CN102281059B - 用于在分数-n型锁相环中量化降噪的方法和设备 - Google Patents

用于在分数-n型锁相环中量化降噪的方法和设备 Download PDF

Info

Publication number
CN102281059B
CN102281059B CN201110076542.3A CN201110076542A CN102281059B CN 102281059 B CN102281059 B CN 102281059B CN 201110076542 A CN201110076542 A CN 201110076542A CN 102281059 B CN102281059 B CN 102281059B
Authority
CN
China
Prior art keywords
current source
pulse signal
feedback
pulse
fractional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110076542.3A
Other languages
English (en)
Other versions
CN102281059A (zh
Inventor
俞启承
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silicon Laboratories Inc
Original Assignee
Silicon Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/732,024 external-priority patent/US8179163B2/en
Priority claimed from US12/732,029 external-priority patent/US8207766B2/en
Application filed by Silicon Laboratories Inc filed Critical Silicon Laboratories Inc
Publication of CN102281059A publication Critical patent/CN102281059A/zh
Application granted granted Critical
Publication of CN102281059B publication Critical patent/CN102281059B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • H03L7/0891Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • H03L7/0891Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
    • H03L7/0895Details of the current generators
    • H03L7/0898Details of the current generators the source or sink current values being variable
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/197Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division
    • H03L7/1974Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division for fractional frequency division
    • H03L7/1976Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division for fractional frequency division using a phase accumulator for controlling the counter or frequency divider

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

本申请公开了一种用于在分数-N型锁相环中量化降噪的方法和设备,其中第一电流源响应于来自相位频率检测器的第一脉冲信号供应第一电荷量,以及第二电流源根据固定值和可变值供应第二电荷量。可变值对应于第一反馈时钟信号和假定的具有量化降噪的反馈时钟信号之间的相位差。第一和第二电荷量极性相反。第一和第二电流源的单组执行电荷泵和降噪DAC的功能。

Description

用于在分数-N型锁相环中量化降噪的方法和设备
技术领域
本申请涉及分数-N型锁相环,以及更具体地涉及克服这种锁相环(PLL)的缺点。
背景技术
宽带分数-N型锁相环在各种领域中存在增多的需求,尤其是在无线通信领域中。PLL的较大带宽有助于抑制VCO的固有噪声,并在频率切换期间提供较快的建立时间。
不像整数-N型锁相环,由于不断变化的分频比,反馈分频器输出时钟(fbclk)在分数-N型锁相环中定期超前参考时钟(refclk)以及使得参考时钟滞后。这种变化对于将平均VCO时钟维持在包含分数的参考时钟频率比值下是必要的。这种反馈时钟相位的量化噪声是通过相位频率检测器(PFD)和电荷泵(CP)注入的,并很容易成为系统的主要噪声源。同时,主要是由于上下电流源之间的大小不匹配,电荷泵显现非线性。高频量化噪声通过将非线性向下调制到PLL的通带内而破坏输出时钟。
参照图1,示出一典型的用于驱动PLL电荷泵的三态PFD。在锁定稳态运行的过程中,参考时钟(refclk)的上升沿触发向上输出脉冲以及反馈分频器输出时钟(fbclk)的上升沿触发下输出脉冲。在两个脉冲上升之后存在短暂延迟,进行PFD复位,且两个脉冲同时清除(图1(b))。由电荷泵传输到环路滤波器的总电荷Q为:
当反馈分频器输出时钟(fbclk)超前时,Q=Iup·td-Idn·t-Idn·td
以及反馈分频器输出时钟(fbclk)滞后时,Q=Iup·(-t)+Iup·td-Idn·td
在此t是fbclk导向参考时钟(refclk)的时间,td是在PFD中的复位延迟,以及Iup和Idn是向上和向下的电流源的值。如果Iup≠Idn时,Q相对于t是非线性的,导致反馈分频器输出时钟(fbclk)相位中的高频量化噪声,混淆在PLL带宽内。
如上所述的另一误差来源是量化噪声,其原因在于由于不断变化的分频比,反馈分频器输出时钟(fbclk)在分数-N型锁相环中定期导向参考时钟(refclk)以及使得参考时钟滞后。减少量化噪声的常见方法是添加专用的电流源来实现取消数模转换器(DAC),其传输了几乎与量化噪声对等的电荷。图1C中示出减少量化噪声的典型分数-N型锁相环。Δ-∑调制器(DSM)150不仅决定了适于多模分频器152的即时反馈分频比,而且对于用于取消数模转换器(DAC)156的数字控制电路154而言,还提供了反馈分频器输出时钟(fbclk)相对于参考时钟(refclk)的相位差。该DAC 156是典型的单独电流源储存所,每一个可打开且持续大致与电荷泵(CP)电流脉冲对准的短暂时间。该DAC受到第二个Δ-∑(Delta-Sigma)调制器(DAC DSM)154的控制,该调制器(DAC DSM)154将其自身的量化噪音调制到PLL通带之外。对应增加电路元件的不利因素包括热和I/f噪声,开关电荷注入,由于元件不匹配导致的电荷误差,设备电流和电源电流泄漏。虽然总平均电流为零,但是不同的电流脉冲具有不同的幅度,持续时间和,导致高频率的残余噪音。
因此,希望对PLL中的噪声、电荷注入、不匹配误差以及电流泄漏的控制进行改进。
发明内容
因此,本发明实施例提供了一种量化噪声降低的方法,其包括根据来自相位频率检测器的第一脉冲信号从第一电流源供应第一电流,该第一电流具有第一极性。根据固定宽度的第二脉冲信号、第一预定值和第二可变值,第二电流源供应具有第二极性的第二电流。第二可变值对应于第一反馈时钟信号和反馈时钟信号的所需位置之间的相位差。
在另一实施例中提供了包括相位频率检测器的设备。第一电流源响应于来自相位频率检测器的第一脉冲信号供应第一电荷量,以及第二电流源根据固定值和可变值供应第二电荷量。可变值对应于第一反馈时钟信号和假定的反馈时钟信号之间的相位差。第一和第二电荷量极性相反。
在另一实施例中提供包括相位频率检测器的设备。第一电流源响应于来自相位频率检测器的第一脉冲信号供应第一极性的第一电流。第二电流源响应于固定宽度的第二脉冲信号以及根据与可变值结合的固定值供应第二极性的第二电流。选择可变值,以减少与反馈分频器电路相关的量化误差。固定宽度的第二脉冲信号决定第二电流被供应多长时间(该电流脉冲宽度),以及固定值和可变值决定第二电流的幅度大小。
附图说明
通过参照附图对于本领域的那些技术人员而言可以更好地理解本发明以及明了其众多的目的,特点和优势。
图1A示出用于驱动PLL中电荷泵的典型PFD;
图1B示出与图1A所示PFD相关联的时序图;
图1C示出利用专用除噪DAC的量化降噪技术
图2示出根据本发明实施例的线性化PFD;
图3示出与图2的线性化PFD相关联的时序图;
图4示出与非门实现图2中所示的线性化PFD;
图5A示出反馈分频器输出时钟(fbclk)超前于参考时钟(refclk)时用假想的RVCO计时;
图5B示出参考时钟(refclk)超前于反馈分频器输出时钟(fbclk)时用假想的RVCO计时;
图5C示出RVCO时钟周期为TVCO/4时的实例;
图6示出根据本发明实施例的电荷泵线性化和量化噪声降低的示例性分数-N型PLL 600;
图7示出根据本发明实施例的电荷泵控制逻辑的实施例;
图8示出可在一个实施例中使用的自我纠正机制;
图9示出形状相同的进行系统偏斜的一对向上和向下的电流脉冲;
图10示出根据本发明实施例的脉冲宽度不变的PFD。
在不同附图中使用相同的参考符号表示类似或相同的物件。
具体实施方式
参照图2,示出根据本发明实施例的线性化PFD,其提供电荷泵线性化以致力于解决不匹配的非线性问题。假定上下脉冲的上升沿是由参考时钟(refclk)和反馈时钟(fbclk)触发,通过使向下脉冲具有固定宽度的TP,可使得电荷Q线性化。使得向下脉冲足够宽,以便容纳fbclk上的量化噪声,这样在向下脉冲下降之前向上脉冲总是上升的(存在下文所述的一些例外)。此外,在PFD的线性化过程中,当向下脉冲由于该fbclk下降而下降时,使得向上脉冲下降。应该注意,反馈时钟(fbclk)应该为恒定宽度的脉冲,而不是一个50%占空比的时钟。该fbclk脉冲可在反馈时钟分频器中产生以及用VCO时钟重新定时,其中脉冲tp通常是两到四个VCO时钟周期的时长。在一个实施例中,利用反馈分频器内的小状态机在反馈时钟分频器内产生fbclk脉冲,在fbclk前沿之后反馈时钟分频器使得fbclk的后沿(下降沿)产生固定数量的VCO时钟周期。fbclk脉冲的前沿和后沿用VCO时钟重新定时。在其它实施例中,小状态机被移入到线性化的PFD内,且在PFD中用VCO时钟重新定时。备选的,在分频器或PFD中可一次产生fbclk(脉冲)。
为了使得线性化PFD在频率采集过程中以相同于传统PFD的方式进行作用,fbclk(脉冲)不应该保持于高态下。当向下脉冲下降时向上脉冲下降,也就是,当节点201上的fbclk脉冲下降时,假定在fbclk脉冲下降之前refclk已经被接收到且向上脉冲进行上升,与门203输出使得D触发器(双稳态多谐振荡器)复位。图4中示出与非门实现线性化PFD,其中所有输入和输出都是反向的感测。
图3示出如图2中所示实施例的fbclk超前还是滞后于refclk时的向上和向下CP电流脉冲的时序图。在两种情况下,电荷Q=Iup·(-t)+Iup·td-Idn·td。由于Idn对Q的贡献是不变的,不匹配的非线性被消除。例如在在PLL频率采集的过程中,当refclk滞后fbclk的滞后量大于tp时,在向上脉冲上升之后的时间td下,向下脉冲应该扩展到与向上脉冲一起下降。这样,与门205通过确保触发器207不复位来确保向下脉冲不延长。在这种情况下,改变后的PFD的行为就像图1A所示的三态PFD。
量化降噪
将具有固定宽度的向下电流脉冲的电荷泵线性化以及使得向上脉冲随着向下脉冲下降,根据实施例的量化降噪技术将向下电流本身用作取消DAC。
来自DSM的分数-N型分频的量化噪声与VCO时钟周期(TVCO)成正比。假定“量化降噪VCO”(RVCO)以四倍于VCO频率的频率运行,并且相位与VCO对准。如果是RVCO时钟沿而不是VCO时钟沿用于生成fbclk和向下脉冲上升沿,这将成四倍地更接近向上脉冲的上升沿。如果使用类似于DSM的“量化降噪Δ-∑调制器”(RDSM)与另一个时钟分频器来从RVCO产生fbclk,量化噪声减少四倍。该时钟分频器的分频比为原始时钟分频器的大约四倍。同时,基于VCO的时钟沿,向下脉冲的下降沿应该保持在以前的位置。这在图5A和5B中示出。沿A和C是原始向下脉冲的上升沿和下降沿的位置,两者都与VCO的时钟沿对准。基于RDSM,沿B和C是向下脉冲的上升沿和下降沿的位置。沿B与RVCO时钟沿对准,但不必要是VCO的时钟沿。在图5A中,fbclk超前于refclk,如果反馈时钟沿从A移动到B,阴影区域501代表量化噪声减少。在图5B中,refclk超前于fbclk,假设由阴影区域503所代表的电荷供应给电荷泵,阴影区域503代表获得的量化噪声减少。
考虑tp=4·TVCO以及RVCO时钟周期为TVCO/4的实例。请记住,tp代表恒定宽度的向下脉冲。参考图5C,假定DSM(控制反馈分频器)选择适于向下脉冲上升沿的VCO时钟沿A,而RDSM选择适于向下脉冲上升沿的RVCO时钟沿B,则在A之前,B是(3/4)TVCO。在两种情况下,向下脉冲的下降沿是C,在该处RVCO和VCO时钟边沿重叠。在A之后,C是4·TVCO。也就是,RDSM需要一个向下的电流脉冲,其幅度为Idn以及在宽度上:(3/4)TVCO+4·TVCO=(19/16)·4TVCO。在实际中,RVCO和相关的时钟沿不存在。然而,基于VCO时钟和DSM,而不需要RVCO,同样的电荷可通过向下的电流脉冲注入,该脉冲的幅度为(19/16)·Idn以及在宽度上为4·TVCO。代替幅度为Idn的单一电流源,CP向下电流以每个(1/16)·Idn的32个电流源单位实现,以及在这种情况下,其中19个启动。
由于基于量化噪音消除方案通常利用电流DAC,所需的脉冲宽度调制由可行的脉冲幅度调制替代。在这里,每个电流源单位启动将TVCO/4添加到有效的向下脉冲宽度,并且相应于对应于零至8TVCO的有效脉冲宽度启动零至32个之间的电流源单位。经过一段时间取平均,DSM和RDSM会选择与向上脉冲上升沿对准的一个向下脉冲上升沿的位置。因此,平均有16个电流源单位启动以便提供平均等于由向上脉冲传输的电荷。相对于完全消除量化噪声,量化降噪技术的目标是来抑制噪声,因此其明显低于系统的其余部分的噪声。
系统的执行
图6中示出根据本发明实施例的电荷泵线性化和量化噪声降低的示例性分数-N型PLL 600。反馈多模控制时钟分频器601像往常一样受到DSM 603的控制,除了它的输出是固定数目n的VCO时钟周期的短脉冲。请注意,对于n值,越小越好,但n·TVCO应该足够长,以适应具有极限的峰—峰DSM量化噪声的一半。该fbclk和refclk通过线性化PFD 609来驱动CP 605和607。为了将DSM的量化噪声减少r位或6r分贝,与向上电流源605相比,向下电流源607加倍,并且分流成2n·2r的相等单位,其中n·2r取平均使用。在示例性的实施例中,电流源605供应160μA以及电流源607作为三十二个10μA的电流源单位执行,其中n=4和r=2。每个单元对应一个TVCO/2r的相位增量。假定RVCO运行的比VCO快2r倍,那么相关时钟分频器的分频比约大2r倍。
在示例性的实施例中,PLL 600是具有双通路环路滤波器的II型分数-N型PLL,其中整合通路的电荷泵电流从那些直接通路按比例下降,但是它们却受到来自同一PFD的同样的向上和向下脉冲的控制。由于整合通路对于量化噪声具有低增益,降噪技术可仅仅应用于直接通路而已。图6中所示的PLL是示例性的,以及降噪可被应用到其他类型的PLL,包括具有不同环路滤波器和不同数量的向下电流源的那些PLL。
分数分频比是I+F,其中I是i位的整数部分,以及F是f位小数部分。小数部分F提供给RDSM 611。电荷泵控制逻辑615供给2n·2r的控制信号608以便在电荷泵的电荷泵向下电流部分607中控制2n·2r的电流单位。在所示的实施例中,电荷泵控制逻辑615使用加权平均动态元件匹配(DWA DEM)来执行,以抑制由幅度变化在2n·2r的向下电流源单位之间产生的噪声。根据具体执行的要求,其他实施例可利用任何其他适当的不匹配形式的动态元件匹配算法。
在图7中示出概念性的电荷泵控制逻辑。DSM 603将F调节成一个时变的整数,并将其添加到I。该总和是时钟分频比。在RDSM 611中,分数F在701中左移r位以便产生F最低有效位的(f-r),其由RDSM调制成另一种时变整数,并增加了加法器715中的F的最高位的r。然后如果该总和添加到I·2r,基于假定的RVCO时钟,其结果将是一个时钟分频器的分频比,该RVCO时钟在图5A和5B中的B处产生了向下电流脉冲的上升沿。相反,该总和利用DSM输出来计算所需的超过fbclk的RVCO时钟沿的相位超前,用Δφ表示,以TVCO/2r为单位。加法器715的输出减去加法器719中的调制后F的左移输出。将该差值在积分器721中集成以便提供相位超前Δφ。一个时钟沿的相位是其发生时的时间,以TVCO/2r为单位。返回参照图5A,5B和5C,Δφ可看作为沿B超过沿A的超前相位。如果Δφ是正值,则意味着RVCO沿(B)在fbclk沿(A)之前到来(时间比fbclk沿(A)早)。用φRDSM表示的所需RVCO时钟沿的相位阶段通过从用φDSM表示的fbclk相位减去Δφ取得。Δφ+n·2r是为了当前fbclk循环而启动的向下电流源单位数目,其中经过一段时间取平均Δφ为零。返回参照图2和图3,固定宽度dn脉冲决定向下电流供应多久(该电流脉冲宽度),以及固定值(n·2r)和可变值Δφ确定dn电流的幅度大小。因此,例如,假设n=4和r=2,当Δφ=0时,16个电流源(n·2r)启动。参考图5B,如果Δφ为正值,则需要额外电荷,以减少量化误差以及选择电流源超过16个电流源元件。如果Δφ是负值,如图5A所示,选择少于16个电流源元件。在示范性的实施例中,DSM和RDSM都是三阶调制器。在实际的实施例中,没有必要如图7所示那样计算φRDSM或φDSM。只有需要计算实际反馈时钟和假定反馈时钟之间的相位差Δφ。请注意,虽然一个特定实施例可以利用32个同等大小的电流源元件,但是其他实施例可使用不同大小的加权电流源元件和/或不同数量的电流源元件,以提供向下脉冲电荷。
参照图8,示出是一种自我纠正监测器801,其对启动处于活性的的电流源元件数目进行平均。如果平均值与电流源元件的预定数目不同,例如,16个,那么将信号提供给加法器803以便调节供给到积分器721的值,其继而调整Δφ以便使得平均值回归为零。以该方式,可能发生的任何错误可以得到纠正。
图7还示出,通过两个具有相同幅度但符号相反的增益的通路,DSM的量化噪声对φRDSM有所贡献。第一通路从DSM 603中的调制器1(调制器1)723通过时钟分频器601输出。第二通路从调制器1(调制器1)723通过左偏移器722以及积分器721输出。如果没有模拟的不匹配,那么将该量化噪声从φRDSM中消除。
脉冲宽度不变化的PFD
与量化噪声减少有关的剩余误差来自以下几个来源。(1)在向下电流源单元形式的除噪DAC具有其自身的量化噪声,其与RVCO周期成正比。(2)向上和向下电流源之间的幅度不匹配导致DSM量化噪声的不完全消除。(3)向下脉冲的宽度可偏离于n·TVCO,导致传输电荷中的误差。在低频率下,这等同于向下电流与向上电流的幅度不匹配。向下脉冲的上升和下降时间之间的任何不匹配等同于向下脉冲的宽度偏差,并且包括在此。(4)在向下电流源单位之间的不匹配造成误差,虽然该误差通过动态元件匹配从PLL带宽中调制出去。(5)由于脉冲宽度对抗于脉冲幅度调制,在高频率下向上和向下电流脉冲的形状不匹配显现成不完全消除。(6)由于PFD和CP电路中的不同通路延迟,即使可忽略形状不匹配时,向上和向下电流脉冲可在相位上被系统偏斜。
第二误差是等于远时DSM噪声乘以相对的不匹配,并具有整形为原始量化噪声的相同频谱。通过相对于向下电流源来修整向上电流源可减少第二和第三误差。如图9所示,对于相同形状的具有幅度±Icp和系统偏斜量τ的一对向上和向下电流脉冲而言,傅立叶变换的幅度为:
| F ( f ) | = 2 τI cp · sin ( πτf ) πτf · sin ( πn T VCO f )
其中低频容量与τ成比例。因此,上述第六误差通过减少τ而减少。
在图4的线性化PFD实施例中,upb和dnb的上升沿(下降边)很好地对准,两者都在fbclkb上升沿之后的四门延迟处。但是dnb脉冲比fbclkb脉冲长n·TVCO,因为其上升沿延迟是两门延迟(1-2),而下降沿延迟为四门延迟(3-4-5-2)。这将导致上述的第三误差。因此将线性化PFD改变成脉冲宽度不变的PFD(PWI PFD)以便克服这个缺点,在图10中示出其一个实施例,其还具有在输入和输出上的颠倒逻辑感觉。虽然在该PFD中upb脉冲是由D触发器产生的,dnb脉冲由单一的RS锁存器产生。图10中所示实施例的操作逻辑和计时利用了fbclkb上升沿应该触发dnb复位事实的优势,并且对于本领域的那些技术人员而且是自然明白的。在fbclkb上升沿处,upb和dnb在四门延迟(1-2-3-4对5-6-7-8)后将被清除。由于dnb的下降沿和上升沿分别由fbclkb的下降沿和上升沿触发,两者都是在四门延迟(1-2-3-4)后,dnb脉冲保持fbclkb脉冲宽度为n·TVCO
在频率和相位采集的过程中,refclkb下降沿可在fbclkb上升沿之后抵达。PWI PFD以n·TVCO延伸超过向下脉冲宽度,正如线性化PFD一样。在这种情况下,适于量化降噪技术的基础是无效的,而且这项技术可能会干扰锁定过程。“量化降噪准备”的指示(qnr_ready)通过用fbclkb将向下脉冲输出dnb锁定到D触发器中而产生。只有当qnr_ready高时量化降噪才是活性的。否则,应该正好使用n·2r的向下电流源单位。
请注意,为了使得PWI PFD在频率采集过程中以相同于传统PFD的方式进行作用,fbclkb(脉冲)不应该保持于低态下。PWI PFD的可替代图2和图4中的线性化PFD,以便用于量化降噪,而图2和图4的线性化PFD适于在电荷泵线性化过程中独立使用。
在与PFD相关联的各种实施例中,提供一种方法,其包括在相位频率检测器的第一输入下接收具有固定脉冲宽度的反馈信号。响应于反馈信号的查验(assertion),查验指示第一电荷量的固定宽度的第一脉冲信号。在相位频率检测器的第二输入下接收参考时钟信号。响应于查验的参考时钟信号,查验指示第二电荷量的第二脉冲信号。响应于不能查验反馈信号的反馈信号沿,第一和第二脉冲信号置为无效。该方法可包括,当参考时钟信号以多于一个固定的脉冲宽度滞后于反馈信号时,延长第一脉冲信号,这样第一脉冲信号连同第二脉冲信号下降,在第二脉冲信号后的固定延迟升高。第一脉冲信号适于电荷泵以及对应于一个控制振荡器输出信号的频率降低,以及第二脉冲信号适于电荷泵并且对应于受控振荡器输出信号的频率增加。该方法可进一步包括利用来自反馈分频器的反馈分频器信号来产生反馈脉冲信号,该反馈分频器利用电压受控振荡器的输出重新定时。该方法可进一步包括相对于其触发条件同等地延迟第一脉冲信号的上升沿和下降沿。该方法可进一步包括提供相对于一个共同触发条件使得第一脉冲信号和第二脉冲信号无效的等效电路延迟。该方法可进一步包括将第二脉冲信号与反馈脉冲锁存,以便提供量化降噪准备指示信号。根据量化降噪准备指示值可启用量化降噪。
在与PFD相关的各种实施例中,PFD包括第一电路,其耦合以便接收固定脉冲宽度的反馈信号以及供应第一脉冲信号,该信号具有对应于固定脉冲宽度反馈信号的固定脉冲宽度,第一脉冲信号的第一沿由固定脉冲宽度反馈信号的第一沿确定,以及第一脉冲信号的第二沿由复位信号决定。第二电路耦合以便接收参考时钟信号以及供应第二脉冲信号,第二脉冲信号的第一沿由参考时钟信号的第一沿决定,以及第二脉冲信号的第二沿由复位信号决定。复位电路响应于固定脉冲宽度反馈信号的第二沿以便产生复位信号。第一和第二电路可分别包括第一和第二D触发器。在PFD中的第一门延迟等于第二门延迟,第一门延迟用于响应于固定脉冲宽度反馈信号的第一沿产生第一脉冲信号的第一沿,第二门延迟用于响应于固定脉冲宽度反馈信号的第二沿产生第一脉冲信号的第二沿。第一门延迟等于第二门延迟,第一门延迟用于响应于触发条件产生第一脉冲信号的第二沿,第二门延迟用于响应于触发条件产生第二脉冲信号的第二沿,以及其中触发条件是固定脉冲宽度反馈信号的第二沿。第一电路可包括SR锁存器,以及第二电路包括D触发器。当参考时钟信号以多于固定脉冲宽度滞后于反馈信号时,复位电路可操作以便通过使得复位信号延迟无效而延长第一脉冲信号,这样第一脉冲信号与第二脉冲信号一起下降,在第二脉冲信号上升之后,延迟固定。一个电路可耦合以便接收第二脉冲信号和反馈时钟信号,以及以便利用反馈时钟信号锁存第二脉冲信号,并且将其指示提供为量化降噪准备指示。包括PFD的设备可包括锁相环,其包括PFD,电荷泵,环路滤波器,可控振荡器,以及反馈分频器。
在此提出的本发明的说明是解释说明性的,而并不预期对本发明的范围进行限定,本发明的范围由以下权利要求限定。可基于在此提出的说明在不脱离本发明范围和精神的情况下对在此公开的实施例进行变化和变型,本发明的范围和精神由以下权利要求限定。

Claims (17)

1.一种用于在分数-N型锁相环中降低量化噪声的方法,包括:
对耦合至来自压控振荡器的输出信号的多模反馈分频器(601)进行控制,以便向相位频率检测器(609)提供反馈脉冲信号(fbclk),所述反馈脉冲信号(fbclk)的脉冲宽度是固定数目的所述输出信号的周期;
向所述相位频率检测器(609)提供参考时钟信号;
基于所述反馈脉冲信号(fbclk)和所述参考时钟信号产生第一脉冲信号(Iup)和固定宽度第二脉冲信号(tp);
根据来自所述相位频率检测器的所述第一脉冲信号,从第一电流源(605)供应第一电流,该第一电流具有第一极性;以及
根据所述固定宽度的第二脉冲信号、预定的第一值和可变的第二值,从第二电流源(607)供应具有第二极性的第二电流,所述可变的第二值对应于所述反馈脉冲信号和假定的反馈时钟信号之间的相位差,所述假定的反馈时钟信号基于假定的振荡器输出信号,该振荡器输出信号比所述压控振荡器的输出信号运行更快。
2.根据权利要求1所述的方法,进一步包括根据所述相位差和所述预定的第一值来启动形成第二电流源的电流源元件的单独一个,其中,所述固定宽度的第二脉冲信号确定了所述第二电流的脉冲宽度,所述预定的第一值和所述可变的第二值通过确定在第二电流源中启动的电流源元件的数目来确定第二电流的幅度。
3.根据权利要求2所述的方法,进一步包括确定随着时间启动的电流源元件的数目的平均值,以及如果平均值不是电流源元件的预定数目,则调节启动的电流源元件的数目到预定数目。
4.根据权利要求1所述的方法,进一步包括:
调制数目的分数部分F,该数目包括整数部分I和分数部分F,分数部分具有f个位,以便产生第一时变整数,该数目用于控制所述多模反馈分频器,f是整数;
使得分数部分F左移整数r位以及将F的最低有效位(f-r)调制成第二时变整数,并且将第二时变整数加到分数部分F的r个最高有效位以便产生第一总和。
5.根据权利要求4所述的方法,进一步包括:
在所述经调制数目的分数部分F左移r位后,经调制的分数部分F减去第一总和,以便产生差值;
集成该差值以便产生对应于所述可变的第二值的相位差。
6.根据权利要求4所述的方法,其中假定的振荡器输出信号比用于产生所述反馈脉冲信号的压控振荡器的输出信号的频率快2r倍,并且其与压控振荡器的输出信号相位对准。
7.根据权利要求1所述的方法,其中所述第一电流源是向上电流源,以及所述第二电流源是向下电流源。
8.根据权利要求1所述的方法,进一步包括在所述第一电流源和第二电流源中进行电荷泵和量化降噪的双重功能。
9.一种分数-N型锁相环,包括:
多模反馈分频器电路(601),耦合至压控振荡器的输出信号,所述反馈分频器电路提供反馈脉冲信号(fbclk);
相位频率检测器(609),耦合至参考时钟信号和所述反馈脉冲信号(fbclk),以基于所述参考时钟信号和所述反馈脉冲信号(fbclk)产生第一脉冲信号(Iup)和固定宽度第二脉冲信号(tp);
电荷泵,耦合至所述相位频率检测器,所述电荷泵包括第一电流源(605),响应于来自相位频率检测器的第一脉冲信号供应第一极性的第一电流;以及第二电流源(607),响应于固定宽度的第二脉冲信号以及根据与可变值结合的固定值供应第二极性的第二电流,所述可变值是所述反馈脉冲信号(fbclk)和假定的反馈时钟信号之间的相位差,所述假定的反馈时钟信号基于假定的振荡器输出信号,该振荡器输出信号比所述压控振荡器的输出信号运行更快。
10.根据权利要求9所述的分数-N型锁相环,其中第二电流源包括独立可控的单位电流源,以及独立可控的单位电流源的固定数目对应于固定值,以及固定数目根据可变值来调整以便使得独立可控的单元电流源的数目可用从而提供第二电流;
其中,所述固定宽度的第二脉冲信号确定所述第二电流供应多长时间,以及所述固定值和所述可变值确定第二电流的幅度。
11.根据权利要求10所述的分数-N型锁相环,其中平均固定数目的电流源启动。
12.根据权利要求9所述的分数-N型锁相环,进一步包括误差纠正电路,其耦合至控制所述多模反馈分频器电路的Δ-∑调制器以便对启动的电流源元件的数目取平均以及调整启动的电流源元件的数目,使得平均值为电流源元件的固定数目。
13.根据权利要求9所述的分数-N型锁相环,进一步包括耦合到第一电流源和第二电流源的环路滤波器,所述压控振荡器耦合到环路滤波器以及根据由第一和第二电流分别供应的第一和第二电荷量的差异进行调节。
14.根据权利要求10所述的分数-N型锁相环,进一步包括:
第一电路,用于调制包括整数部分I和分数部分F的数目的具有f位的分数部分F,以便产生第一时变整数,该数目用于控制反馈分频器电路;
移相电路,用于使得分数部分F左移整数r位;
第二电路,用于将F的最低有效位(f-r)调制成第二时变整数;以及
加法器电路,以便将第二时变整数加到分数部分F的r个最高有效位以便产生第一总和。
15.根据权利要求14所述的设备,进一步包括:
差分电路,用于在经调制的分数部分F左移r位后从经调制的分数部分F减去第一总和,以便产生差值;
积分器,用于集成该差值以便产生对应于可变值的相位差。
16.根据权利要求14所述的设备,其中所述第一电路和第二电路分别包括第一Δ-∑调制器和第二Δ-∑调制器。
17.根据权利要求9所述的设备,其中所述第一电流源是向上电流源,以及所述第二电流源是向下电流源。
CN201110076542.3A 2010-03-25 2011-03-25 用于在分数-n型锁相环中量化降噪的方法和设备 Active CN102281059B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/732,024 US8179163B2 (en) 2010-03-25 2010-03-25 Method and apparatus for charge pump linearization in fractional-N PLLs
US12/732,029 US8207766B2 (en) 2010-03-25 2010-03-25 Method and apparatus for quantization noise reduction in fractional-N PLLs
US12/732,029 2010-03-25
US12/732,024 2010-03-25

Publications (2)

Publication Number Publication Date
CN102281059A CN102281059A (zh) 2011-12-14
CN102281059B true CN102281059B (zh) 2015-06-03

Family

ID=44148663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110076542.3A Active CN102281059B (zh) 2010-03-25 2011-03-25 用于在分数-n型锁相环中量化降噪的方法和设备

Country Status (2)

Country Link
EP (1) EP2369745B1 (zh)
CN (1) CN102281059B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420604A (zh) * 2011-11-24 2012-04-18 思瑞浦(苏州)微电子有限公司 一种低噪声的占空比恢复电路
CN104202048B (zh) * 2014-08-27 2017-05-17 中国科学技术大学 一种宽带全集成锁相环频率综合器
CN105577142A (zh) * 2016-02-26 2016-05-11 昆腾微电子股份有限公司 时钟占空比调整装置及方法
US9712176B1 (en) * 2016-06-10 2017-07-18 Silicon Laboratories Inc. Apparatus for low power signal generator and associated methods
CN107294531B (zh) * 2017-06-21 2020-09-11 上海兆芯集成电路有限公司 锁相回路和分频器
CN109995360B (zh) * 2018-01-02 2023-04-14 珠海全志科技股份有限公司 抑制扰动的锁相环
US10965297B1 (en) * 2020-03-03 2021-03-30 Samsung Electronics Co., Ltd Sigma-delta modulation quantization error reduction technique for fractional-N phase-locked loop (PLL)
CN112953515B (zh) * 2021-01-26 2024-05-10 北京金迈捷科技有限公司 一种分数锁相环

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1507717A (zh) * 2001-03-20 2004-06-23 Gct�뵼�����޹�˾ 使用分数补偿方法的分数-n频率合成器
CN1784831A (zh) * 2003-05-02 2006-06-07 硅谷实验室公司 低抖动双环路分数n型合成器的方法和装置
CN101013893A (zh) * 2005-12-05 2007-08-08 瑞昱半导体股份有限公司 频率合成器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216767A (ja) * 1992-11-18 1994-08-05 Philips Electron Nv 安定化位相弁別器を備えるフェーズロックドループ用回路
JP2004015088A (ja) * 2002-06-03 2004-01-15 Mitsubishi Electric Corp 小数点分周方式pll周波数シンセサイザ
US7728631B2 (en) * 2008-05-15 2010-06-01 Atheros Communications, Inc. Phase frequency detector with pulse width control circuitry

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1507717A (zh) * 2001-03-20 2004-06-23 Gct�뵼�����޹�˾ 使用分数补偿方法的分数-n频率合成器
CN1784831A (zh) * 2003-05-02 2006-06-07 硅谷实验室公司 低抖动双环路分数n型合成器的方法和装置
CN101013893A (zh) * 2005-12-05 2007-08-08 瑞昱半导体股份有限公司 频率合成器

Also Published As

Publication number Publication date
CN102281059A (zh) 2011-12-14
EP2369745B1 (en) 2015-04-15
EP2369745A1 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
CN102281059B (zh) 用于在分数-n型锁相环中量化降噪的方法和设备
US8207766B2 (en) Method and apparatus for quantization noise reduction in fractional-N PLLs
US8179163B2 (en) Method and apparatus for charge pump linearization in fractional-N PLLs
CN103348596B (zh) 用于分数-n锁相环(pll)的参考时钟补偿
JP4808882B2 (ja) Pllとデルタシグマ変調器とを有する無線送信器機構
US8179174B2 (en) Fast phase locking system for automatically calibrated fractional-N PLL
EP2283576B1 (en) Integrated ramp, sweep fractional frequency synthesizer on an integrated circuit chip
US8476945B2 (en) Phase profile generator
US20080136532A1 (en) Phase locked loop with adaptive phase error compensation
US8022782B2 (en) Two-point phase modulator and method of calibrating conversion gain of the same
US8866519B1 (en) System and method for reducing spectral pollution in a signal
EP3208943B1 (en) Fractional frequency synthesizer
US11218156B2 (en) Clock and data recovery devices with fractional-N PLL
US20140333351A1 (en) Automatic loop-bandwidth calibration for a digital phased-locked loop
US6605935B2 (en) Linear fast-locking digital phase detector
CN107112984A (zh) 相位切换pll和校准方法
US20220321132A1 (en) Type-i plls for phase-controlled applications
JP2005287022A (ja) 位相同期ループ、および、周波数制御可能な発振器の位相補正方法
KR20120138843A (ko) 시그마-델타 기반 위상 고정 루프
CN102217399B (zh) 用于生成载频信号的方法和设备
US11245403B2 (en) Method and a system for calibrating a phase nonlinearity of a digital-to-time converter
US20060159157A1 (en) Digital spread spectrum clock signal generation
CN103718463A (zh) 高线性相位频率检测器
EP1297619B1 (en) Linear dead-band-free digital phase detection
CN103036559B (zh) 锁相回路以及相关的相位对齐方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant