance other electrical, structural, or optical material properties of the device. In these cases, the effectiveness of the additional element(s) as a getter may be a balance between the enthalpy of the resulting metal oxide, and other required properties. It is expected that metals such as Mg, Ca, Sr, Ba, Sc, Y, La, Ac, V, Nb, Ta, Cr, Mo, and W would be useful in certain applications. For example, in the case of ZnTe:Cu as a contact interface, Cu acts as a Group IB, p-type dopant by substituting onto a Cd lattice site. In this application, a gettering addition from Group 1A of the periodic table may provide not only oxygen gettering function, but also provide p-type doping similar to Cu. The choice of an appropriate getter metal compound added to a target in the manner of TiTe2 can be guided, in part, by the ability to find compounds that could be added to a sputtering target which would be expected to sputter atomically. For example, a compound such as ZrO2 that will tend to sputter with a significant fraction of Zr—O dimers or trimers (two or more atoms rather than one atom) may be unsuitable.
- In addition, the above description has been presented using ZnTe as the contact interface material. The foregoing principles can be applied to any suitable contact interface material, including but not limited to ZnTe, HgTe, CuxTe (x being a subscript between 0 and 2), PbTe, SnTe, MoTe2, CrO2, WO2, CdS, ZnS, PbS, MoxOy (x and y between 1 and 3), and CdO. These alternative interface materials may also be doped to attain necessary electrical parameters for the intended contact application.
- The description of the disclosed embodiments has been presented for purposes of illustration and description, but is not intended to be exhaustive or limiting of the claims to any particular form disclosed. The scope of the present disclosure is limited only by the scope of the following claims. Many modifications and variations will be apparent to those of ordinary skill in the art. The embodiments described and shown in the figures were chosen and described in order to best explain the principles of the various embodiments, the practical application, and to enable others of ordinary skill in the art to understand the various embodiments with various modifications as are suited to the particular use contemplated.
- While a number of exemplary aspects and embodiments have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub combinations thereof It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include all such modifications, permutations, additions and sub-combinations as are within their true spirit and scope of the disclosure.
- Various embodiments of the disclosure could also include permutations of the various elements recited in the claims as if each dependent claim was a multiple dependent claim incorporating the limitations of each of the preceding dependent claims as well as the independent claims. Such permutations are expressly within the scope of this disclosure.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/443,251 US20150270423A1 (en) | 2012-11-19 | 2013-05-30 | Devices and methods featuring the addition of refractory metals to contact interface layers |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261728001P | 2012-11-19 | 2012-11-19 | |
PCT/US2013/043250 WO2014077895A1 (en) | 2012-11-19 | 2013-05-30 | Devices and methods featuring the addition of refractory metals to contact interface layers |
US14/443,251 US20150270423A1 (en) | 2012-11-19 | 2013-05-30 | Devices and methods featuring the addition of refractory metals to contact interface layers |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/043250 A-371-Of-International WO2014077895A1 (en) | 2012-11-19 | 2013-05-30 | Devices and methods featuring the addition of refractory metals to contact interface layers |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/106,571 Division US10651323B2 (en) | 2012-11-19 | 2018-08-21 | Devices and methods featuring the addition of refractory metals to contact interface layers |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150270423A1 true US20150270423A1 (en) | 2015-09-24 |
Family
ID=50731583
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/443,251 Abandoned US20150270423A1 (en) | 2012-11-19 | 2013-05-30 | Devices and methods featuring the addition of refractory metals to contact interface layers |
US16/106,571 Active US10651323B2 (en) | 2012-11-19 | 2018-08-21 | Devices and methods featuring the addition of refractory metals to contact interface layers |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/106,571 Active US10651323B2 (en) | 2012-11-19 | 2018-08-21 | Devices and methods featuring the addition of refractory metals to contact interface layers |
Country Status (2)
Country | Link |
---|---|
US (2) | US20150270423A1 (en) |
WO (1) | WO2014077895A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107946393A (en) * | 2017-11-07 | 2018-04-20 | 浙江大学 | CdTe thin film solar cell based on SnTe as back electrode cushion and preparation method thereof |
CN112310241A (en) * | 2020-04-14 | 2021-02-02 | 中国建材国际工程集团有限公司 | Electric injection regeneration method of solar cell and solar cell based on electric injection |
US20210210606A1 (en) * | 2019-11-15 | 2021-07-08 | Alliance For Sustainable Energy, Llc | Oxygen getters for activation of group v dopants in ii-vi semiconductor materials |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013119550A1 (en) | 2012-02-10 | 2013-08-15 | Alliance For Sustainable Energy, Llc | Thin film photovoltaic devices with a minimally conductive buffer layer |
US20150270423A1 (en) | 2012-11-19 | 2015-09-24 | Alliance For Sustainable Energy, Llc | Devices and methods featuring the addition of refractory metals to contact interface layers |
US10367110B2 (en) | 2015-12-09 | 2019-07-30 | First Solar, Inc. | Photovoltaic devices and method of manufacturing |
EP4443743A2 (en) | 2021-06-16 | 2024-10-09 | Conti Innovation Center, LLC | Solar module racking system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090235986A1 (en) * | 2008-03-18 | 2009-09-24 | Solexant Corp | Back contact for thin film solar cells |
US20110284065A1 (en) * | 2010-05-24 | 2011-11-24 | EncoreSolar, Inc. | Method of forming back contact to a cadmium telluride solar cell |
Family Cites Families (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4338482A (en) | 1981-02-17 | 1982-07-06 | Roy G. Gordon | Photovoltaic cell |
US4395467A (en) | 1981-12-30 | 1983-07-26 | Rca Corporation | Transparent conductive film having areas of high and low resistivity |
US5248884A (en) | 1983-10-11 | 1993-09-28 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Infrared detectors |
US5348595A (en) * | 1988-05-13 | 1994-09-20 | Nippon Steel Corporation | Process for the preaparation of a Ti-Al intermetallic compound |
US6180870B1 (en) | 1996-08-28 | 2001-01-30 | Canon Kabushiki Kaisha | Photovoltaic device |
US6169246B1 (en) | 1998-09-08 | 2001-01-02 | Midwest Research Institute | Photovoltaic devices comprising zinc stannate buffer layer and method for making |
US6221495B1 (en) | 1996-11-07 | 2001-04-24 | Midwest Research Institute | Thin transparent conducting films of cadmium stannate |
US5922142A (en) | 1996-11-07 | 1999-07-13 | Midwest Research Institute | Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making |
US6137048A (en) | 1996-11-07 | 2000-10-24 | Midwest Research Institute | Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby |
US6042752A (en) | 1997-02-21 | 2000-03-28 | Asahi Glass Company Ltd. | Transparent conductive film, sputtering target and transparent conductive film-bonded substrate |
JPH10303195A (en) | 1997-04-23 | 1998-11-13 | Toshiba Corp | Manufacture of semiconductor device |
US6281035B1 (en) | 1997-09-25 | 2001-08-28 | Midwest Research Institute | Ion-beam treatment to prepare surfaces of p-CdTe films |
US5909632A (en) * | 1997-09-25 | 1999-06-01 | Midwest Research Institute | Use of separate ZnTe interface layers to form OHMIC contacts to p-CdTe films |
US6606333B2 (en) | 1998-07-10 | 2003-08-12 | Murata Manufacturing Co., Ltd. | Semiconductor photonic device |
WO2000013237A1 (en) | 1998-08-26 | 2000-03-09 | Nippon Sheet Glass Co., Ltd. | Photovoltaic device |
CA2353506A1 (en) | 1998-11-02 | 2000-05-11 | 3M Innovative Properties Company | Transparent conductive oxides for plastic flat panel displays |
US6246071B1 (en) | 1999-09-23 | 2001-06-12 | The United States Of America As Represented By The Secretary Of The Navy | Zirconia-containing transparent and conducting oxides |
TW439304B (en) | 2000-01-05 | 2001-06-07 | Ind Tech Res Inst | GaN series III-V compound semiconductor devices |
JP3904378B2 (en) | 2000-08-02 | 2007-04-11 | ローム株式会社 | Zinc oxide transparent conductive film |
AU2001285055A1 (en) | 2000-08-18 | 2002-03-04 | Midwest Research Institute | High carrier concentration p-type transparent conducting oxide films |
US6677063B2 (en) | 2000-08-31 | 2004-01-13 | Ppg Industries Ohio, Inc. | Methods of obtaining photoactive coatings and/or anatase crystalline phase of titanium oxides and articles made thereby |
US6787253B2 (en) | 2001-06-27 | 2004-09-07 | Bridgestone Corporation | Transparent electroconductive film and touch panel |
US7517784B2 (en) | 2001-08-17 | 2009-04-14 | Alliance For Sustainable Energy, Llc | Method for producing high carrier concentration p-Type transparent conducting oxides |
JP3826755B2 (en) | 2001-09-28 | 2006-09-27 | 株式会社村田製作所 | ZnO film, method for producing the same, and light emitting device |
JP2005508077A (en) * | 2001-10-22 | 2005-03-24 | イェール ユニバーシティ | Method of hyperdoping semiconductor material, hyperdoped semiconductor material, and hyperdoped semiconductor device |
US6685623B2 (en) | 2001-11-20 | 2004-02-03 | Surx, Inc. | Incontinence treatment with urethral guide |
US20030207093A1 (en) | 2001-12-03 | 2003-11-06 | Toshio Tsuji | Transparent conductive layer forming method, transparent conductive layer formed by the method, and material comprising the layer |
EP1471541B1 (en) | 2002-01-28 | 2016-10-19 | Nippon Sheet Glass Company, Limited | Glass substrate coated with a transparent conductive film and photoelectric conversion device including said glass substrate |
KR100505536B1 (en) | 2002-03-27 | 2005-08-04 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescence device |
KR101002492B1 (en) | 2002-08-02 | 2010-12-17 | 이데미쓰 고산 가부시키가이샤 | Sputtering target, sintered body, conductive film formed by using them, organic el device, and substrate used for the organic el device |
WO2004032189A2 (en) | 2002-09-30 | 2004-04-15 | Miasolé | Manufacturing apparatus and method for large-scale production of thin-film solar cells |
KR100470155B1 (en) | 2003-03-07 | 2005-02-04 | 광주과학기술원 | Manufacturing method of zinc oxide semiconductor |
US6936761B2 (en) | 2003-03-29 | 2005-08-30 | Nanosolar, Inc. | Transparent electrode, optoelectronic apparatus and devices |
TWI221341B (en) | 2003-09-18 | 2004-09-21 | Ind Tech Res Inst | Method and material for forming active layer of thin film transistor |
US7071121B2 (en) | 2003-10-28 | 2006-07-04 | Hewlett-Packard Development Company, L.P. | Patterned ceramic films and method for producing the same |
US7732229B2 (en) | 2004-09-18 | 2010-06-08 | Nanosolar, Inc. | Formation of solar cells with conductive barrier layers and foil substrates |
US20060118406A1 (en) | 2004-12-08 | 2006-06-08 | Energy Photovoltaics, Inc. | Sputtered transparent conductive films |
US7763095B2 (en) * | 2005-06-07 | 2010-07-27 | The Regents Of The University Of California | Internal gettering by metal alloy clusters |
US7628896B2 (en) | 2005-07-05 | 2009-12-08 | Guardian Industries Corp. | Coated article with transparent conductive oxide film doped to adjust Fermi level, and method of making same |
US7393736B2 (en) | 2005-08-29 | 2008-07-01 | Micron Technology, Inc. | Atomic layer deposition of Zrx Hfy Sn1-x-y O2 films as high k gate dielectrics |
US8197914B2 (en) | 2005-11-21 | 2012-06-12 | Air Products And Chemicals, Inc. | Method for depositing zinc oxide at low temperatures and products formed thereby |
JP4850901B2 (en) | 2006-03-17 | 2012-01-11 | Jx日鉱日石金属株式会社 | Zinc oxide based transparent conductor and sputtering target for forming the transparent conductor |
JP5358891B2 (en) | 2006-08-11 | 2013-12-04 | 日立金属株式会社 | Method for producing sintered zinc oxide |
WO2008088551A1 (en) | 2007-01-16 | 2008-07-24 | Midwest Research Institute | Transparent conducting oxides and production thereof |
US20120107491A1 (en) | 2007-01-16 | 2012-05-03 | Alliance For Sustainable Energy, Llc | High Permittivity Transparent Films |
US8747630B2 (en) | 2007-01-16 | 2014-06-10 | Alliance For Sustainable Energy, Llc | Transparent conducting oxides and production thereof |
CN100432302C (en) | 2007-01-29 | 2008-11-12 | 浙江大学 | Sb doped P-type ZnO crystal film and preparation method thereof |
US7727910B2 (en) | 2007-02-13 | 2010-06-01 | Micron Technology, Inc. | Zirconium-doped zinc oxide structures and methods |
KR101021141B1 (en) | 2007-08-22 | 2011-03-14 | 한국세라믹기술원 | Transparent Conductive F-dopped tin oxide glass for defogging and fabrication of it |
US20090162560A1 (en) | 2007-12-21 | 2009-06-25 | Envont L.L.C. | Hybrid vehicle systems |
US20090194165A1 (en) | 2008-01-31 | 2009-08-06 | Primestar Solar, Inc. | Ultra-high current density cadmium telluride photovoltaic modules |
WO2009116990A1 (en) | 2008-03-17 | 2009-09-24 | Midwest Research Institute | High quality transparent conducting oxide thin films |
US8143512B2 (en) | 2008-03-26 | 2012-03-27 | Solexant Corp. | Junctions in substrate solar cells |
CN102083753A (en) | 2008-07-07 | 2011-06-01 | 旭硝子株式会社 | Core-shell particle and method for producing core-shell particle |
US8334455B2 (en) | 2008-07-24 | 2012-12-18 | First Solar, Inc. | Photovoltaic devices including Mg-doped semiconductor films |
US20100024876A1 (en) | 2008-08-04 | 2010-02-04 | Mcclary Richard L | Photon trapping solar cell |
US20100108503A1 (en) * | 2008-10-31 | 2010-05-06 | Applied Quantum Technology, Llc | Chalcogenide alloy sputter targets for photovoltaic applications and methods of manufacturing the same |
TW201027779A (en) | 2008-11-19 | 2010-07-16 | First Solar Inc | Photovoltaic devices including heterojunctions |
US8969719B2 (en) | 2008-12-19 | 2015-03-03 | Zetta Research and Development LLC—AQT Series | Chalcogenide-based photovoltaic devices and methods of manufacturing the same |
US8084682B2 (en) | 2009-01-21 | 2011-12-27 | Yung-Tin Chen | Multiple band gapped cadmium telluride photovoltaic devices and process for making the same |
US8501332B2 (en) | 2009-02-05 | 2013-08-06 | The Research Foundation Of State University Of New York | Energy conversion cell having a dielectrically graded region to alter transport, and methods thereof |
JP5493119B2 (en) | 2009-03-11 | 2014-05-14 | スタンレー電気株式会社 | Method for manufacturing zinc oxide based semiconductor element |
US20100243039A1 (en) | 2009-03-31 | 2010-09-30 | General Electric Company | Layer for thin film photovoltaics and a solar cell made therefrom |
EP2454755A4 (en) | 2009-07-13 | 2016-03-30 | First Solar Inc | Solar cell front contact doping |
EP2470694A4 (en) | 2009-08-24 | 2013-10-30 | First Solar Inc | Doped transparent conductive oxide |
US8829342B2 (en) | 2009-10-19 | 2014-09-09 | The University Of Toledo | Back contact buffer layer for thin-film solar cells |
US20110108099A1 (en) | 2009-11-11 | 2011-05-12 | Solopower, Inc. | Method of forming transparent zinc oxide layers for high efficiency photovoltaic cells |
WO2011075579A1 (en) | 2009-12-18 | 2011-06-23 | First Solar, Inc. | Photovoltaic device including doped layer |
US8568828B2 (en) | 2010-02-12 | 2013-10-29 | Alliance For Sustainable Energy, Llc | Amorphous tin-cadmium oxide films and the production thereof |
US20110240115A1 (en) | 2010-03-30 | 2011-10-06 | Benyamin Buller | Doped buffer layer |
US20110240123A1 (en) | 2010-03-31 | 2011-10-06 | Hao Lin | Photovoltaic Cells With Improved Electrical Contact |
US8916412B2 (en) * | 2010-05-24 | 2014-12-23 | EncoreSolar, Inc. | High efficiency cadmium telluride solar cell and method of fabrication |
US20110312120A1 (en) | 2010-06-22 | 2011-12-22 | Reel Solar, Inc. | Absorber repair in substrate fabricated photovoltaics |
US20110315220A1 (en) | 2010-06-29 | 2011-12-29 | General Electric Company | Photovoltaic cell and methods for forming a back contact for a photovoltaic cell |
US20120031492A1 (en) | 2010-08-04 | 2012-02-09 | Miasole | Gallium-Containing Transition Metal Thin Film for CIGS Nucleation |
US20120043215A1 (en) | 2010-08-17 | 2012-02-23 | EncoreSolar, Inc. | Method and apparatus for electrodepositing large area cadmium telluride thin films for solar module manufacturing |
US20120097222A1 (en) | 2010-10-26 | 2012-04-26 | Alliance For Sustainable Energy, Llc | Transparent conducting oxide films with improved properties |
US9608144B2 (en) | 2011-06-01 | 2017-03-28 | First Solar, Inc. | Photovoltaic devices and method of making |
WO2013119550A1 (en) | 2012-02-10 | 2013-08-15 | Alliance For Sustainable Energy, Llc | Thin film photovoltaic devices with a minimally conductive buffer layer |
US20130213478A1 (en) | 2012-02-21 | 2013-08-22 | Aqt Solar, Inc. | Enhancing the Photovoltaic Response of CZTS Thin-Films |
WO2013173633A1 (en) | 2012-05-16 | 2013-11-21 | Alliance For Sustainable Energy, Llc | Methods and materials for the improvement of photovoltaic device performance |
US20150270423A1 (en) | 2012-11-19 | 2015-09-24 | Alliance For Sustainable Energy, Llc | Devices and methods featuring the addition of refractory metals to contact interface layers |
TWM467373U (en) | 2013-08-19 | 2013-12-11 | Ying-Zhong Huang | Cyrotherapy hair caring clip structure |
-
2013
- 2013-05-30 US US14/443,251 patent/US20150270423A1/en not_active Abandoned
- 2013-05-30 WO PCT/US2013/043250 patent/WO2014077895A1/en active Application Filing
-
2018
- 2018-08-21 US US16/106,571 patent/US10651323B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090235986A1 (en) * | 2008-03-18 | 2009-09-24 | Solexant Corp | Back contact for thin film solar cells |
US20110284065A1 (en) * | 2010-05-24 | 2011-11-24 | EncoreSolar, Inc. | Method of forming back contact to a cadmium telluride solar cell |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107946393A (en) * | 2017-11-07 | 2018-04-20 | 浙江大学 | CdTe thin film solar cell based on SnTe as back electrode cushion and preparation method thereof |
US20210210606A1 (en) * | 2019-11-15 | 2021-07-08 | Alliance For Sustainable Energy, Llc | Oxygen getters for activation of group v dopants in ii-vi semiconductor materials |
CN112310241A (en) * | 2020-04-14 | 2021-02-02 | 中国建材国际工程集团有限公司 | Electric injection regeneration method of solar cell and solar cell based on electric injection |
Also Published As
Publication number | Publication date |
---|---|
US20180358487A1 (en) | 2018-12-13 |
WO2014077895A1 (en) | 2014-05-22 |
US10651323B2 (en) | 2020-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10651323B2 (en) | Devices and methods featuring the addition of refractory metals to contact interface layers | |
US11843070B2 (en) | Photovoltaic devices including doped semiconductor films | |
US10461207B2 (en) | Photovoltaic devices and method of manufacturing | |
CN110546769B (en) | Doped photovoltaic semiconductor layer and method of manufacture | |
US8916412B2 (en) | High efficiency cadmium telluride solar cell and method of fabrication | |
US20080251119A1 (en) | Layers that impede diffusion of metals in group vi element-containing materials | |
KR20190133043A (en) | System and method for work function reduction and heat ion energy conversion | |
US10896991B2 (en) | Photovoltaic devices and method of manufacturing | |
CN101351894B (en) | Photovoltaically active semiconductor material and photovoltaic cell | |
Clemminck et al. | Screen printed and sintered CdTe-CdS solar cells | |
US11450778B2 (en) | Ag-doped photovoltaic devices and method of making | |
Chalapathy et al. | Performance of CZTSSe thin film solar cells fabricated using a sulfo-selenization process: influence of the Cu composition | |
JP2021509222A (en) | A semiconductor layer including a photovoltaic device and a Group V dopant, and a method for forming the semiconductor layer. | |
Saragih et al. | Characterization of Ag-doped Cu2ZnSnSe4 bulks material and their application as thin film semiconductor in solar cells | |
Liew et al. | Improvement in Photovoltaic Performance of Thin Film β-FeSi2/Si Heterojunction Solar Cells with Al Interlayer | |
Rahman | Cadmium telluride (CdTe) thin film solar cells | |
WO2023236106A1 (en) | Method for manufacturing cdte based thin film solar cell with graded refractive index profile within the cdte-based absorber layer and cdte based thin film solar cell with graded refractive index profile | |
Khan et al. | In-situ antimony doping of CdTe | |
US20220246786A1 (en) | Method for producing a double graded cdsete thin film structure | |
EP3857611A1 (en) | Buffer layers for photovoltaic devices with group v doping | |
Lin | Study of molybdenum oxide as a back contact buffer for thin film n-CdS/p-CdTe solar cells | |
CN118738150A (en) | Cadmium telluride thin film solar cell and manufacturing method thereof | |
Vigil-Galán¹ | PRESENT AND FUTURE OF HIGH EFFICIENCY CDTE THIN FILMS SOLAR CELLS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ALLIANCE FOR SUSTAINABLE ENERGY, LLC, COLORADO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GESSERT, TIMOTHY A.;REEL/FRAME:030517/0077 Effective date: 20130529 |
|
AS | Assignment |
Owner name: ALLIANCE FOR SUSTAINABLE ENERGY, LLC, COLORADO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GESSERT, TIMOTHY A.;REEL/FRAME:035656/0180 Effective date: 20130529 |
|
AS | Assignment |
Owner name: ENERGY, UNITED STATES DEPARTMENT OF, DISTRICT OF C Free format text: CONFIRMATORY LICENSE;ASSIGNOR:ALLIANCE FOR SUSTAINABLE ENERGY, LLC;REEL/FRAME:040703/0404 Effective date: 20160725 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |