CN102264758B - 磺酰脲-响应性的阻遏蛋白 - Google Patents

磺酰脲-响应性的阻遏蛋白 Download PDF

Info

Publication number
CN102264758B
CN102264758B CN200980152630.8A CN200980152630A CN102264758B CN 102264758 B CN102264758 B CN 102264758B CN 200980152630 A CN200980152630 A CN 200980152630A CN 102264758 B CN102264758 B CN 102264758B
Authority
CN
China
Prior art keywords
certain embodiments
sequence
seq
polynucleotide
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980152630.8A
Other languages
English (en)
Other versions
CN102264758A (zh
Inventor
M.拉斯纳
L.L.卢格尔
K.E.麦布里德
B.麦戈尼格尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Hi Bred International Inc
EIDP Inc
Original Assignee
Pioneer Hi Bred International Inc
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Hi Bred International Inc, EI Du Pont de Nemours and Co filed Critical Pioneer Hi Bred International Inc
Publication of CN102264758A publication Critical patent/CN102264758A/zh
Application granted granted Critical
Publication of CN102264758B publication Critical patent/CN102264758B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/635Externally inducible repressor mediated regulation of gene expression, e.g. tetR inducible by tetracyline
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8217Gene switch
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8237Externally regulated expression systems
    • C12N15/8238Externally regulated expression systems chemically inducible, e.g. tetracycline
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • C12N15/8278Sulfonylurea

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供了与磺酰脲-响应性的阻遏物的使用有关的组合物和方法。组合物包括特异性地结合操纵基因的多肽,其中所述特异性的结合受到磺酰脲化合物的调节。组合物也包括编码所述多肽的多核苷酸、以及构建体、载体、原核和真核细胞和真核生物体,包括包含所述多核苷酸的植物和种子和/或通过所述方法生产的植物和种子。还提供了给细胞或生物体提供磺酰脲-响应性的阻遏物的方法,和调节细胞或生物体(包括植物或植物细胞)中的目标多核苷酸的表达的方法。

Description

磺酰脲-响应性的阻遏蛋白
技术领域
本发明涉及分子生物学领域,更具体地,涉及基因表达的调节。
背景技术
包含阻遏元件和操纵元件的四环素操纵子系统最初分离自细菌。该操纵子系统受到四环素存在的紧密控制,且自调节tetAtetR基因的表达水平。tetA的产物从细胞去除四环素。tetR的产物是阻遏蛋白,其在没有四环素存在下,以约10 pM的Kd结合操纵元件,由此阻断tetAtetR的表达。
已经改进该系统,以控制其它目标多核苷酸的表达,和/或用于其它生物体中,主要用于动物系统中。基于四环素操纵子的系统在植物中的应用受到限制,这至少部分地归因于诱导物的问题,所述诱导物通常是抗生素化合物,且对光敏感。
需要调节生物体中的目标序列的表达,提供了响应于磺酰脲化合物而紧密地调节表达的组合物和方法。
发明内容
提供了与磺酰脲-响应性的阻遏物的使用有关的组合物和方法。组合物包括特异性地结合操纵基因的多肽,其中所述特异性的结合受到磺酰脲化合物的调节。组合物也包括编码所述多肽的多核苷酸、以及构建体、载体、原核和真核细胞和真核生物体,包括包含所述多核苷酸的植物和种子和/或通过所述方法生产的植物和种子。还提供了给细胞或生物体提供磺酰脲-响应性的阻遏物的方法,和调节细胞或生物体(包括植物或植物细胞)中的目标多核苷酸的表达的方法。
附图说明
图1. 基于来自蛋白数据库 (PDB)的晶体结构1DU7,使四环素-Mg++和磺酰脲化合物Harmony? (甲基噻吩磺隆; Ts) 进入(Dock)D类TetR的结合袋中。
图2. 示例性的基于大肠杆菌的tetR表达载体 pVER7314的载体图谱。复制子主链是基于pBR322的主链。编码的TetR配体结合域(LBD)侧接SacI和AscI位点。KMsp172和KMsp173代表用于插入的tetR基因的DNA测序的引物的结合位点。rrnB T1 T2是强转录终止子,用于抑制关于转录的运行(run around transcription)和失调的tetR表达。
图3. 对20 μg/ml 甲基噻吩磺隆 (Ts)的文库1命中响应。将携带推定的tetR命中L1-1至L1-20或野生型tetR的大肠杆菌KM3 细胞平板复制到M9试验培养基(+/- 20 μg/ml Ts)上,然后在30℃培养,直到出现蓝色/白色菌落辨别。此时,给菌落照相,并基于菌落蓝色的程度,测定相对的β-半乳糖苷酶活性。
图4. 45个推定的文库L4命中相对于0、0.2和1.0 ppm 胺苯磺隆 (Es)的相对β-半乳糖苷酶活性。使用5 μl穿孔的全细胞混合物,测量诱导的活性,并使用25 μl穿孔的细胞混合物,测量背景活性,使得可以在相同时帧中测量所有处理的可检测的活性。为了使它们进入图的显示范围,将背景活性值乘以10。图的右手侧含有对照,野生型TetR和第1轮命中L1-9。
图5. 使用胺苯磺隆在L7命中中的β-半乳糖苷酶诱导。重新排列来自L7文库的顶部命中(Top hit),并以96-孔培养形式测试0.02 μg/ml和0.2 μg/ml 诱导物(Es)的相对诱导以及在没有诱导物时的背景活性。使用5 μl穿孔的细胞混合物,测定诱导的活性,而使用25 μl 细胞来检测背景活性。这允许在相同时帧中测量所有处理的所有可检测的活性。为了使它们进入图的范围,将背景活性值乘以10。图的后部分显示了对照:第2轮命中L4-89和L4-120和野生型TetR(B),使用胺苯磺隆;和野生型TetR,使用0.4 μM atc 作为同源诱导物用于对比 (具有斜条纹的条)。用倾斜文字指示的孔ID是指试验重新排列的ID,而用水平文字在下面指示原始克隆的ID。
图6.  通过本氏烟草(Nicotiana benthamiana)叶子中的瞬时表达测得的两种EsR变体的胺苯磺隆剂量响应。黑色条代表野生型TetR,灰色条代表EsR命中A11,白色条代表EsR命中D01。具有斜纹的条代表无阻遏物对照,其指示试验中报告物表达的最大水平。
图7。在没有或有配体存在下,DNA与tetOp的结合。在含有20mM Tris-HCl (pH8.0)和10mM EDTA的络合缓冲液中,将5 pmol TetO或对照DNA与指示量的阻遏蛋白和诱导物相混合。
图8. 示例性的登记的磺酰脲化合物的结构。
图9.  几代磺酰脲阻遏物重排(shuffling)文库的来源多样性、文库设计和命中多样性和群体偏倚的总结。破折号(“-“) 指示在文库的该位置没有引入氨基酸多样性。X指示,文库寡物被设计成在文库的该位置引入完全的氨基酸多样性(20种氨基酸中的任一种)。粗体残基指示选择过程中的偏倚,更大的字号指示在选定的群体中更大的偏倚程度。在括号中的残基指示选择的突变。种系发生多样性集合源自34个四环素阻遏物序列的广大家族。
图10. 玉米愈伤组织(A)或植物(B)中的荧光报告物的磺酰脲抑制。
图11. 胺苯磺隆对示例性的 L13命中中的β-半乳糖苷酶诱导。
详细描述
已经证实,化学调节的表达工具对于研究许多生物系统中的基因功能和调节而言是有价值的。这些系统允许测试当转基因不能被特异性地调节时,或由于负面后果而连续表达时,对培养系统或整个生物体中的任意目标基因的表达的影响。这些系统基本上提供了进行“脉冲”或“脉冲追踪” 基因表达测试的机会。化学开关-介导的表达系统允许测试在靶基因活化以后立即的基因组、蛋白质组和/或代谢物组响应。这些类型的实验不能用组成型、发育型或组织-特异性的表达系统来完成。化学开关技术也可以为基因治疗提供工具。
化学开关系统可以在商业上应用,诸如用于农业生物技术中。对于农业目的,希望能够控制转基因在环境中的表达和/或遗传流动,诸如除草剂抗性基因,特别是在存在目标作物的亲缘杂草的情况下。另外,具有可行的化学开关机制的家族,能够实现来自单个转基因作物的特性存量管理(trait inventory management),例如,可以使用一个生产系来根据客户需要递送选择的特性(通过特异性的化学活化)。另外,通过使用杂种维持的化学控制,可以使杂种制种流线化。
在动物系统中广泛使用的基于Tet阻遏物(TetR)的遗传开关系统在植物遗传系统中的应用受到限制,这部分地归因于活化剂配体的问题。已经重新设计了TetR,以识别商业上使用的磺酰脲化学试剂而不是四环素化合物,同时保留特异性地结合四环素操纵基因序列的能力。这如下实现:使用合理的蛋白建模和DNA重排来修饰Tet阻遏物配体结合域,以识别商业上使用的磺酰脲化合物。使用灵敏的体内β-半乳糖苷酶测定法的最初TetR重排和筛选,导致对生长培养基中的20 ppm的除草剂 Harmony? (甲基噻吩磺隆)的特异性识别,而没有识别四环素。用其它磺酰脲化合物测试后,许多与Harmony?反应性的命中也对其它SU化合物有响应。在某些情况下,所述命中甚至具有对有关的除草剂氯磺隆和胺苯磺隆 (2 ppm)更好的反应性。TetR衍生物的其它轮的重排和筛选,导致与0.2 ppm 氯磺隆和0.02 ppm 胺苯磺隆强烈反应的TetR变体,正如使用体内诱导试验在大肠杆菌中测得的。为此,通过使用类似的诱导物浓度,胺苯磺隆响应性的SuR变体(EsRs)表现出与脱水四环素(atc)对野生型B类TetR诱导几乎相等的诱导能力。这些SuR分子不具有与四环素的反应性,野生型TetR(B) (SEQ ID NO: 2) 不具有与磺酰脲类的反应性。
提供了与磺酰脲-响应性的阻遏物的使用有关的组合物和方法。磺酰脲-响应性的阻遏物(SuR) 包括其与操纵基因序列的结合受到包含磺酰脲化合物的配体的控制的任意阻遏物多肽。在某些实施例中,所述阻遏物在没有磺酰脲配体存在下特异性地结合操纵基因。在某些实施例中,所述阻遏物在有磺酰脲配体存在下特异性地结合操纵基因。在有配体存在下结合操纵基因的阻遏物有时称作反阻遏物。在某些实施例中,组合物包括特异性地结合四环素操纵基因的SuR多肽,其中所述特异性的结合由磺酰脲化合物调节。在某些实施例中,组合物包括分离的磺酰脲阻遏物(SuR)多肽,其包含对野生型四环素阻遏蛋白配体结合域的至少一个氨基酸置换,其中所述SuR多肽或其多聚体特异性地结合包含操纵基因序列的多核苷酸,其中阻遏物-操纵基因结合由磺酰脲化合物的存在与否调节。在某些实施例中,组合物包括分离的磺酰脲阻遏物,其包含含有对野生型四环素阻遏蛋白配体结合域的至少一个氨基酸置换的配体结合域,所述配体结合域与异源操纵基因DNA结合域(其特异性地结合包含操纵基因序列或其衍生物的多核苷酸)融合,其中阻遏物-操纵基因结合由磺酰脲化合物的存在与否调节。可以使用任意的操纵基因DNA结合域,包括但不限于来自下述阻遏物的操纵基因DNA结合域:包括tet、lac、trp、phd、arg、LexA、phiCh1阻遏物、λ C1和Cro阻遏物、噬菌体X阻遏物、MetJ、phir1t rro、phi434 C1和Cro阻遏物、RafR、gal、ebg、uxuR、exuR、ROS、SinR、PurR、FruR、P22 C2、TetC、AcrR、Betl、Bm3R1、EnvR、QacR、MtrR、TcmR、Ttk、YbiH、YhgD和mu Ner或Interpro家族中的DNA结合域,包括但不限于 IPR001647、IPR010982和IPR011991。
在某些实施例中,组合物包括分离的磺酰脲阻遏物(SuR)多肽,其包含对野生型四环素阻遏蛋白的至少一个氨基酸置换,其中所述SuR多肽或其多聚体特异性地结合包含四环素操纵基因序列的多核苷酸,其中阻遏物-操纵基因结合由磺酰脲化合物的存在与否调节。
野生型阻遏物包括四环素A、B、C、D、E、G、H、J和Z类阻遏物。在Tn1721 转座子上发现了TetR(A)类的一个实例,且在GenBank登记号X61307下保藏,在gi48198下与编码的蛋白登记号CAA43639交叉参照,在gi48195和UniProt登记号Q56321下交叉参照。在Tn10 转座子上发现了TetR(B)类的一个实例,且在GenBank登记号X00694下保藏,在gi43052下与编码的蛋白登记号CAA25291交叉参照,在gi43052和UniProt登记号P04483下交叉参照。在pSC101质粒上发现了TetR(C)类的一个实例,且在GenBank登记号M36272下保藏,在gi150945下与编码的蛋白登记号AAA25677交叉参照,在gi150946下交叉参照。在奥道奈兹沙门菌中发现了TetR(D)类的一个实例,且在GenBank登记号X65876下保藏,在gi49073下与编码的蛋白登记号CAA46707交叉参照,在gi49075和UniProt登记号P0ACT5和P09164下交叉参照。从大肠杆菌转座子Tn10分离出了TetR(E)类的一个实例,且在GenBank登记号M34933下保藏,在gi155019下与编码的蛋白登记号AAA98409交叉参照,在gi155020下交叉参照。从鳗弧菌分离出了TetR(G)类的一个实例,且在GenBank登记号S52438下保藏,在gi262928下与编码的蛋白登记号AAB24797交叉参照,在gi262929下交叉参照。在从多杀巴斯德菌分离的质粒pMV111上发现了TetR(H)类的一个实例,且在GenBank登记号U00792下保藏,在gi392871下与编码的蛋白登记号AAC43249交叉参照,在gi392872下交叉参照。从奇异变形杆菌分离了TetR(J)类的一个实例,且在GenBank登记号AF038993下保藏,在gi4104704下与编码的蛋白登记号AAD12754交叉参照,在gi4104706下交叉参照。在从谷氨酸棒杆菌分离的质粒pAGI上发现了TetR(Z)类的一个实例,且在GenBank登记号AF121000下保藏,在gi4583389下与编码的蛋白登记号AAD25064交叉参照,在gi4583390下交叉参照。在某些实施例中,所述野生型四环素阻遏物是B类四环素阻遏蛋白。在某些实施例中,所述野生型四环素阻遏物是D类四环素阻遏蛋白。
在某些实施例中,磺酰脲阻遏物(SuR)多肽包含在野生型四环素阻遏蛋白的配体结合域中的氨基酸置换。在B和D类野生型TetR蛋白中,氨基酸残基6-52代表DNA结合域。所述蛋白的剩余部分参与配体结合和以后的变构修饰。对于B类TetR,残基53-207代表配体结合域,而残基53-218包含D类TetR的配体结合域。在某些实施例中,所述SuR多肽包含野生型TetR(B)蛋白的配体结合域中的氨基酸置换。在某些实施例中,所述SuR多肽包含SEQ ID NO: 1的野生型TetR(B)蛋白的配体结合域中的氨基酸置换。
在某些实施例中,所述分离的SuR多肽包含与选自图9所示的氨基酸多样性的等效氨基酸位置相对应的一个氨基酸或氨基酸的任意组合,其中图9所示的氨基酸残基位置对应着野生型TetR(B)的氨基酸编号。在某些实施例中,所述分离的SuR多肽包含配体结合域,所述配体结合域包含至少10%、20%、30%、40%、50%、55%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的图9所示的氨基酸残基,其中所述氨基酸残基位置对应着使用野生型TetR(B)的氨基酸编号的等效位置。在某些实施例中,所述分离的SuR多肽包含至少10%、20%、30%、40%、50%、55%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的图9所示的氨基酸残基,其中所述氨基酸残基位置对应着使用野生型TetR(B)的氨基酸编号的等效位置。在某些实施例中,所述野生型TetR(B)是SEQ ID NO: 1。
在某些实施例中,所述分离的SuR多肽包含配体结合域,所述配体结合域包含在选自下述的残基位置处的氨基酸置换:位置55、60、64、67、82、86、100、104、105、108、113、116、134、135、138、139、147、151、170、173、174、177和它们的任意组合,其中所述氨基酸残基位置和置换对应着使用野生型TetR(B)的氨基酸编号的等效位置。在某些实施例中,所述分离的SuR多肽另外包含在选自下述的残基位置处的氨基酸置换:109、112、117、131、137、140、164和它们的任意组合。在某些实施例中,所述野生型TetR(B)是SEQ ID NO: 1。
在某些实施例中,所述分离的SuR多肽包含配体结合域,所述配体结合域包含至少10%、20%、30%、40%、50%、55%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的选自下述的氨基酸残基:
(a)    在氨基酸残基位置55处的M或L;
(b)    在氨基酸残基位置60处的A、L或M;
(c)    在氨基酸残基位置64处的A、N、Q、L或H;
(d)    在氨基酸残基位置67处的M、I、L、V、F或Y;
(e)    在氨基酸残基位置82处的N、S或T;
(f)     在氨基酸残基位置86处的F、M、W或Y;
(g)    在氨基酸残基位置100处的C、V、L、M、F、W或Y;
(h)    在氨基酸残基位置104处的R、A或G
(i)     在氨基酸残基位置105处的A、I、V、F或W;
(j)     在氨基酸残基位置108处的Q或K;
(k)    在氨基酸残基位置113处的A、M、H、K、T、P或V;
(l)     在氨基酸残基位置116处的I、L、M、V、R、S、N、P或Q;
(m)   在氨基酸残基位置134处的I、L、V、M、R、S或W;
(n)    在氨基酸残基位置135处的R、S、N、Q、K或A;
(o)    在氨基酸残基位置138处的A、C、G、H、I、V、R或T;
(p)    在氨基酸残基位置139处的A、G、I、V、M、W、N、R或T;
(q)    在氨基酸残基位置147处的I、L、V、F、W、T、S或R;
(r)     在氨基酸残基位置151处的M、L、W、Y、K、R或S;
(s)    在氨基酸残基位置170处的I、L、V或A;
(t)     在氨基酸残基位置173处的A、G或V;
(u)    在氨基酸残基位置174处的L、V、W、Y、H、R、K或S;和,
(v)    在氨基酸残基位置177处的A、G、I、L、Y、K、Q或S,
其中所述氨基酸残基位置对应着使用野生型TetR(B)的氨基酸编号的等效位置。在某些实施例中,所述分离的SuR多肽包含至少10%、20%、30%、40%、50%、55%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的选自在上面(a)–(v)中列出的氨基酸残基的氨基酸残基,其中所述氨基酸残基位置对应着使用野生型TetR(B)的氨基酸编号的等效位置。在某些实施例中,所述野生型TetR(B)是SEQ ID NO: 1。
在某些实施例中,针对增强的对氯磺隆的活性所选择的分离的SuR多肽包含配体结合域,所述配体结合域包含至少10%、20%、30%、40%、50%、55%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的选自下述的氨基酸残基:
(a)    在氨基酸残基位置60处的M;
(b)    在氨基酸残基位置64处的A或Q;
(c)    在氨基酸残基位置67处的M、F、Y、I、V或L;
(d)    在氨基酸残基位置82处的N或T;
(e)    在氨基酸残基位置86处的M;
(f)     在氨基酸残基位置100处的C或W;
(g)    在氨基酸残基位置105处的W;
(h)    在氨基酸残基位置108处的Q或K;
(i)     在氨基酸残基位置109处的M、Q、L或H;
(j)     在氨基酸残基位置112处的G、A、S或T;
(k)    在氨基酸残基位置113处的A;
(l)     在氨基酸残基位置116处的M或Q;
(m)   在氨基酸残基位置134处的M或V;
(n)    在氨基酸残基位置138处的G或R;
(o)    在氨基酸残基位置139处的N或V;
(p)    在氨基酸残基位置147处的F;
(q)    在氨基酸残基位置151处的S或L;
(r)     在氨基酸残基位置164处的A;
(s)    在氨基酸残基位置170处的A、L或V;
(t)     在氨基酸残基位置173处的A、G或V;
(u)    在氨基酸残基位置174处的L或W;和;
(v)    在氨基酸残基位置177处的K,
其中所述氨基酸残基位置对应着使用野生型TetR(B)的氨基酸编号的等效位置。在某些实施例中,所述分离的SuR多肽包含至少10%、20%、30%、40%、50%、55%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的选自在上面(a)–(v)中列出的氨基酸残基的氨基酸残基,其中所述氨基酸残基位置对应着使用野生型TetR(B)的氨基酸编号的等效位置。在某些实施例中,所述野生型TetR(B)是SEQ ID NO: 1。
在某些实施例中,针对增强的对胺苯磺隆的活性所选择的分离的SuR多肽包含配体结合域,所述配体结合域包含至少10%、20%、30%、40%、50%、55%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的选自下述的氨基酸残基:
(a)    在氨基酸残基位置55处的M或L;
(b)    在氨基酸残基位置64处的A;
(c)    在氨基酸残基位置67处的M、Y、F、I、L或V;
(d)    在氨基酸残基位置86处的M;
(e)    在氨基酸残基位置100处的C;
(f)     在氨基酸残基位置104处的G;
(g)    在氨基酸残基位置105处的F;
(h)    在氨基酸残基位置108处的Q或K;
(i)     在氨基酸残基位置109处的Q、M、L或H;
(j)     在氨基酸残基位置112处的S、T、G或A;
(k)    在氨基酸残基位置113处的A;
(l)     在氨基酸残基位置116处的S;
(m)   在氨基酸残基位置117处的M或L;
(n)    在氨基酸残基位置131处的M或L;
(o)    在氨基酸残基位置134处的M;
(p)    在氨基酸残基位置135处的Q;
(q)    在氨基酸残基位置137处的A或V;
(r)     在氨基酸残基位置138处的C或G;
(s)    在氨基酸残基位置139处的I;
(t)     在氨基酸残基位置140处的F或Y;
(u)    在氨基酸残基位置147处的L;
(v)    在氨基酸残基位置151处的L;
(w)   在氨基酸残基位置164处的A;
(x)    在氨基酸残基位置170处的V、A或L;
(y)    在氨基酸残基位置173处的G、A或V
(z)    在氨基酸残基位置174处的L;和,
(aa)  在氨基酸残基位置177处的N或K,
其中所述氨基酸残基位置对应着使用野生型TetR(B)的氨基酸编号的等效位置。在某些实施例中,所述分离的SuR多肽包含至少10%、20%、30%、40%、50%、55%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的选自在上面(a)–(aa)中列出的氨基酸残基的氨基酸残基,其中所述氨基酸残基位置对应着使用野生型TetR(B)的氨基酸编号的等效位置。在某些实施例中,所述野生型TetR(B)是SEQ ID NO: 1。
在某些实施例中,所述分离的SuR多肽与SEQ ID NO: 1的氨基酸残基53-207所例证的野生型TetR(B)的配体结合域具有至少约50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性,其中使用总体比对方法,在配体结合域的全长上测定序列同一性。在某些实施例中,所述总体比对方法使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。
在某些实施例中,所述分离的SuR多肽与SEQ ID NO: 1例证的野生型TetR(B)具有至少约50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性,其中使用总体比对方法,在多肽的全长上测定序列同一性。在某些实施例中,所述总体比对方法使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。
组合物包括分离的SuR多肽,其与选自SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243的SuR多肽的配体结合域具有至少约50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性,其中使用总体比对方法,在配体结合域的全长上测定序列同一性。在某些实施例中,所述总体比对方法使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。
在某些实施例中,所述分离的SuR多肽与选自SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243的SuR多肽具有至少约50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性,其中使用总体比对方法,在多肽的全长上测定序列同一性。在某些实施例中,所述总体比对方法使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。
在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-1A04 (SEQ ID NO:220)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分(bit score),其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-1A04 (SEQ ID NO:220)的多肽序列比对,以产生至少374的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-1A04 (SEQ ID NO:220)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-1A04 (SEQ ID NO:220)的多肽序列比对,以产生至少88%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-1A04 (SEQ ID NO:220)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-1A04 (SEQ ID NO:220)的多肽序列比对,以产生至少e-60, e-70, e-75, e-80, e-85, e-90, e-95, e-100, e-105, e-106, e-107, e-108, e-109, e-110, e-111, e-112, e-113, e-114, e-115, e-116, e-117, e-118, e-119, e-120,或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述多肽选自:SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243。
在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-22 (SEQ ID NO: 7)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-22 (SEQ ID NO: 7)的多肽序列比对,以产生至少387的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-22 (SEQ ID NO: 7)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-22 (SEQ ID NO: 7)的多肽序列比对,以产生至少92%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-22 (SEQ ID NO: 7)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200 的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-22 (SEQ ID NO: 7)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述多肽选自:SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243。
在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-29 (SEQ ID NO: 10)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-29 (SEQ ID NO: 10)的多肽序列比对,以产生至少393的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-29 (SEQ ID NO: 10)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-29 (SEQ ID NO: 10)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-29 (SEQ ID NO: 10)的多肽序列比对,以产生至少1006的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-29 (SEQ ID NO: 10)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述多肽选自:SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243。
在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-02 (SEQ ID NO: 3)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-02 (SEQ ID NO: 3)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-02 (SEQ ID NO: 3)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-02 (SEQ ID NO: 3)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-02 (SEQ ID NO: 3)的多肽序列比对,以产生至少e-112的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述多肽选自:SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243。
在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-07 (SEQ ID NO: 4)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-07 (SEQ ID NO: 4)的多肽序列比对,以产生至少388的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-07 (SEQ ID NO: 4)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-07 (SEQ ID NO: 4)的多肽序列比对,以产生至少93%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-07 (SEQ ID NO: 4)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-07 (SEQ ID NO: 4)的多肽序列比对,以产生至少996的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-07 (SEQ ID NO: 4)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-07 (SEQ ID NO: 4)的多肽序列比对,以产生至少e-111的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述多肽选自:SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243。
在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-20 (SEQ ID NO: 6)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-20 (SEQ ID NO: 6)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-20 (SEQ ID NO: 6)的多肽序列比对,以产生至少93%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-20 (SEQ ID NO: 6)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-20 (SEQ ID NO: 6)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-20 (SEQ ID NO: 6)的多肽序列比对,以产生至少e-111的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述多肽选自:SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243。
在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-44 (SEQ ID NO: 13)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-44 (SEQ ID NO: 13)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-44 (SEQ ID NO: 13)的多肽序列比对,以产生至少93%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-44 (SEQ ID NO: 13)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-44 (SEQ ID NO: 13)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述多肽选自:SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243。
在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3A09 (SEQ ID NO: 1228)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3A09 (SEQ ID NO: 1228)的多肽序列比对,以产生至少381的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3A09 (SEQ ID NO: 1228)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3A09 (SEQ ID NO: 1228)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3A09 (SEQ ID NO: 1228)的多肽序列比对,以产生至少978的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3A09 (SEQ ID NO: 1228)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3A09 (SEQ ID NO: 1228)的多肽序列比对,以产生至少e-108的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述多肽选自:SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243。
在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3H02 (SEQ ID NO: 94)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3H02 (SEQ ID NO: 94)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3H02 (SEQ ID NO: 94)的多肽序列比对,以产生至少90%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3H02 (SEQ ID NO: 94)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3H02 (SEQ ID NO: 94)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述多肽选自:SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243。
在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-4E03 (SEQ ID NO: 1229)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-4E03 (SEQ ID NO: 1229)的多肽序列比对,以产生至少368的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-4E03 (SEQ ID NO: 1229)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-4E03 (SEQ ID NO: 1229)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-4E03 (SEQ ID NO: 1229)的多肽序列比对,以产生至少945的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-4E03 (SEQ ID NO: 1229)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-4E03 (SEQ ID NO: 1229)的多肽序列比对,以产生至少e-105的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述多肽选自:SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243。
在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L10-84(B12) (SEQ ID NO: 1230)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L10-84(B12) (SEQ ID NO: 1230)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L10-84(B12) (SEQ ID NO: 1230)的多肽序列比对,以产生至少86%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L10-84(B12) (SEQ ID NO: 1230)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L10-84(B12) (SEQ ID NO: 1230)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述多肽选自:SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243。
在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L13-46 (SEQ ID NO: 1231)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L13-46 (SEQ ID NO: 1231)的多肽序列比对,以产生至少320的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L13-46 (SEQ ID NO: 1231)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L13-46 (SEQ ID NO: 1231)的多肽序列比对,以产生至少86%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L13-46 (SEQ ID NO: 1231)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L13-46 (SEQ ID NO: 1231)的多肽序列比对,以产生至少819的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L13-46 (SEQ ID NO: 1231)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L13-46 (SEQ ID NO: 1231)的多肽序列比对,以产生至少e-90的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述多肽选自:SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243。
在某些实施例中,所述分离的SuR多肽包含配体结合域,所述配体结合域来自选自SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243的多肽。在某些实施例中,所述分离的SuR多肽包含选自SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243的氨基酸序列。在某些实施例中,所述分离的SuR多肽选自:SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243且磺酰脲化合物选自:氯磺隆、胺苯磺隆、甲磺隆、嘧磺隆、苯磺隆、豆磺隆、烟嘧磺隆、砜嘧磺隆和噻吩磺隆。
在某些实施例中,所述分离的SuR多肽对于磺酰脲化合物具有大于0.1 nM且小于10 μM的平衡结合常数。在某些实施例中,所述分离的SuR多肽对于磺酰脲化合物具有至少0.1 nM、0.5 nM、1 nM、10 nM、50 nM、100 nM、250 nM、500 nM、750 nM、1 μM、5 μM、7 μM、但是小于10 μM的平衡结合常数。在某些实施例中,所述分离的SuR多肽对于磺酰脲化合物具有至少0.1 nM、0.5 nM、1 nM、10 nM、50 nM、100 nM、250 nM、500 nM、750 nM、但是小于1 μM的平衡结合常数。在某些实施例中,所述分离的SuR多肽对于磺酰脲化合物具有大于0 nM、、但是小于0.1 nM、0.5 nM、1 nM、10 nM、50 nM、100 nM、250 nM、500 nM、750 nM、1 μM、5 μM、7 μM或10 μM的平衡结合常数。在某些实施例中,磺酰脲化合物是氯磺隆、胺苯磺隆、甲磺隆、嘧磺隆、苯磺隆、豆磺隆、烟嘧磺隆、砜嘧磺隆和/或噻吩磺隆。
在某些实施例中,所述分离的SuR多肽对于操纵基因序列具有大于0.1 nM且小于10 μM的平衡结合常数。在某些实施例中,所述分离的SuR多肽对于操纵基因序列具有至少0.1 nM、0.5 nM、1 nM、10 nM、50 nM、100 nM、250 nM、500 nM、750 nM、1 μM、5 μM、7 μM、但是小于10 μM的平衡结合常数。在某些实施例中,所述分离的SuR多肽对于操纵基因序列具有至少0.1 nM、0.5 nM、1 nM、10 nM、50 nM、100 nM、250 nM、500 nM、750 nM、但是小于1 μM的平衡结合常数。在某些实施例中,所述分离的SuR多肽对于操纵基因序列具有大于0 nM、但是小于0.1 nM、0.5 nM、1 nM、10 nM、50 nM、100 nM、250 nM、500 nM、750 nM、1 μM、5 μM、7 μM或10 μM的平衡结合常数。在某些实施例中,所述操纵基因序列是Tet操纵基因序列。在某些实施例中,所述Tet操纵基因序列是TetR(A)操纵基因序列、TetR(B)操纵基因序列、TetR(D)操纵基因序列、TetR(E)操纵基因序列、TetR(H)操纵基因序列或其功能衍生物。
分离的SuR多肽特异性地结合磺酰脲化合物。磺酰脲分子包含磺酰脲部分 (–S(O)2NHC(O)NH(R)–)。在磺酰脲除草剂中,磺酰脲部分的磺酰基末端直接地或经由氧原子或最佳取代的氨基或亚甲基连接到通常取代的环状或无环基团上。在磺酰脲桥的相对末端处,氨基(其可能具有取代氢的取代基,诸如甲基(R是CH3))连接到具有一个或两个取代基的杂环基团(通常是对称的嘧啶或三嗪环)上,所述取代基诸如甲基、乙基、三氟甲基、甲氧基、乙氧基、甲氨基、二甲氨基、乙氨基和卤素。磺酰脲除草剂可以是游离酸或盐的形式。在游离酸形式中,在桥上的磺酰胺氮没有去质子化(即,–S(O)2NHC(O)NH(R)–),而在盐形式中,在桥上的磺酰胺氮原子被去质子化(即,–S(O)2NC(O)NH(R)–),且存在阳离子,通常是碱金属或碱土金属的阳离子,最通常是钠或钾的阳离子。磺酰脲化合物包括,例如,诸如嘧啶基磺酰脲化合物、三嗪基磺酰脲化合物、噻二唑基脲化合物等化合物类别、和诸如抗糖尿病药等药物、以及它们的盐和其它衍生物。嘧啶基磺酰脲化合物的实例包括酰嘧磺隆、四唑嘧磺隆、苄嘧磺隆(bensulfuron)、苄嘧磺隆(bensulfuron-methyl)、豆磺隆、乙基豆磺隆, 环胺磺隆, ethoxysulfuron, 啶嘧磺隆, 氟吡磺隆, flupyrsulfuron, flupyrsulfuron-methyl, foramsulfuron, 氯吡嘧磺隆(halosulfuron), 氯吡嘧磺隆(halosulfuron-methyl), 咪唑磺隆, 甲磺胺磺隆(mesosulfuron), 甲磺胺磺隆(mesosulfuron-methyl), 烟嘧磺隆, orthosulfamuron, oxasulfuron, 氟嘧磺隆(primisulfuron), 甲基氟嘧磺隆(primisulfuron-methyl), 吡嘧磺隆(pyrazosulfuron), 乙基吡嘧磺隆(pyrazosulfuron-ethyl), 砜嘧磺隆, 嘧磺隆(sulfometuron), 甲嘧磺隆(sulfometuron-methyl), 磺酰磺隆, trifloxysulfuron和它们的盐和衍生物。三嗪基磺酰脲化合物的实例包括氯磺隆, 醚磺隆, 胺苯磺隆(ethametsulfuron), 甲基胺苯磺隆(ethametsulfuron-methyl), 碘磺隆(iodosulfuron), 碘甲磺隆(iodosulfuron-methyl), 甲磺隆(metsulfuron), 甲磺隆(metsulfuron-methyl), 氟磺隆, 噻吩磺隆(thifensulfuron), 甲基噻吩磺隆(thifensulfuron-methyl), 醚苯磺隆, 苯磺隆(tribenuron), 甲基苯磺隆(tribenuron-methyl), 氟胺磺隆(trifulusulfuron), 甲基氟胺磺隆(triflusulfuron-methyl), tritosulfuron和它们的盐和衍生物。噻二唑基脲化合物的实例包括buthiuron, 磺噻隆, 丁噻隆, thiazafluron, 噻苯隆和它们的盐和衍生物。抗糖尿病药的实例包括醋酸己脲、氯磺丙脲、甲苯磺丁脲、妥拉磺脲、格列吡嗪、格列齐特、优降糖(格列本脲)、格列喹酮、格列美脲和它们的盐和衍生物。在某些实施例中,所述分离的SuR多肽特异性地结合超过一种磺酰脲化合物。在某些实施例中,磺酰脲化合物选自:氯磺隆、甲基胺苯磺隆、甲磺隆、甲基噻吩磺隆、甲基嘧磺隆、甲基苯磺隆、乙基豆磺隆、烟嘧磺隆和砜嘧磺隆。
组合物也包括分离的多核苷酸,其编码特异性地结合四环素操纵基因的SuR多肽,其中所述特异性的结合由磺酰脲化合物调节。在某些实施例中,所述分离的多核苷酸编码磺酰脲阻遏物(SuR)多肽,所述多肽包含在野生型四环素阻遏蛋白的配体结合域中的氨基酸置换。在B和D类野生型TetR蛋白中,氨基酸残基6-52代表DNA结合域。所述蛋白的剩余部分参与配体结合和以后的变构修饰。对于B类TetR,残基53-207代表配体结合域,而残基53-218包含D类TetR的配体结合域。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含在野生型TetR(B)蛋白的配体结合域中的氨基酸置换。在某些实施例中,所述多核苷酸编码SuR多肽,所述SuR多肽包含在SEQ ID NO: 1的野生型TetR(B)蛋白的配体结合域中的氨基酸置换。
在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含选自图9所示的氨基酸多样性的一个氨基酸或氨基酸的任意组合,其中所述氨基酸残基位置对应着使用SEQ ID NO: 1例证的野生型TetR(B)的氨基酸编号的等效位置。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含配体结合域,所述配体结合域包含至少10%、20%、30%、40%、50%、55%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的图9所示的氨基酸残基,其中所述氨基酸残基位置对应着使用野生型TetR(B)的氨基酸编号的等效位置。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含至少10%、20%、30%、40%、50%、55%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的图9所示的氨基酸残基,其中所述氨基酸残基位置对应着使用野生型TetR(B)的氨基酸编号的等效位置。在某些实施例中,所述野生型TetR(B)是SEQ ID NO: 1。
在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含配体结合域,所述配体结合域包含在选自下述的残基位置处的氨基酸置换:位置55、60、64、67、82、86、100、104、105、108、113、116、134、135、138、139、147、151、170、173、174、177和它们的任意组合,其中所述氨基酸残基位置和置换对应着使用野生型TetR(B)的氨基酸编号的等效位置。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽另外包含在选自下述的残基位置处的氨基酸置换:109、112、117、131、137、140、164和它们的任意组合。在某些实施例中,所述野生型TetR(B)多肽序列是SEQ ID NO: 1。
在某些实施例中,所述分离的多核苷酸编码具有配体结合域的SuR多肽,所述配体结合域包含至少10%、20%、30%、40%、50%、55%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的选自下述的氨基酸残基:
(a)    在氨基酸残基位置55处的M或L;
(b)    在氨基酸残基位置60处的A、L或M;
(c)    在氨基酸残基位置64处的A、N、Q、L或H;
(d)    在氨基酸残基位置67处的M、I、L、V、F或Y;
(e)    在氨基酸残基位置82处的N、S或T;
(f)     在氨基酸残基位置86处的F、M、W或Y;
(g)    在氨基酸残基位置100处的C、V、L、M、F、W或Y;
(h)    在氨基酸残基位置104处的R、A或G
(i)     在氨基酸残基位置105处的A、I、V、F或W;
(j)     在氨基酸残基位置108处的Q或K;
(k)    在氨基酸残基位置113处的A、M、H、K、T、P或V;
(l)     在氨基酸残基位置116处的I、L、M、V、R、S、N、P或Q;
(m)   在氨基酸残基位置134处的I、L、V、M、R、S或W;
(n)    在氨基酸残基位置135处的R、S、N、Q、K或A;
(o)    在氨基酸残基位置138处的A、C、G、H、I、V、R或T;
(p)    在氨基酸残基位置139处的A、G、I、V、M、W、N、R或T;
(q)    在氨基酸残基位置147处的I、L、V、F、W、T、S或R;
(r)     在氨基酸残基位置151处的M、L、W、Y、K、R或S;
(s)    在氨基酸残基位置170处的I、L、V或A;
(t)     在氨基酸残基位置173处的A、G或V;
(u)    在氨基酸残基位置174处的L、V、W、Y、H、R、K或S;和,
(v)    在氨基酸残基位置177处的A、G、I、L、Y、K、Q或S,
其中所述氨基酸残基位置对应着使用野生型TetR(B)的氨基酸编号的等效位置。在某些实施例中,所述分离的SuR多核苷酸编码SuR多肽,所述SuR多肽包含至少10%、20%、30%、40%、50%、55%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的选自在上面(a)–(v)中列出的氨基酸残基的氨基酸残基,其中所述氨基酸残基位置对应着使用野生型TetR(B)的氨基酸编号的等效位置。在某些实施例中,所述野生型TetR(B)是SEQ ID NO: 1。
在某些实施例中,所述分离的多核苷酸编码针对增强的对氯磺隆的活性所选择的SuR多肽,所述SuR多肽具有配体结合域,所述配体结合域包含至少10%、20%、30%、40%、50%、55%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的选自下述的氨基酸残基:
(a)    在氨基酸残基位置60处的M;
(b)    在氨基酸残基位置64处的A或Q;
(c)    在氨基酸残基位置67处的M、F、Y、I、V或L;
(d)    在氨基酸残基位置82处的N或T;
(e)    在氨基酸残基位置86处的M;
(f)     在氨基酸残基位置100处的C或W;
(g)    在氨基酸残基位置105处的W;
(h)    在氨基酸残基位置108处的Q或K;
(i)     在氨基酸残基位置109处的M、Q、L或H;
(j)     在氨基酸残基位置112处的G、A、S或T;
(k)    在氨基酸残基位置113处的A;
(l)     在氨基酸残基位置116处的M或Q;
(m)   在氨基酸残基位置134处的M或V;
(n)    在氨基酸残基位置138处的G或R;
(o)    在氨基酸残基位置139处的N或V;
(p)    在氨基酸残基位置147处的F;
(q)    在氨基酸残基位置151处的S或L;
(r)     在氨基酸残基位置164处的A;
(s)    在氨基酸残基位置170处的A、L或V;
(t)     在氨基酸残基位置173处的A、G或V;
(u)    在氨基酸残基位置174处的L或W;和;
(v)    在氨基酸残基位置177处的K,
其中所述氨基酸残基位置对应着使用野生型TetR(B)的氨基酸编号的等效位置。在某些实施例中,所述分离的SuR多核苷酸编码SuR多肽,所述SuR多肽包含至少10%、20%、30%、40%、50%、55%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的选自在上面(a)–(v)中列出的氨基酸残基的氨基酸残基,其中所述氨基酸残基位置对应着使用野生型TetR(B)的氨基酸编号的等效位置。在某些实施例中,所述野生型TetR(B)是SEQ ID NO: 1。
在某些实施例中,所述分离的多核苷酸编码针对增强的对胺苯磺隆的活性所选择的SuR多肽,所述SuR多肽具有配体结合域,所述配体结合域包含至少10%、20%、30%、40%、50%、55%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的选自下述的氨基酸残基:
(a)    在氨基酸残基位置55处的M或L;
(b)    在氨基酸残基位置64处的A;
(c)    在氨基酸残基位置67处的M、Y、F、I、L或V;
(d)    在氨基酸残基位置86处的M;
(e)    在氨基酸残基位置100处的C;
(f)     在氨基酸残基位置104处的G;
(g)    在氨基酸残基位置105处的F;
(h)    在氨基酸残基位置108处的Q或K;
(i)     在氨基酸残基位置109处的Q、M、L或H;
(j)     在氨基酸残基位置112处的S、T、G或A;
(k)    在氨基酸残基位置113处的A;
(l)     在氨基酸残基位置116处的S;
(m)   在氨基酸残基位置117处的M或L;
(n)    在氨基酸残基位置131处的M或L;
(o)    在氨基酸残基位置134处的M;
(p)    在氨基酸残基位置135处的Q;
(q)    在氨基酸残基位置137处的A或V;
(r)     C或G 氨基酸残基138;
(s)    在氨基酸残基位置139处的I;
(t)     在氨基酸残基位置140处的F或Y;
(u)    在氨基酸残基位置147处的L;
(v)    在氨基酸残基位置151处的L;
(w)   在氨基酸残基位置164处的A;
(x)    在氨基酸残基位置170处的V、A或L;
(y)    在氨基酸残基位置173处的G、A或V;
(z)    在氨基酸残基位置174处的L;和,
(aa)  在氨基酸残基位置177处的N或K,
其中所述氨基酸残基位置对应着使用野生型TetR(B)的氨基酸编号的等效位置。在某些实施例中,所述分离的SuR多核苷酸编码SuR多肽,所述SuR多肽包含至少10%、20%、30%、40%、50%、55%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的选自在上面在(a) – (aa)中列出的氨基酸残基的氨基酸残基,其中所述氨基酸残基位置对应着使用野生型TetR(B)的氨基酸编号的等效位置。在某些实施例中,所述野生型TetR(B)是SEQ ID NO: 1。
在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽与显示为SEQ ID NO: 1的氨基酸残基53-207的配体结合域具有至少约50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性,其中使用总体比对方法,在配体结合域的全长上测定序列同一性。在某些实施例中,所述总体比对方法是GAP,其中缺省参数是氨基酸序列%同一性和%相似性,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。
在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽与SEQ ID NO: 1具有至少约50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性,其中使用总体比对方法,在多肽的全长上测定序列同一性。在某些实施例中,所述总体比对方法是GAP,其中缺省参数是氨基酸序列%同一性和%相似性,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。
在某些实施例中,所述分离的多核苷酸包括核酸序列,其在严格杂交条件下特异性地杂交编码SuR多肽的多核苷酸。特异性地杂交的多核苷酸是这样的多核苷酸,其与非靶序列的杂交相比,与靶序列的结合水平是背景的至少2-倍。严格的条件是序列-依赖性的和条件-依赖性的。典型的严格的条件是这样的,其中盐浓度是约0.01至1.0 M、pH 7.0-8.3、30℃(对于短探针(例如,10至50个核苷酸))或约60℃(对于长探针(例如,大于50个核苷酸))。严格的条件可以包括甲酰胺或其它去稳定剂。示例性的中等严格条件包括在40-45%甲酰胺、1 M NaCl、1%SDS中在37℃杂交,并在0.5X至1X SSC中在55-60℃洗涤。示例性的高严格条件包括在50%甲酰胺、1 M NaCl、1%SDS中在37℃杂交,并在0.1X SSC中在60至65℃洗涤。
特异性受到杂交后洗涤条件(通常通过离子强度和温度)的影响。对于DNA-DNA杂合体,从Meinkoth和Wahl, (1984) Anal. Biochem. 138:267-284的方程,可以估测Tm: Tm = 81.5℃ + 16.6 (log M) + 0.41 (%GC) - 0.61 (%form) - 500/L;其中M是单价阳离子的摩尔浓度,%GC是DNA中的鸟苷和胞嘧啶核苷酸的百分比,%form是杂交溶液中甲酰胺的百分比,且L是以碱基对表示的杂合体的长度。关于核酸杂交的大量指导,可参见Tijssen, Laboratory Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Acid Probes,第I部分,第2章 “Overview of principles of hybridization and the strategy of nucleic acid probe assays”, Elsevier, New York (1993); 和Current Protocols in Molecular Biology, 第2章, Ausubel, 等人编, Greene Publishing and Wiley-Interscience, New York (1995)。在某些实施例中,编码SuR多肽的分离的多核苷酸在中等严格的条件下或在高度严格的条件下特异性地杂交SEQ ID NO: 434-832、1214-1221、1234-1239或1244-1247的多核苷酸。
在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-1A04 (SEQ ID NO: 220)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-1A04 (SEQ ID NO: 220)的多肽序列比对,以产生至少374的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-1A04 (SEQ ID NO:220)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-1A04 (SEQ ID NO:220)的多肽序列比对,以产生至少88%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-1A04 (SEQ ID NO:220)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、600、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-1A04 (SEQ ID NO:220)的多肽序列比对,以产生至少e-60、e-70、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,分离的多核苷酸编码选自SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243的多肽。在某些实施例中,所述分离的多核苷酸包含SEQ ID NO: 434-832、1214-1221、1234-1239或1244-1247的多核苷酸序列或其互补多核苷酸。
在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-22 (SEQ ID NO: 7)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-22 (SEQ ID NO: 7)的多肽序列比对,以产生至少387的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-22 (SEQ ID NO: 7)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-22 (SEQ ID NO: 7)的多肽序列比对,以产生至少92%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定序列同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-22 (SEQ ID NO: 7)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、600、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-22 (SEQ ID NO: 7)的多肽序列比对,以产生至少e-60、e-70、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,分离的多核苷酸编码选自SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243的多肽。在某些实施例中,所述分离的多核苷酸包含SEQ ID NO: 434-832、1214-1221、1234-1239或1244-1247的多核苷酸序列或其互补多核苷酸。
在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-29 (SEQ ID NO: 10)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-29 (SEQ ID NO: 10)的多肽序列比对,以产生至少393的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-29 (SEQ ID NO: 10)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定序列同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-29 (SEQ ID NO: 10)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-29 (SEQ ID NO: 10)的多肽序列比对,以产生至少1006的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-29 (SEQ ID NO: 10)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,分离的多核苷酸编码选自SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243的多肽。在某些实施例中,所述分离的多核苷酸包含SEQ ID NO: 434-832、1214-1221、1234-1239或1244-1247的多核苷酸序列或其互补多核苷酸。
在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-02 (SEQ ID NO: 3)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-02 (SEQ ID NO: 3)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定序列同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-02 (SEQ ID NO: 3)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-02 (SEQ ID NO: 3)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-02 (SEQ ID NO: 3)的多肽序列比对,以产生至少e-112的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,分离的多核苷酸编码选自SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243的多肽。在某些实施例中,所述分离的多核苷酸包含SEQ ID NO: 434-832、1214-1221、1234-1239或1244-1247的多核苷酸序列或其互补多核苷酸。
在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-07 (SEQ ID NO: 4)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-07 (SEQ ID NO: 4)的多肽序列比对,以产生至少388的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-07 (SEQ ID NO: 4)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-07 (SEQ ID NO: 4)的多肽序列比对,以产生至少93%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定序列同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-07 (SEQ ID NO: 4)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-07 (SEQ ID NO: 4)的多肽序列比对,以产生至少996的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-07 (SEQ ID NO: 4)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-07 (SEQ ID NO: 4)的多肽序列比对,以产生至少e-111的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,分离的多核苷酸编码选自SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243的多肽。在某些实施例中,所述分离的多核苷酸包含SEQ ID NO: 434-832、1214-1221、1234-1239或1244-1247的多核苷酸序列或其互补多核苷酸。
在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-20 (SEQ ID NO: 6)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-20 (SEQ ID NO: 6)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-20 (SEQ ID NO: 6)的多肽序列比对,以产生至少93%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定序列同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-20 (SEQ ID NO: 6)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-20 (SEQ ID NO: 6)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-20 (SEQ ID NO: 6)的多肽序列比对,以产生至少e-111的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,分离的多核苷酸编码选自SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243的多肽。在某些实施例中,所述分离的多核苷酸包含SEQ ID NO: 434-832、1214-1221、1234-1239或1244-1247的多核苷酸序列或其互补多核苷酸。
在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-44 (SEQ ID NO: 13)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-44 (SEQ ID NO: 13)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-44 (SEQ ID NO: 13)的多肽序列比对,以产生至少93%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定序列同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-44 (SEQ ID NO: 13)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L1-44 (SEQ ID NO: 13)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,分离的多核苷酸编码选自SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243的多肽。在某些实施例中,所述分离的多核苷酸包含SEQ ID NO: 434-832、1214-1221、1234-1239或1244-1247的多核苷酸序列或其互补多核苷酸。
在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3A09 (SEQ ID NO: 1228)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3A09 (SEQ ID NO: 1228)的多肽序列比对,以产生至少381的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3A09 (SEQ ID NO: 1228)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定序列同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3A09 (SEQ ID NO: 1228)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3A09 (SEQ ID NO: 1228)的多肽序列比对,以产生至少978的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3A09 (SEQ ID NO: 1228)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3A09 (SEQ ID NO: 1228)的多肽序列比对,以产生至少e-108的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,分离的多核苷酸编码选自SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243的多肽。在某些实施例中,所述分离的多核苷酸包含SEQ ID NO: 434-832、1214-1221、1234-1239或1244-1247的多核苷酸序列或其互补多核苷酸。
在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3H02 (SEQ ID NO: 94)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3H02 (SEQ ID NO: 94)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3H02 (SEQ ID NO: 94)的多肽序列比对,以产生至少90%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定序列同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3H02 (SEQ ID NO: 94)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L6-3H02 (SEQ ID NO: 94)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,分离的多核苷酸编码选自SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243的多肽。在某些实施例中,所述分离的多核苷酸包含SEQ ID NO: 434-832、1214-1221、1234-1239或1244-1247的多核苷酸序列或其互补多核苷酸。
在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-4E03 (SEQ ID NO: 1229)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-4E03 (SEQ ID NO: 1229)的多肽序列比对,以产生至少368的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-4E03 (SEQ ID NO: 1229)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定序列同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-4E03 (SEQ ID NO: 1229)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-4E03 (SEQ ID NO: 1229)的多肽序列比对,以产生至少945的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-4E03 (SEQ ID NO: 1229)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L7-4E03 (SEQ ID NO: 1229)的多肽序列比对,以产生至少e-105的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,分离的多核苷酸编码选自SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243的多肽。在某些实施例中,所述分离的多核苷酸包含SEQ ID NO: 434-832、1214-1221、1234-1239或1244-1247的多核苷酸序列或其互补多核苷酸。
在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L10-84(B12) (SEQ ID NO: 1230)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L10-84(B12) (SEQ ID NO: 1230)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L10-84(B12) (SEQ ID NO: 1230)的多肽序列比对,以产生至少86%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定序列同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L10-84(B12) (SEQ ID NO: 1230)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L10-84(B12) (SEQ ID NO: 1230)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,分离的多核苷酸编码选自SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243的多肽。在某些实施例中,所述分离的多核苷酸包含SEQ ID NO: 434-832、1214-1221、1234-1239或1244-1247的多核苷酸序列或其互补多核苷酸。
在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L13-46 (SEQ ID NO: 1231)的多肽序列比对,以产生至少200、250、275、300、325、350、375、400、425、450、475、500、525、550、575、600、625、650、675、700或750的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L13-46 (SEQ ID NO: 1231)的多肽序列比对,以产生至少320的BLAST比特评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L13-46 (SEQ ID NO: 1231)的多肽序列比对,以产生至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L13-46 (SEQ ID NO: 1231)的多肽序列比对,以产生至少86%序列同一性的序列同一性百分比,其中使用BLOSUM62矩阵,通过BLAST比对测定序列同一性,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,使用总体比对方法测定序列同一性百分比,其中使用GAP算法,使用氨基酸序列%同一性和%相似性的缺省参数,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L13-46 (SEQ ID NO: 1231)的多肽序列比对,以产生至少400、425、450、475、500、525、550、575、600、625、650、675、700、750、800、850、900、910、920、930、940、950、960、970、980、990、1000、1010、1020、1030、1040、1050、1060、1070、1080、1090、1100、1110、1120、1130、1140、1150、1160、1170、1180、1190或1200的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L13-46 (SEQ ID NO: 1231)的多肽序列比对,以产生至少819的BLAST相似性评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L13-46 (SEQ ID NO: 1231)的多肽序列比对,以产生至少e-60、e-70、e-75、e-80、e-85、e-90、e-95、e-100、e-105、e-106、e-107、e-108、e-109、e-110、e-111、e-112、e-113、e-114、e-115、e-116、e-117、e-118、e-119、e-120或e-125的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含这样的氨基酸序列,其可以最佳地与L13-46 (SEQ ID NO: 1231)的多肽序列比对,以产生至少e-90的BLAST e-值评分,其中所述BLAST比对使用BLOSUM62矩阵,间隙存在罚分为11,间隙延伸罚分为1。在某些实施例中,分离的多核苷酸编码选自SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243的多肽。在某些实施例中,所述分离的多核苷酸包含SEQ ID NO: 434-832、1214-1221、1234-1239或1244-1247的多核苷酸序列或其互补多核苷酸。
在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含配体结合域,所述配体结合域来自选自SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243的多肽。在某些实施例中,所述分离的多核苷酸编码SuR多肽,所述SuR多肽包含选自SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243的氨基酸序列。在某些实施例中,所述编码的SuR多肽选自:SEQ ID NO: 3-401、1206-1213、1228-1233或1240-1243,且磺酰脲化合物选自:氯磺隆、甲基胺苯磺隆、甲磺隆、甲嘧磺隆和甲基噻吩磺隆。在某些实施例中,所述分离的多核苷酸包含SEQ ID NO: 434-832、1214-1221、1234-1239或1244-1247的多核苷酸序列或其互补多核苷酸。
在某些实施例中,所述分离的SuR多核苷酸编码这样的SuR多肽,其对于磺酰脲化合物具有大于0.1 nM且小于10 μM的平衡结合常数。在某些实施例中,所述编码的SuR多肽对于磺酰脲化合物具有至少0.1 nM、0.5nM、1 nM、10 nM、50 nM、100 nM、250 nM、500 nM、750 nM、1 μM、5 μM、7 μM、但是小于10 μM的平衡结合常数。在某些实施例中,所述编码的SuR多肽对于磺酰脲化合物具有至少0.1 nM、0.5nM、1 nM、10 nM、50 nM、100 nM、250 nM、500 nM、750 nM、但是小于1 μM的平衡结合常数。在某些实施例中,所述编码的SuR多肽对于磺酰脲化合物具有大于0 nM、但是小于0.1 nM、0.5nM、1 nM、10 nM、50 nM、100 nM、250 nM、500 nM、750 nM、1 μM、5 μM、7 μM或10 μM的平衡结合常数。在某些实施例中,磺酰脲化合物是氯磺隆、胺苯磺隆、甲磺隆、嘧磺隆和/或噻吩磺隆化合物。
在某些实施例中,所述分离的SuR多核苷酸编码这样的SuR多肽,其其对于操纵基因序列具有大于0.1 nM且小于10 μM的平衡结合常数。在某些实施例中,所述编码的SuR多肽对于操纵基因序列具有至少0.1 nM、0.5nM、1 nM、10 nM、50 nM、100 nM、250 nM、500 nM、750 nM、1 μM、5 μM、7 μM、但是小于10 μM的平衡结合常数。在某些实施例中,所述编码的SuR多肽对于操纵基因序列具有至少0.1 nM、0.5nM、1 nM、10 nM、50 nM、100 nM、250 nM、500 nM、750 nM、但是小于1 μM的平衡结合常数。在某些实施例中,所述编码的SuR多肽对于操纵基因序列具有大于0 nM、但是小于0.1 nM、0.5nM、1 nM、10 nM、50 nM、100 nM、250 nM、500 nM、750 nM、1 μM、5 μM、7 μM或10 μM的平衡结合常数。在某些实施例中,所述操纵基因序列是Tet操纵基因序列。在某些实施例中,所述Tet操纵基因序列是TetR(A)操纵基因序列、TetR(B)操纵基因序列、TetR(D)操纵基因序列、TetR(E)操纵基因序列、TetR(H)操纵基因序列或其功能衍生物。
在某些实施例中,编码SuR多肽的分离的多核苷酸包含特定宿主细胞或宿主细胞细胞器的密码子偏好的代表性的密码子组成特性。在某些实施例中,所述分离的多核苷酸包含原核生物偏好的密码子。在某些实施例中,所述分离的多核苷酸包含细菌偏好的密码子。在某些实施例中,所述细菌是大肠杆菌或土壤杆菌属。在某些实施例中,所述分离的多核苷酸包含质体偏好的密码子。在某些实施例中,所述分离的多核苷酸包含真核生物偏好的密码子。在某些实施例中,所述分离的多核苷酸包含细胞核偏好的密码子。在某些实施例中,所述分离的多核苷酸包含植物偏好的密码子。在某些实施例中,所述分离的多核苷酸包含单子叶植物偏好的密码子。在某些实施例中,所述分离的多核苷酸包含玉米、水稻、高粱、大麦、小麦、黑麦、柳枝稷、草坪草和/或燕麦偏好的密码子。在某些实施例中,所述分离的多核苷酸包含双子叶植物偏好的密码子。在某些实施例中,所述分离的多核苷酸包含大豆、向日葵、红花、油菜、苜蓿、拟南芥、烟草和/或棉花偏好的密码子。在某些实施例中,所述分离的多核苷酸包含酵母偏好的密码子。在某些实施例中,所述分离的多核苷酸包含哺乳动物偏好的密码子。在某些实施例中,所述分离的多核苷酸包含昆虫偏好的密码子。
组合物也包括与编码SuR多肽的多核苷酸完全互补的分离的多核苷酸,包含编码所述SuR多肽的多核苷酸和/或其互补物或衍生物的表达盒、复制子、载体、T-DNA、DNA文库、宿主细胞、组织和/或生物体。在某些实施例中,提供了DNA文库,其包含编码SuR多肽变体群体的多核苷酸群体。在某些实施例中,所述多核苷酸稳定地整合进宿主细胞、组织和/或生物体的基因组中。在某些实施例中,所述宿主细胞是原核生物,包括大肠杆菌和土壤杆菌属菌株。在某些实施例中,所述宿主是真核生物,包括例如酵母、昆虫、植物和哺乳动物。
另外提供了使用所述组合物的方法。在一个实施例中,提供了调节宿主细胞中目标多核苷酸的转录的方法,所述方法包括:提供细胞,所述细胞包含可操作地连接到启动子上的目标多核苷酸,所述启动子包含至少一个四环素操纵基因序列;提供SuR多肽,和,提供磺酰脲化合物,由此调节目标多核苷酸的转录。可以使用任意宿主细胞,包括例如原核细胞(诸如细菌)和真核细胞(包括酵母、植物、昆虫和哺乳动物细胞)。在某些实施例中,提供SuR多肽包括,使所述细胞接触表达盒,所述表达盒包含在所述细胞中起作用的启动子,所述启动子可操作地连接到编码SuR多肽的多核苷酸上。
还提供了生产和选择多样化文库的方法,用于生产另外的SuR多核苷酸,包括编码具有提高的和/或增强的特征的SuR多肽的多核苷酸,所述特征例如改变的对磺酰脲化合物和/或靶DNA操纵基因序列的结合常数和/或增加的稳定性,都基于为了新的或提高的活性而选择文库的多核苷酸组分。在某些实施例中,提供了至少一个寡核苷酸文库或群体,其用于将序列修饰和/或多样性导入野生型或修饰的TetR配体结合域多肽。在某些实施例中,所述文库或群体用于将修饰和/或多样性导入野生型或修饰的TetR多肽。在某些实施例中,所述文库或群体导入至少一个在图9中例证的修饰。在某些实施例中,所述文库或群体包含至少10、20、30、40、50、60、70、80、90、100、或更多个不同的寡核苷酸。在某些实施例中,所述文库或群体包含选自下述的寡核苷酸:在表2、9、12、13、15、17、19中的至少一个中显示的寡核苷酸,或其组合。在某些实施例中,所述文库或群体包含一个或更多个选自下述的寡核苷酸:SEQ ID NO: 833-882、885-986、987-059、1060-1083、1084-1124、1125-1154、1159-1205。
在某些实施例中,磺酰脲化合物是胺苯磺隆。在某些实施例中,所述胺苯磺隆在约0.001、0.002、0.003、0.004、0.005、0.006、0.007、0.008、0.009、0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.10、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、10、11、12、13、14、15、16、17、18、19、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、100、200或500 μg/ml的浓度提供。在某些实施例中,所述SuR多肽具有配体结合域,所述配体结合域与SEQ ID NO: 205-401、1206-1213或1228-1233的SuR多肽具有至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性,其中使用总体比对方法,在多肽的全长上测定序列同一性。在某些实施例中,所述总体比对方法是GAP,其中缺省参数是用于氨基酸序列%同一性和%相似性,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵。在某些实施例中,所述多肽具有配体结合域,所述配体结合域来自选自SEQ ID NO: 205-401、1206-1213、1228-1233或1240-1243的SuR多肽。在某些实施例中,所述多肽选自:SEQ ID NO: 205-401、1206-1213、1228-1233或1240-1243。在某些实施例中,所述多肽由SEQ ID NO: 636-832、1214-1221、1234-1239或1244-1247的多核苷酸编码。
在某些实施例中,磺酰脲化合物是氯磺隆。在某些实施例中,所述氯磺隆在约0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.10、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、10、11、12、13、14、15、16、17、18、19、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、100、200或500 μg/ml的浓度提供。在某些实施例中,所述SuR多肽具有配体结合域,所述配体结合域与SEQ ID NO: 14-204的SuR多肽具有至少50%、60%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性,其中使用总体比对方法,在多肽的全长上测定序列同一性。在某些实施例中,所述总体比对方法是GAP,其中缺省参数是用于氨基酸序列%同一性和%相似性,使用8的GAP权重和2的长度权重和BLOSUM62评分矩阵。在某些实施例中,所述多肽具有配体结合域,所述配体结合域来自选自SEQ ID NO: 14-204的SuR多肽。在某些实施例中,所述多肽选自:SEQ ID NO: 14-204。在某些实施例中,所述多肽由SEQ ID NO: 445-635的多核苷酸编码。
获取在不同的种子市场的价值的能力,需要用于控制工程化的特性分布的技术的发展。一个选项是使用化学调节的基因开关的特性灭活/活化系统。迄今为止,不存在这样的系统,主要是因为缺少有关的化学试剂,例如农业相容的和/或基于药物的化学试剂,其可以用作敏感的基因开关技术的配体。
为了开发基于农业化学的配体基因开关,使用蛋白建模、DNA重排和高度灵敏的筛选机理修饰TetR,以生产特异性地识别磺酰脲化合物的阻遏物。对于农业用途,磺酰脲化合物是韧皮部活动的和可商业得到的,因此提供用作开关配体化学的良好基础。在3轮建模和DNA重排后,已经产生了这样的阻遏物,其几乎象野生型TetR识别同源诱导物一样好地识别SU化学试剂,且仍然对磺酰脲化学试剂是完全特异性的。这些多肽包含真实的磺酰脲阻遏物(SuR),它们已经在植物原位(in planta)获得验证,其中使用新开发的瞬时测定系统来证实SuR 开关系统的功能性。尽管在农业背景下予以例证,这些方法和组合物可以用于多种其它场合和生物体。
一般而言,最有用的是这样的化学开关系统,其中使用的化学试剂快速穿透,且被生物体中的所有细胞类型感知,但是不会扰乱任何内源调节网络。其它重要的方面必须处理传感器组分的行为,例如在没有或有诱导物存在下调节和应答的严格性。一般而言,优选的是这样的开关系统,其在没有诱导物存在下具有“关闭”状态的紧密调节,且在有诱导物存在下具有快速且强烈的应答。
可逆地打开和关闭基因的能力,对于基因表达和功能的分析(尤其是对于其产物对细胞有毒性的那些基因),具有巨大效用。在原核生物中的确定地表征的控制机理涉及结合操纵基因DNA来阻止转录起始的阻遏蛋白(Wray和Reznikoff (1983) J Bacteriol 156:1188-1191),且已经开发了用于控制在动物(Wirtz 和Clayton (1995) Science 268:1179-1183; Deuschle 等人(1995) Mol Cell Biol 15:1097-1914; Furth 等人(1994) Proc Natl Acad Sci USA 91:9032-9306; Gossen和Bujard (1992) Proc Natl Acad Sci USA 89:5547-5551和Gossen 等人(1995) Science 268:1766-1769)和植物(Wilde 等人(1992) EMBO J 11:1251-1259; Gatz 等人(1992) Plant J 2:397-404; Roder 等人(1994) Mol Gen Genet 243-32-38和Ulmasov 等人(1997) Plant Mol Biol 35:417-424)中的表达的阻遏物-调节的系统。
2个主要的基于阻遏物的系统已经被成功地用于调节植物基因表达:lac操纵基因-阻遏物系统 (Ulmasov 等人 (1997) Plant Mol Biol 35:417-424; Wilde 等人 (1992) EMBO J 11:1251-1259)和tet操纵基因-阻遏物系统 (Wilde 等人 (1992) EMBO J 11:1251-1259; Gatz 等人 (1992) Plant J 2:397-404; Roder 等人 (1994) Mol Gen Genet 243:32-38; Ulmasov 等人 (1997) Plant Mol Biol 35-417-424)。二者是基于阻遏物/操纵基因的系统,它们的关键元件源自它们的对应的原核操纵子,即大肠杆菌乳糖操纵子(对于lac)和转座子Tn10 四环素操纵子(对于tet)。通常,这些系统如下控制启动子的活性:通过将操纵基因序列放在基因的转录起始位点附近,使得在阻遏蛋白结合它的同源操纵基因序列以后,抑制来自操纵子的基因表达。但是,在有诱导剂存在下,阻遏物与它的操纵基因的结合受到抑制,从而活化启动子,并实现基因表达。在lac系统中,异丙基-B-D-硫代吡喃半乳糖苷(IPTG)是常用的诱导剂,而四环素和/或多西环素是 tet系统的常用诱导剂。
通过tet阻遏物与它的操纵基因序列的结合,调节Tn10-操纵子的表达 (Beck 等人 (1982) J Bacteriol 150:633-642; Wray和Reznikoff (1983) J Bacteriol 156:1188-1191)。四环素阻遏物对tet操纵基因的高特异性、四环素和它的衍生物的诱导的高效率、诱导物的低毒性、以及 四环素容易地穿透大多数细胞的能力,是 tet系统用于来自动物(Wirtz和Clayton (1995) Science 268:1179-1183; Gossen 等人 (1995) Science 268:1766-1769)、人(Deuschle 等人 (1995) Mol Cell Biol 15:1907-1914; Furth 等人 (1994) Proc Natl Acad Sci USA 91:9302-9306; Gossen和Bujard (1992) Proc Natl Acad Sci USA 89:5547-5551; Gossen 等人 (1995) Science 268:1766-1769)和植物细胞培养物(Wilde 等人 (1992) EMBO J 11:1251-1259; Gatz 等人 (1992) Plant J 2:397-404; Roder 等人 (1994) Mol Gen Genet 243:32-28; Ulmasov 等人 (1997) Plant Mol Biol 35:417-424)的真核细胞的体基因调节的基础。
已经设计了四环素操纵基因/阻遏物系统的许多变化。例如,通过阻遏物与转录反式激活域的融合、诸如单纯疱疹病毒 VP16和tet阻遏物(tTA, Gossen和Bujard (1992) Proc Natl Acad Sci USA 89:5547-5551),开发了一个基于tet阻遏物向活化剂的转化的系统。在该系统中,在没有四环素存在下,通过tTA与tet操纵基因序列的结合,活化最小的启动子,且四环素灭活反式活化剂并抑制转录。该系统已经用于植物(Weinmann 等人 (1994) Plant J 5:559-569)、大鼠心脏(Fishman 等人 (1994) J Clin Invest 93:1864-1868)和小鼠(Furth 等人 (1994) Proc Natl Acad Sci USA 91:9302-9306)。但是,有证据表明,嵌合的tTA融合蛋白在有效基因调节所需的水平对细胞是有毒的 (Bohl 等人 (1996) Nat Med 3:299-305)。
修饰成被四环素及其类似物调节的启动子是已知的 (Matzke 等人 (2003) Plant Mol Biol Rep 21:9-19; Padidam (2003) Curr Op Plant Biol 6:169-177; Gatz和Quail (1988) Proc Natl Acad Sci USA 85:1394-1397; Ulmasov 等人 (1997) Plant Mol Biol 35:417-424; Weinmann, 等人 (1994) Plant J 5:559-569)。可以将一个或更多个tet操纵基因序列加入启动子中,以便生成四环素诱导型启动子。在某些实施例中,已经将最多7个tet操纵基因导入最小启动子序列的上游,且反式应用的TetR::VP16激活域融合仅在没有诱导物存在下活化表达 (Weinmann 等人 (1994) Plant J 5:559-569; Love 等人 (2000) Plant J 21:579-588)。开发了广泛测试的四环素调节的植物表达系统,其使用CaMV 35S启动子(Gatz 等人 (1992) Plant J 2:397-404),具有3个导入在TATA盒(3XOpT 35S)附近的tet操纵基因。3XOpT 35S启动子通常在烟草和马铃薯中起作用,但是也报道了在烟草和拟南芥属中的毒性和差的植物表型(Gatz (1997) Ann Rev Plant Physiol Plant Mol Biol 48:89-108; Corlett 等人(1996) Plant Cell Environ 19:447-454)。另一个因素是,四环素-有关的化学试剂在光下快速地被降解,这倾向于限制它的用途为在实验室条件下测试。
已经对TetR进行DNA重排,以将它的诱导物特异性从四环素修改成 4-脱(二甲氨基)-6-脱氧-6-脱甲基-四环素(cmt3),即一种有关的、但是非诱导性的化合物(Scholz 等人 (2003) J Mol Biol 329:217-227),其缺少在4和6位的化学侧基,因此比四环素更小。通过缩小配体结合袋,从而在空间上阻断天然配体四环素,改变TetR的特异性。起始多肽是TetR(BD)嵌合体,其由来自TetR(B)的氨基酸1-50 和来自TetR(D)的残基51-208组成。使用几轮进化和选择来将TetR 特异性从四环素转移至cmt3。非诱导物cmt3具有微小的起始活性,且被提高到四环素的水平,使活性提高数千倍,且四环素对突变型阻遏物几乎不具有诱导活性。尽管TetR的特异性向cmt3配体转移的能力是令人兴奋的,必须牢记的是,cmt3与天然的四环素配体高度相关。基于这些实验,难以看出,TetR可以用作形成对完全不同类型的化学配体的特异性的基础。
为了生成新的化学开关系统,我们重新设计了TetR系统,以识别可用于农业的化学试剂。通过选择登记的农业化学化合物,开始重新设计过程,所述化合物具有优良的植物摄入和分布性质,以及具有对于建模进野生型TetR配体结合袋中而言合理的大小和形状。选择的化合物甲基噻吩磺隆 (Harmony?)是商业上使用的磺酰脲类除草剂家族之一,其抑制支链氨基酸生物合成的关键植物酶乙酰乳酸合酶 (ALS)。噻吩磺隆(Ts)和有关的除草剂在结构上不同于四环素,因此它们不可能具有 TetR的任何起始活性。DNA重排是一种有力的技术,且可以提高对底物的亲和力或底物周转率数千倍,但是仍然不能从新(de novo)建立起始活性。为了填补该进化途径中的该间隙,寻找了计算机建模策略,其缩小了对重排有意义的氨基酸多样性的搜索。
最近开发的建模技术被用于再训练(re-train)大肠杆菌周质结合蛋白,其通常结合糖类,以与完全不同的化合物集合(诸如血清素、L-乳酸盐和三硝基甲苯)反应,并开始信号传递 (Looger 等人 (2003) Nature 423:185-190)。使用与DNA重排偶联的蛋白设计和非常灵敏的筛选系统,已经鉴别出对噻吩磺隆 (Ts)和其它有关的SU化合物做出应答的TetR蛋白变体。在几轮DNA重排后,开发了这样的TetR变体,其具有与SU配体(SuR)的遗传开关能力,类似于TetR与四环素诱导物的遗传开关能力。
可以单独地或组合地使用合理的蛋白设计的任意方法。例如,在蛋白序列家族内的种系发生多样性,可以用于鉴别一级结构中具有氨基酸置换的位置、和已经发生的置换的类型、和它们对功能的影响。还可以比对并类似地检查保守的域家族,以鉴别一级结构中具有氨基酸置换的位置、和已经发生的置换的类型、和对功能的影响。可以评价二级结构和功能结构域,并将不同的模型用于预测耐受性或氨基酸置换对结构和功能的影响。使用三级和/或四级结构和配体、底物和/或辅因子结合的建模,会提供对氨基酸置换的作用和/或替换配体、底物和/或辅因子与所述多肽的相互作用的进一步洞察。
为了检查四环素阻遏物的种系发生多样性,使用了广家族的四环素阻遏蛋白以及密切有关的四环素阻遏物。鉴别和比对了34种蛋白,以检查在阻遏物家族的不同位置的氨基酸多样性 (SEQ ID NO: 1和402-433)。广家族的四环素阻遏物包含TetR(D)突变体,其结构通过结晶PDB_1A6I (Orth 等人 (1998) J Mol Biol 279:439-447)和公开的序列保存登记号A26948、AAA98409、AAD12754、AAD25094、AAD25537、AAP93923、AAR96033、AAW66496、AAW83818、ABO14708、ABS19067、CAA24908、CAC80726、CAC81917、EAY62734、NP_387455、NP_387462、NP_511232、NP_824556、P51560、YP_001220607、YP_001370475、YP_368094、YP_620166、YP_772551、ZP_00132379、ZP_01558383和ZP_01567051来确定。密切有关的四环素阻遏物包括TetR(A) P03038、TetR(B) P04483、TetR(D) P0ACT4、TetR(E) P21337和TetR(H) P51561。使用这些序列的比对来寻找总序列多样性以及在DNA和配体结合域中的多样性 (参见,实施例 1H, SEQ ID NO: 1和402-433)。
阻遏蛋白的模块体系结构和螺旋-转角-螺旋DNA结合域的共同特性(commonality)允许建立具有改变的DNA结合特异性的SuR多肽。例如,通过将SuR配体结合域融合到替代DNA结合域上,可以改变DNA结合特异性。例如,可以将来自TetR D类的DNA结合域融合到SuR配体结合域上,以建立这样的SuR多肽,其特异性地结合包含D类四环素操纵基因的多核苷酸。在某些实施例中,可以使用DNA结合域变体或衍生物。例如,可以使用特异性地识别tetO-4C操纵基因或tetO-6C操纵基因的来自TetR变体的DNA结合域 (Helbl和Hillen (1998) J Mol Biol 276:313-318; Helbl 等人 (1998) J Mol Biol 276:319-324)。由2个亚基中的螺旋α8和α10 形成的四螺旋束可以被取代,以确保当靶向相同细胞中的2个不同的操纵基因特异性的阻遏物变体时的二聚化特异性,从而防止异源二聚化 (例如,Rossi 等人 (1998) Nat Genet 20:389-393; Berens和Hillen (2003) Eur J Biochem 270:3109-3121)。在另一个实施例中,来自LexA阻遏物的DNA结合域被融合至GAL4,其中该杂化蛋白在大肠杆菌和酵母中识别LexA操纵基因 (Brent和Ptashne (1985) Cell 43:729-736)。在另一个实施例中,434阻遏物的所有假定的DNA结合或DNA-识别R-基团被P22阻遏物的对应位置替换。在体内和在体外测试了杂合体阻遏物434R[α3(P22R)]的操纵基因结合特异性,每个实验证实,434 的该靶向修饰将DNA结合特异性从434操纵基因转移至P22操纵基因(Wharton和Ptashne (1985) Nature 316:601-605)。通过建立野生型434R和434R[α3(P22R)]的异源二聚体,其特异性地识别嵌合的P22/434操纵基因序列,进一步延伸了该工作 (Hollis等人 (1988) Proc Natl Acad Sci USA 85:5834-5838)。在另一个实施例中,AraC蛋白的 N-端一半被融合至LexA阻遏物DNA结合域上。得到的AraC:LexA嵌合体二聚化,结合LexA操纵基因,并以阿拉伯糖-响应性的方式抑制LexA操纵基因:β-半乳糖苷酶融合基因的表达 (Bustos和Schleif (1993) Proc Natl Acad Sci USA 90:5638-5642)。
编码SuR多肽的分离的多核苷酸也可以用作产生多样性的方法(包括突变、重组和递归重组反应)的底物,以生成具有希望的性质的另外的SuR多核苷酸和/或多肽变体。此外,所述SuR多核苷酸可以用于产生多样性的方法,以生成与原料相比具有改变的特征(例如结合不同的配体诱导物)的多核苷酸和/或多肽变体。所述产生多样性的方法会生成序列变化,包括单核苷酸置换、多核苷酸置换和核酸序列区域的插入或缺失。可以单独地和/或组合地使用产生多样性的方法,以产生一个或更多个SuR变体或变体集合以及编码的蛋白的变体。单个地和共同地,这些方法会提供稳健的、广泛适用的产生多样化的多核苷酸和多肽以及多核苷酸和多肽集合(包括文库)的途径。这些变体和变体集合可用于具有新的和/或改良的特征的多核苷酸、蛋白、途径、细胞和/或生物体的工程化或快速进化。可以针对改变的特征和/或性质(包括改变的配体结合、DNA结合的保留、和/或结合性质的定量),选择或筛选得到的多核苷酸和/或多肽变体。
可以使用任意方法来为文库提供序列多样性。可得到许多产生多样性的方法,包括多基因重排和用于产生修饰的核酸序列的方法,包括例如,Soong 等人 (2000) Nat Genet 25:436-39; Stemmer 等人 (1999) Tumor Targeting 4:1-4; Ness 等人 (1999) Nature Biotech 17:893-896; Chang 等人 (1999) Nature Biotech 17:793-797; Minshull和Stemmer (1999) Curr Op Chem Biol 3:284-290; Christians 等人 (1999) Nature Biotech 17:259-264; Crameri 等人 (1998) Nature 391:288-291; Crameri 等人 (1997) Nature Biotech 15:436-438; Zhang 等人 (1997) Proc Natl Acad Sci USA 94:4504-4509; Patten 等人 (1997) Curr Op Biotech 8:724-733; Crameri 等人 (1996) Nature Med 2:100-103; Crameri 等人 (1996) Nature Biotech 14:315-319; Gates 等人 (1996) J Mol Biol 255:373-386; Stemmer (1996) 在The Encyclopedia of Molecular Biology (VCH Publishers, New York)第447-457页中的“Sexual PCR and Assembly PCR”; Crameri和Stemmer (1995) BioTechniques 18:194-195; Stemmer 等人 (1995) Gene 164:49-53; Stemmer (1995) Science 270:1510; Stemmer (1995) Bio/Technology 13:549-553; Stemmer (1994) Nature 370:389-391和Stemmer (1994) Proc Natl Acad Sci USA 91:10747-10751。产生多样性的突变方法包括,例如,定点诱变 (Ling 等人 (1997) Anal Biochem 254:157-178; Dale 等人 (1996) Methods Mol Biol 57:369-374; Smith (1985) Ann Rev Genet 19:423-462; Botstein和Shortle (1985) Science 229:1193-1201; Carter (1986) Biochem J 237:1-7和Kunkel (1987) 在Nucleic Acids and Molecular Biology (Eckstein和Lilley, 编., Springer Verlag, Berlin)中的“The efficiency of oligonucleotide directed mutagenesis”。使用含有尿嘧啶的模板的诱变方法包括Kunkel (1985) Proc Natl Acad Sci USA 82:488-492; Kunkel 等人 (1987) Methods Enzymol 154:367-382; 和Bass 等人(1988) Science 242:240-245。寡核苷酸-指导的诱变方法包括 Zoller和Smith (1983) Methods Enzymol 100:468-500; Zoller和Smith (1982) Nucl Acids Res 10:6487-6500和Zoller和Smith (1987) Methods Enzymol 154:329-350。硫代磷酸酯-修饰的DNA诱变方法包括Taylor 等人 (1985) Nucl Acids Res 13:8749-8764; Taylor 等人 (1985) Nucl Acids Res 13:8765-8787; Nakamaye和Eckstein (1986) Nucl Acids Res 14:9679-9698; Sayers 等人 (1988) Nucl Acids Res 16:791-802和Sayers 等人 (1988) Nucl Acids Res 16:803-814。使用缺口双链体DNA的诱变方法包括(Kramer 等人 (1984) Nucl Acids Res 12:9441-9456; Kramer和Fritz (1987) Methods Enzymol 154:350-367; Kramer 等人 (1988) Nucl Acids Res 16:7207;和Fritz 等人 (1988) Nucl Acids Res 16:6987-6999。其它合适的产生多样性的方法包括点错配修复 (Kramer 等人 (1984) Cell 38:879-887); 使用修复缺陷型宿主菌株的诱变 (Carter 等人 (1985) Nucl Acids Res 13:4431-4443;和Carter (1987) Methods Enzymol 154:382-403); 缺失诱变 (Eghtedarzadeh和Henikoff (1986) Nucl Acids Res 14: 5115); 限制-选择和限制-纯化 (Wells 等人 (1986) Phil Trans R Soc Lond A 317:415-423); 全基因合成的诱变 (Nambiar 等人 (1984) Science 223:1299-1301; Sakamar和Khorana (1988) Nucl Acids Res 14:6361-6372; Wells 等人 (1985) Gene 34:315-323和Grundstr?m 等人 (1985) Nucl Acids Res.13:3305-3316); 双链断裂修复(Mandecki (1986) Proc Natl Acad Sci USA 83:7177–7181;和Arnold (1993) Curr Op Biotech 4:450-455)。
通过任意的技术或技术的组合,可在体外重组核酸,所述技术包括,例如,用DNA酶消化要重组的核酸,随后连接和/或PCR重新装配所述核酸。例如,可采用性PCR诱变,其中,使DNA分子片段化,然后根据序列相似性在具有不同但是相关的DNA序列的DNA分子之间进行体外重组,接着通过在聚合酶链式反应中延伸而进行交叉固定。类似地,可在体内递归地重组核酸, 例如,使重组在细胞中的核酸之间发生。这样的方式可任选地在目标核酸之间产生直接重组,或者在含有目标核酸的构建体、载体、病毒和/或质粒之间产生重组。也可采用全基因组重组方法,在该方法中,细胞或其它生物体的全基因组被重组,任选地包括给基因组重组混合物掺加所需的文库组分。这些方法具有许多应用,包括在靶基因的身份未知的情况中。这些方法中的任一种可以单独地或组合地使用,以产生编码SuR多肽的多核苷酸。任意的产生多样性的方法可以以反复的方式进行,其中使用如突变/重组一个或更多个循环,或者其它产生多样性的方法,随后任选地进行一种或更多种选择方法,以产生其它重组核酸。
为了方便和高处理量,常常需要在微生物(诸如细菌如大肠杆菌,或单细胞真核生物如酵母,包括酿酒酵母裂殖酵母巴氏毕赤酵母,或原生生物如衣滴虫属) 中或在模型细胞系统(诸如SF9、Hela、CHO、BMS、BY2或其它细胞培养系统)中筛选/选择的所需的修饰的核酸。在一些情况下,在植物细胞或植物中的筛选可能是希望的,包括植物细胞或外植体培养系统或模型植物系统,诸如拟南芥属或烟草。在某些实施例中,通过筛选表达不同的修饰核酸(单独的或作为基因融合构建体的一部分)的宿主细胞集合来增加通量。可对显示出显著活性的任何集合去褶合(deconvolute),以鉴别表达所需活性的单一克隆。
提供了这样的重组构建体,其包含一个或更多个编码SuR多肽的核酸序列。所述构建体包含诸如质粒、粘粒、噬菌体、病毒、细菌人工染色体 (BAC)、酵母人工染色体 (YAC)等载体,其中已经插入了编码SuR多肽的多核苷酸。在某些实施例中,所述构建体另外包含可操作地连接到该序列上的调节序列(包括,例如,启动子)。合适的载体是众所周知的,且包括:染色体、非染色体和合成DNA序列,诸如SV40的衍生物; 细菌质粒; 复制子; 噬菌体DNA; 杆状病毒; 酵母质粒; 源自质粒和噬菌体DNA的组合的载体、病毒DNA诸如牛痘、腺病毒、禽痘病毒、假性狂犬病、腺病毒、腺相关病毒、逆转录病毒、双粒病毒组、TMV、PVX、其它植物病毒、Ti质粒、Ri质粒和许多其它。
所述载体可以任选地含有一个或更多个选择标记基因,以提供用于转化的宿主细胞的选择的表型特性。通常,选择标记基因会编码抗生素或除草剂抗性。合适的基因包括编码抗生素大观霉素或链霉素抗性的基因(例如,aadA基因)、编码链霉素抗性的链霉素磷酸转移酶(SPT)基因、编码卡那霉素或遗传霉素抗性的新霉素磷酸转移酶(NPTII或NPTIII)基因、编码潮霉素抗性的潮霉素磷酸转移酶(HPT)基因。其它选择标记基因包括二氢叶酸还原酶或新霉素抗性(对于真核细胞培养)和四环素或氨苄西林抗性。编码除草剂抗性的基因包括起抑制谷氨酰胺合酶的作用的基因,诸如草胺膦或basta (例如,bar基因)、EPSPS、GOX或GAT(其提供对草甘膦的抗性)、突变型ALS (乙酰乳酸合酶) (其提供对磺酰脲类除草剂的抗性)或任意其它已知的基因。
在细菌系统中,可得到许多表达载体。这样的载体包括、但不限于:多功能的大肠杆菌克隆和表达载体,诸如BLUESCRIPT (Stratagene); pIN 载体 (Van Heeke和Schuster, (1989) J Biol Chem 264:5503-5509); pET 载体 (Novagen, Madison Wis.) 等。类似地,在酿酒酵母中,许多含有组成型或诱导型启动子(诸如α因子、醇氧化酶和PGH)的载体可以用于多肽的生产。关于综述,参见,Ausubel和Grant 等人 (1987) Meth Enzymol 153:516-544。多种表达系统可以用于哺乳动物宿主细胞中,包括基于病毒的系统,诸如腺病毒和rous肉瘤病毒(RSV)系统。可以使用任意数目的商业上或公开地可得到的表达系统或其衍生物。
在植物细胞中,表达可以由整合进植物染色体或细胞器中的表达盒,或细胞质地由游离型或病毒的核酸,驱动。已经描述了许多植物衍生的调节序列,包括以组织特异性的方式指导表达的序列,例如,TobRB7、patatin B33、GRP基因启动子、rbcS-3A启动子等。或者,通过瞬时表达植物病毒载体的外源序列,例如,TMV、BMV、双粒病毒组(包括WDV)等,可以实现高水平表达。
可用于在高等植物中表达核酸的典型载体是已知的,包括Rogers 等人 (1987) Meth Enzymol 153:253-277所述的根癌农杆菌的诱导肿瘤的(Ti)质粒所衍生出的载体。示例性的根癌农杆菌载体包括Schardl 等人 (1987) Gene 61:1-11和Berger 等人 (1989) Proc Natl Acad Sci USA 86:8402-8406的质粒pKYLX6和pKYLX7,以及可从 Clontech Laboratories, Inc. (Palo Alto, Calif.)得到的质粒pB101.2。许多已知的植物病毒可以用作载体,包括花椰菜花叶病毒 (CaMV)、双粒病毒组、雀麦花叶病毒和烟草花叶病毒。
SuR可以用于控制目标多核苷酸的表达。目标多核苷酸 可以是任意目标序列,包括但不限于编码多肽的序列、编码 mRNA的序列、编码RNAi 前体的序列、编码有活性的RNAi试剂的序列、miRNA、反义多核苷酸、核酶、融合蛋白、复制载体、可筛选的标志物等。目标多核苷酸的表达可以用于诱导编码RNA和/或多肽的表达,或相反地抑制编码的RNA、RNA 靶序列和/或多肽的表达。在具体的实施例中,多核苷酸序列可以是这样的多核苷酸,其编码植物激素、植物防御蛋白、 营养素运输蛋白、生物素相关蛋白、希望的输入特性、希望的输出特性、抗逆基因、抗除草剂基因、疾病/病原体抗性基因、雄性不育、发育基因、调节基因、DNA修复基因、转录调节基因、或任意其它目标多核苷酸和/或多肽。
许多启动子可以用于所述组合物和方法中。例如,可以将编码SuR多肽的多核苷酸可操作地连接到组成型启动子、组织-偏爱型启动子、诱导型启动子、发育地、时间地和/或空间地受调节的或其它启动子上,包括在植物细胞中起作用的来自植物病毒或其它病原体的启动子。在Potenza 等人(2004) In Vitro Cell Dev Biol Plant 40:1-22中,综述了许多可用于植物中的启动子。
通过任意标准方法,可以得到任意多核苷酸,包括目标多核苷酸、编码SuR的多核苷酸、调节区、内含子、启动子和包含TetOp序列的启动子,并测定它们的核苷酸序列。可以化学合成全长多核苷酸,或从化学合成的寡核苷酸装配 (Kutmeier 等人 (1994) BioTechniques 17:242)。从寡核苷酸装配通常包括,合成重叠寡核苷酸,退火和连接这些寡核苷酸,和PCR扩增连接的产物。或者,可以从合适的来源(包括从组织或细胞产生的cDNA文库、基因组文库)分离或产生多核苷酸,或通过PCR扩增(使用对序列的3’和5’末端特异性的引物)或通过克隆(使用对目标多核苷酸特异性的核苷酸探针)从宿主直接分离。然后可以使用标准的方法,将通过PCR产生的扩增的核酸分子克隆进可复制的克隆载体中。使用任意的标准方法,包括重组DNA技术、载体构建、诱变和PCR (参见,例如,Sambrook 等人(1990) Molecular Cloning, A Laboratory Manual, 第2版, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY; Ausubel等人, 编 (1998) Current Protocols in Molecular Biology, John Wiley and Sons, NY),可以进一步操纵多核苷酸。
可以使用将序列导入细胞或生物体中的任意方法,只要所述多核苷酸或多肽可以接近至少一个细胞的内部。将序列导入植物中的方法是已知的,包括、但不限于:稳定转化、瞬时转化、病毒-介导的方法、和有性繁殖。稳定整合指示,导入的多核苷酸整合进基因组中,且能被后代继承。瞬时转化指示,导入的序列没有整合进基因组中,所以不可被后代从宿主继承。可以使用任意方法来组合SuR和可操作地连接到启动子(包含TetOp)上的目标多核苷酸,包括,例如,稳定转化、瞬时递送、细胞融合、有性杂交或它们的任意组合。
转化方案以及将多肽或多核苷酸序列导入植物的方案可根据目标转化植物或植物细胞的类型而变化。将多肽和多核苷酸导入植物细胞的合适方法包括显微注射(Crossway 等人 (1986) Biotechniques 4:320-334和美国专利号6,300,543)、电穿孔(Riggs 等人 (1986) Proc Natl Acad Sci USA 83:5602-5606)、土壤杆菌属-介导的转化(美国专利号5,563,055和5,981,840)、直接基因转移(Paszkowski 等人 (1984) EMBO J 3:2717-2722)、生物射弹粒子加速 (美国专利号4,945,050, 5,879,918, 5,886,244和5,932,782; Tomes 等人 (1995) 见:Plant Cell, Tissue and Organ Culture: Fundamental Methods, Gamborg和Phillips编(Springer-Verlag, Berlin); McCabe 等人(1988) Biotechnology 6:923-926)。也参见,Weissinger 等人 (1988) Ann Rev Genet 22:421-477; Sanford 等人 (1987) Particulate Science和Technology 5:27-37; Christou 等人 (1988) Plant Physiol 87:671-674; Finer和McMullen (1991) In Vitro Cell Dev Biol  27P:175-182 (大豆); Singh 等人 (1998) Theor Appl Genet 96:319-324; Datta 等人 (1990) Biotechnology 8:736-740; Klein 等人 (1988) Proc Natl Acad Sci USA 85:4305-4309; Klein 等人 (1988) Biotechnology 6:559-563; 美国专利号5,240,855, 5,322,783和5,324,646; Klein 等人 (1988) Plant Physiol 91:440-444; Fromm 等人 (1990) Biotechnology 8:833-839; Hooykaas-Van Slogteren 等人 (1984) Nature 311:763-764; 美国专利号5,736,369; Bytebier 等人 (1987) Proc Natl Acad Sci USA 84:5345-5349; De Wet 等人 (1985) 见:The Experimental Manipulation of Ovule Tissues, Chapman 等人编 (Longman, New York),第197-209页; Kaeppler 等人 (1990) Plant Cell Rep 9:415-418; Kaeppler 等人 (1992) Theor Appl Genet 84:560-566; D'Halluin 等人 (1992) Plant Cell 4:1495-1505; Li 等人 (1993) Plant Cell Rep 12:250-255; Christou和Ford (1995) Ann Bot 75:407-413和Osjoda 等人 (1996) Nat Biotechnol 14:745-750。或者,通过使植物接触病毒或病毒核酸,可以将多核苷酸导入植物中。通过病毒 DNA或RNA分子将多核苷酸导入植物中的方法是已知的,参见,例如,美国专利号5,889,191、5,889,190、5,866,785、5,589,367、5,316,931和Porta 等人 (1996) Mol Biotech 5:209-221。
术语“植物”包括植物细胞、植物原生质体、可以再生植物的植物细胞组织培养物、植物愈伤组织、植物块和植物或植物部分中完整的植物细胞,例如胚、花粉、胚珠、种子、叶、花、枝、果实、核、穗、穗轴、壳、茎、根、根尖、花药等。也包含再生植物的后代、变体和突变体。
在某些实施例中,通过转化质体,或通过指导SuR转录物或多肽进入质体中,可以将SuR导入质体中。可以使用任意的转化方法(核或质体),取决于希望的产物和/或用途。质体转化会提供下述优点,包括高转基因表达、转基因表达的控制、表达多顺反子信息的能力、通过同源重组实现的位点特异性整合、转基因沉默和位置效应的缺失、通过单亲质体基因继承来控制转基因传递、和表达的多肽在细胞器中的隔离(这可以避免可能的对胞质组分的不利影响) (例如,参见,综述,包括Heifetz (2000) Biochimie 82:655-666; Daniell 等人 (2002) Trends Plant Sci 7:84-91; Maliga (2002) Curr Op Plant Biol  5:164-172; Maliga (2004) Ann Rev Plant Biol 55-289-313; Daniell 等人 (2005) Trends Biotechnol 23:238-245和Verma和Daniell (2007) Plant Physiol 145:1129-1143)。
质体转化的方法和组合物是众所周知的,例如,转化方法包括 (Boynton 等人 (1988) Science 240:1534-1538; Svab 等人 (1990) Proc Natl Acad Sci USA 87:8526-8530; Svab 等人 (1990) Plant Mol Biol 14:197-205; Svab 等人 (1993) Proc Natl Acad Sci USA 90:913-917; Golds 等人 (1993) Bio/Technology 11:95-97; O’Neill 等人 (1993) Plant J 3:729-738; Koop 等人 (1996) Planta 199:193-201; Kofer 等人 (1998)In Vitro Plant 34:303-309; Knoblauch 等人 (1999) Nat Biotechnol 17:906-909);以及质体转化载体、元件和选择(Newman 等人(1990) Genetics 126:875-888; Goldschmidt-Clermont,(1991) Nucl Acids Res 19:4083-4089; Carrer 等人(1993) Mol Gen Genet 241:49-56; Svab 等人(1993) Proc Natl Acad Sci USA 90:913-917; Verma和Daniell (2007) Plant Physiol 145:1129-1143)。
用于控制质体中的基因表达的方法和组合物是众所周知的,包括(McBride 等人 (1994) Proc Natl Acad Sci USA 91:7301-7305; L?ssl 等人 (2005) Plant Cell Physiol 46:1462-1471; Heifetz (2000) Biochemie 82:655-666; Surzycki 等人 (2007) Proc Natl Acad Sci USA 104:17548-17553; 美国专利号5,576,198和5,925,806; WO 2005/0544478),以及将多核苷酸和/或多肽输入质体中的方法和组合物,包括与转送肽的翻译融合(例如,Comai 等人 (1988) J Biol Chem 263:15104-15109)。
SuR多核苷酸和多肽会提供用于调节质体基因表达的方法,这通过可容易地进入细胞的化学诱导物来实现。例如,使用叶绿体的T7表达系统(McBride 等人 (1994) Proc Natl Acad Sci USA 91:7301-7305),SuR可以用于控制细胞核T7 聚合酶表达。或者,SuR-调节的启动子可以整合进质体基因组中,并可操作地连接到目标多核苷酸上,且SuR从细胞核基因组表达和输入,或整合进质体中。在所有情况下,磺酰脲化合物的应用是用于有效地调节目标多核苷酸。
任意类型的细胞和/或生物体(原核或真核)可以与所述SuR方法和组合物一起使用。例如,可以用所述组合物转化任意细菌细胞系统。例如,大肠杆菌土壤杆菌属和其它细菌细胞转化、质粒制备和使用噬菌体的方法,详述在例如,Current Protocols in Molecular Biology (Ausubel, 等人, (编) (1994) Greene Publishing Associates, Inc.和John Wiley & Sons, Inc.联合出版)。
所述SuR系统可以与任意真核细胞系一起使用,包括酵母、原生生物、藻类、昆虫细胞、禽类或哺乳动物细胞。例如,可以利用许多商业地和/或公开地可得到的酿酒酵母菌株,作为用于转化这些细胞的质粒。例如,菌株可以从美国典型培养物保藏中心 (ATCC, Manassas, VA)得到,且包括酵母遗传原种中心储存库( Yeast Genetic Stock Center inventory),其于1998年迁移至ATCC。也可利用其它酵母系,诸如裂殖酵母和巴氏毕赤酵母等。例如,酵母转化、质粒制备的方法等详述在例如,Current Protocols in Molecular Biology (Ausubel, 等人, (编) (1994) Greene Publishing Associates, Inc.和John Wiley & Sons, Inc.联合出版,具体参见第13单元)。酵母的转化方法包括原生质球转化、电穿孔和醋酸锂方法。Gietz和Woods ((2002) Methods Enzymol 350:87-96)描述了酵母的一种通用的高效率转化方法,其中使用醋酸锂、PEG 3500和载体 DNA。
所述SuR可以用于哺乳动物细胞中,诸如CHO、HeLa、BALB/c、成纤维细胞、小鼠胚胎干细胞等。许多可商业得到的感受态细胞系和质粒是众所周知的,且可从例如ATCC (Manassas, VA)容易地得到。用于转化的分离的多核苷酸和哺乳动物细胞的转化,可以通过本领域已知的任意方法来完成。例如,哺乳动物细胞和其它真核细胞转化、质粒制备和使用病毒的方法,详述在例如,Current Protocols in Molecular Biology (Ausubel, 等人, (编) (1994) Greene Publishing Associates, Inc.和John Wiley & Sons, Inc.联合出版,具体参见第9单元)。例如,可利用许多方法,诸如磷酸钙转染、电穿孔、DEAE-葡聚糖转染、脂质体-介导的转染、显微注射以及病毒技术。
任意植物物种可以与所述SuR方法和组合物一起使用,包括,但不限于,单子叶植物和双子叶植物。植物的实例包括,但不限于,玉米(Zea mays),芸苔属物种(例如,欧洲油菜芫菁褐芥菜),蓖麻,棕榈,紫苜蓿(紫花苜蓿),水稻(Oryza sativa),黑麦(Secale cereale),高梁(两色高梁(Sorghum bicolor)、高梁(Sorghum vulgare)),稷(例如,珍珠粟(Pennisetum glaucum)、黍(Panicum miliaceum)、小米(Setaria italica)、龙爪稷(Eleusine coracana)),向日葵(Helianthus annuus),红花(Carthamus tinctorius),小麦(普通小麦(Triticum aestivum)),大豆(Glycine max),烟草(Nicotiana tabacum),马铃薯(Solanum tuberosum),花生(Arachis hypogaea),棉花(海岛棉(Gossypium barbadense)、陆地棉(Gossypium hirsutum)),甘薯(Ipomoea batatus),木薯(Manihot esculenta),咖啡(咖啡属物种(Coffea spp.)),椰子(Cocos nucifera),菠萝(Ananas comosus),柑桔树(柑桔属物种(Citrus spp.)),可可(Theobroma cacao),茶(Camellia sinensis),香蕉(芭蕉属物种(Musa spp. )),鳄梨(Persea americana),无花果(Ficus casica),番石榴(Psidium guajava),芒果(Mangifera indica),橄榄(油橄榄(Olea europaea)),番木瓜(Carica papaya),腰果(Anacardium occidentale),澳洲坚果(全缘叶澳洲坚果(Macadamia integrifolia)),扁桃(Prunus amygdalus),甜菜(Beta vulgaris),甘蔗(甘蔗属物种),拟南芥,燕麦(燕麦属物种),大麦(大麦属物种),豆科植物(诸如瓜尔豆、洋槐豆、胡芦巴、菜豆、豇豆、绿豆、蚕豆、小扁豆和鹰嘴豆),蔬菜,观赏植物,草和针叶树。蔬菜包括番茄 (Lycopersicon esculentum)、莴苣(例如,Lactuca sativa)、四季豆(肾豆)、青豆(菜豆)、豌豆(Pisium spp.、山黧豆属)和黄瓜属诸如黄瓜(C. sativas)、香瓜(C. cantalupensis)和甜瓜 (甜瓜(C. melo))。观赏植物包括杜鹃花(杜鹃花属)、八仙花(Macrophylla hydrangea)、芙蓉(Hibiscus rosasanensis)、玫瑰(Rosa spp.)、郁金香(Tulipa spp.)、水仙花(Narcissus spp.)、牵牛花(Petunia hybrida)、康乃馨(Dianthus caryophyllus)、一品红(Euphorbia pulcherrima)和菊花。松柏植物包括松树,例如,火炬松(Pinus taeda)、湿地松(Pinus elliotii)、美国黄松(Pinus ponderosa)、小杆松(Pinus contorta)和辐射松(Pinus radiata);花旗松(Pseudotsuga menziesii);西部铁杉(Tsuga canadensis);白云杉(Picea glauca);红杉(Sequoia sempervirens);冷杉例如银冷杉(Abies amabilis)和香脂冷杉(Abies balsamea);以及雪松例如美国西部侧柏(Thuja plicata)和阿拉斯加黄桧(Chamaecyparis nootkatensis)。
使用常规方法(参见,例如,McCormick 等人 (1986) Plant Cell Rep 5:81-84),可以将已经转化的植物细胞和/或组织培养成植物。然后可以使这些植物生长和自花授粉,回交,和/或异型杂交,并鉴别得到的具有希望的特征的后代。可以培养2代或更多代,以确保特征被稳定地维持和继承,然后收获种子。以此方式,提供了转化的/转基因的种子,其具有稳定地整合进它们的基因组中的包含目标多核苷酸和/或修饰的编码SuR的多核苷酸的DNA构建体。可以进一步表征具有稳定地整合的DNA构建体的植物和/或种子的表达、农业学和拷贝数。
可以使用序列同一性来对比2个多核苷酸或多肽序列的一级结构,描述第一个序列相对于第二个序列的一级结构,和/或描述序列关系诸如变体和类似物。序列同一性测量2个序列中相同的残基(当针对最大对应进行比对时)。使用计算机-执行的算法,可以分析序列关系。通过计算序列的最佳比对,并评分比对中的匹配和间隙(这产生序列同一性百分比和序列相似性百分比),可以确定2个或多个多核苷酸或2个或多个多肽之间的序列关系。基于各自编码的多肽的对比,也可以描述多核苷酸关系。许多用于对比和分析序列的程序和算法是已知的。除非另有说明,本文提供的序列同一性/相似性值是指使用GAP 第10版 (GCG, Accelrys, San Diego, CA) 得到的值,其中使用下述参数:对于核苷酸序列的%同一性和%相似性,使用50的GAP权重和3的长度权重以及nwsgapdna.cmp评分矩阵;对于氨基酸序列的%同一性和%相似性,使用8的GAP权重和2的长度权重以及BLOSUM62评分矩阵 (Henikoff和Henikoff (1992) Proc Natl Acad Sci USA 89:10915-10919)。GAP使用Needleman和Wunsch (1970) J Mol Biol 48:443-453的算法,以找到使匹配数目最大化和使间隙数目最小化的2个完整序列的比对。
或者,使用其它序列工具,可以评价多核苷酸和/或多肽。例如,使用BLAST比对工具,可以评价多核苷酸和/或多肽。局部的比对间隙简单地由一对序列区段组成,对比来自每个序列的区段。Smith-Waterman或Sellers算法的改进会找到不能通过延伸或修整来提高评分的所有区段对,称作高评分区段对(HSPs)。BLAST比对的结果包括这样的统计度量,其指示从单独的偶然可以预见到BLAST评分的可能性。从与每个比对的序列有关的间隙和置换的数目计算出原始评分S,其中更高的相似性评分指示更显著的比对。置换评分由查表 (参见PAM, BLOSUM)给出。间隙评分通常计算为G(间隙开口罚分)和L(间隙延伸罚分)的总和。对于长度n的间隙,间隙成本是G+Ln。间隙成本G和L的选择是根据经验的,但是在习惯上为 G 选择高值(10-15)和为L选择低值(1-2)。比特评分S’是源自原始比对评分S,其中已经考虑了使用的评分系统的统计性质。相对于评分系统,标准化比特评分,因此它们可以用于对比来自不同搜索的比对评分。E-值或预期值描述了在数据库中偶然发生具有类似评分的序列的可能性。它是预期在数据库搜索中偶然发生具有等于或优于S的评分的不同比对的数目的预测。E-值越小,比对的显著性越大。例如,具有e-117的E 值 的比对意味着,具有类似评分的序列非常不可能简单地偶然发生。另外,用于比对氨基酸的随机对的预期评分被要求是负的,否则长比对倾向于具有高评分,独立于比对的区段是否相关。另外,BLAST算法使用适当的取代矩阵、核苷酸或氨基酸,且对于有间隙的比对,使用间隙产生和延伸罚分。例如,通常使用BLOSUM62矩阵来完成BLAST比对和多肽序列的对比,间隙存在罚分为11,间隙延伸罚分为1。除非另有说明,使用BLOSUM62矩阵完成从BLAST分析报道的评分,间隙存在罚分为11,间隙延伸罚分为1。
UniProt蛋白序列数据库是功能和结构蛋白数据的储存库,并提供了稳定的、综合的、完全分类的、富集的和准确地注解的蛋白序列知识库,具有科学界可自由接近的广泛的交叉参考和查询接口。UniProt站点具有工具UniRef,其提供了与来自数据库的目标蛋白序列具有50%、90%或100%序列同一性的蛋白簇。例如,使用TetR(B) (UniProt参考号P04483)会产生与P04483具有90%序列同一性的 18蛋白簇:
RefID 蛋白名称 物种 长度
P04483 来自转座子Tn10的TetR B类 大肠杆菌 207
B1VCF0 TetR蛋白 大肠杆菌 208
A0ZSZ1 四环素抗性的基因阻遏物 发光细菌属TC21 208
A4LA82 四环素阻遏蛋白 迟钝爱德华菌属 208
A4V9K4 四环素阻遏物 肠炎沙门菌亚属 208
A8R6K3 四环素阻遏蛋白 Salmonella enterica subsp. enterica serovar Choleraesuis 208
Q573N4 四环素阻遏蛋白 未培养的细菌 208
Q7BQ37 TetR 弗氏志贺菌 208
Q9S455 TetR 伤寒沙门菌 208
A4IUI5 四环素阻遏蛋白R, B类 鲁氏耶尔森菌 207
Q1A2K5 四环素抗性的阻遏蛋白 大肠杆菌 207
Q6MXH5 来自转座子tn10的TetR B类 粘质沙雷菌 207
Q79VX4 TetR蛋白 鼠伤寒沙门菌 207
Q7AZW7 Tet 阻遏蛋白 产气巴斯德菌 207
Q7AK84 Tet操纵子的阻遏物 质粒R100 207
Q6QR72 四环素阻遏蛋白 大肠杆菌 208
Q93F26 Tet阻遏物 弗氏志贺菌 2a 208
Q8L0M9 推定的四环素阻遏蛋白 脑膜炎奈瑟球菌 205
这些蛋白序列可以用作序列多样性的来源,用于蛋白设计和/或配体结合域的定向进化。此外,这些蛋白序列可以用作操纵基因结合域的来源,用于嵌合的阻遏蛋白或用于操纵基因结合域的设计和/或进化。
四环素阻遏物的性质、结构域、基序和功能是众所周知的,被作为评价包含一个或更多个氨基酸置换的任意衍生的阻遏物的标准技术和测定法。D类TetR蛋白的结构包含10个含有连接环和转角的α螺旋。3个N-端螺旋形成结合DNA的HTH结构域,其相对于在其它DNA结合蛋白中的HTH 基序具有反转朝向。由螺旋5-10形成的蛋白的核心包含二聚化接口结构域,且对于每个单体,包含配体/效应物和二价阳离子辅因子的结合袋 (Kisker 等人 (1995) J Mol Biol 247:260-180; Orth 等人 (2000) Nat Struct Biol 7:215-219)。任意氨基酸变化可以包含非保守的或保守的氨基酸置换。保守的置换通常是指将一个氨基酸替换为另一个具有类似的化学和/或结构性质的氨基酸 (参见,例如,Dayhoff 等人(1978) Atlas of Protein Sequence and Structure, Natl Biomed Res Found, Washington, DC)。根据评价的性质,诸如酸性和碱性、极性和非极性、两亲等,已经形成了通过相似性对氨基酸的不同分簇,且用于评价任意置换或置换组合的可能效应。
已经鉴别和/或衍生出许多TetR变体,并予以充分研究。在四环素阻遏物系统的背景下,不同的突变、修饰和/或其组合的效应已经用于广泛地表征和/或修饰四环素阻遏物的性质,诸如辅因子结合、配体结合常数、动力学和解离常数、操纵基因结合序列约束、协同性、 结合常数、动力学和解离常数和融合蛋白活性和性质。变体包括在有四环素或其类似物存在下结合操纵基因序列的相反表型的TetR变体,具有改变的操纵基因结合性质的变体,具有改变的操纵基因序列特异性的变体,和具有改变的配体特异性的变体和融合蛋白。参见,例如,Isackson和Bertrand (1985) Proc Natl Acad Sci USA 82:6226-6230; Smith和Bertrand (1988) J Mol Biol 203:949-959; Altschmied 等人 (1988) EMBO J 7:4011-4017; Wissmann 等人 (1991) EMBO J 10:4145-4152; Baumeister 等人 (1992) J Mol Biol 226:1257-1270; Baumeister 等人 (1992) Proteins 14:168-177; Gossen和Bujard (1992) Proc Natl Acad Sci USA 89:5547-5551; Wasylewski 等人 (1996) J Protein Chem 15:45-58; Berens 等人 (1997) J Biol Chem 272:6936-6942; Baron 等人 (1997) Nucl Acids Res 25:2723-2729; Helbl和Hillen (1998) J Mol Biol 276:313-318; Urlinger 等人 (2000) Proc Natl Acad Sci USA 97:7963-7968; Kamionka 等人 (2004) Nucl Acids Res 32:842-847; Bertram 等人 (2004) J Mol Microbiol Biotechnol 8:104-110; Scholz 等人 (2003) J Mol Biol 329: 217-227;和专利公开US 2003/0186281。
与配体和/或辅因子偶联且结合操纵基因序列的四环素阻遏物和四环素阻遏物变体的三维结构是已知的 (参见,例如,Kisker 等人 (1995) J Mol Biol 247:260-280; Orth 等人 (1998) J Mol Biol 279:439-447; Orth 等人 (1999) Biochemistry 38:191-198; Orth 等人 (2000) Nat Struct Biol 7:215-219; Luckner 等人 (2007) J Mol Biol 368:780-790)提供了非常确定地表征的结构、与不同的功能和结合性质有关的结构域和单个氨基酸的鉴别、和任意氨基酸置换的潜在效应的预测模型、以及已知的四环素阻遏物突变体的表型的可能的结构基础。下面显示了在四环素阻遏物家族成员中观察到的序列同一性百分比的一个实例。
实施例
实施例 1:   评价磺酰脲化合物对TetR的识别
A.      计算建模
使用D类四环素阻遏物(分离自大肠杆菌; TET-结合的二聚体, 1DU7 (Orth 等人 (2000) Nat Struct Biol 7:215-219);和DNA-结合的二聚体, 1QPI (Orth 等人 (2000) Nat Struct Biol 7:215-219)) 的 3-D晶体结构作为设计支架,用于配体结合袋中的甲基噻吩磺隆 (Ts, Harmony?)分子对四环素(TET)分子的计算替换。TET和磺酰脲类药物(SUs)通常大小类似,且具有含有氢键供体和受体的基于芳族环的结构,潜在地允许SU结合突变的TetR。但是,在四环素家族和SU 家族的分子之间存在显著差异。TET是内部刚性的且相当扁平的,具有一个与羟基和酮的高度氢键合面,logP ~ -0.3。磺酰脲类药物(SUs)是更高度柔性的和芳族的,具有一个核心磺酰基-脲部分,该部分通常在取代的苯、吡啶或噻吩 (如在Harmony?的情况下)的一侧连接取代的嘧啶,或在另一侧连接1,3,5-三嗪。尽管具有不同的官能团,Harmony?的logP与tet的logP是类似的(在pH 7,~ 0.02)。通过计算机(in silico)分子建模,将最佳定位的Harmony?分子放在TetR 结合袋中(图1)。基于该模型,测得17个氨基酸残基位置(使用TetR(B)编号,来自单体A的60、64、82、86、100、104、105、113、116、134、135、138和139,和来自单体B的位置147、151、174和177)与入坞的Harmony?足够紧密地接近,以募集到结合表面上。采用计算侧链优化来设计在被视作与SU结合最相容的 17个位置中的每个位置处的氨基酸集合。这产生在17个位置处的含有 (4、5、4、4、5、3、8、11、10、10、8、8、7、9、6、7和5)个氨基酸的文库,总设计的文库大小是4 x 1013。通过空间和物理化学考虑,指示在文库位置处的氨基酸选择,以适合配体入坞到配体袋中。
选择来自 Tn10 的野生型B类TetR作为起始分子,用于产生重排衍生物 (SEQ ID NO: 2)。它稍微不同于在计算设计中使用的序列(P0ACT4, D类,可以得到针对它的高分辨率晶体结构1DU7),但是仅仅精细地影响配体结合。下面显示了TetR(D) (SEQ ID NO: 401)和TetR(B) (SEQ ID NO: 2)的对比,用粗体显示参与tet识别和结合的位置:
商业地合成用于表达TetR的起始多核苷酸,并添加限制位点,用于在文库构建和其它操纵中的功能 (DNA2.0, Menlo Park, California, USA)。添加的限制位点包括在5’末端的NcoI位点、配体结合域(LBD)5’的SacI位点和在终止密码子之后的AscI位点。这允许文库构建局限在含有配体结合区的约480碱基对DNA区段,以避免在其它区域(诸如DNA结合域)中的非故意突变。使用Ncoi/AscI,将合成的基因可操作地连接至阿拉伯糖诱导型启动子PBAD的下游,以建立TetR表达载体pVER7314 (图2)。 NcoI位点在编码区5’末端的添加,导致甘氨酸插入在氨基酸位置1的N-端甲硫氨酸之后(SEQ ID NO: 2)。除非另外指出,该序列用作所有试验中的野生型TetR 对照,且观察到的活性等同于没有丝氨酸插入时的TetR (SEQ ID NO: 1)。但是,所有提及的氨基酸位置以及设计和观察到的变化使用野生型TetR(B) (207个氨基酸)的氨基酸编号,例如,SEQ ID NO: 1。
B.     文库设计
由于在许多位置处的大量设计的取代彼此紧密接近,计算的文库(表1,设计的文库)不能容易地用小量简并密码子编码。在诸如氨基酸134、135、138和139等序列区(它们可以合理地由单个引物编码)中,这是特别明显的。为此,在实验室中制造和测试的序列文库的特征在于在6/17个位置处的设计的氨基酸集合,在1/17个位置处稍微扩大,且在10/17个位置处完全简并(NNK密码子) (表1)。这导致高许多的预测的序列多样性,共3 x 1019序列。
表1.
构建的文库(称作‘L1’)由共50个寡核苷酸(表2)编码,而不是完全指定设计的靶文库所需的数千个。表2也包括2个PCR 扩增引物。
表2
通过重叠延伸 (Ness, 等人, (2002) Nat Biotech 20:1251-1255),进行‘L1’ 寡物的装配,以产生以SacI/AscI 限制位点为边界的PCR片段。所有文库片段的装配条件如下:将代表文库的寡核苷酸标准化至10 μM的浓度,然后等体积混合,以建立10 μM库。在6个相同的25 μl反应物中,进行文库片段的PCR扩增,所述反应物含有:1 μM合并的文库寡物; 0.5 μM每种救援引物: L1:5’和L1:3’和在Herculase II指导的反应(Stratagene, La Jolla, CA, USA)中的200 μM dNTP’s。PCR条件是98℃ 1 min (最初变性),然后是25个下述循环:在95℃变性20秒、在45℃至55℃ (梯度)之间退火45秒、再在72℃延伸模板30秒。在72℃ 最后延伸5分钟,结束反应。通过SacI/AscI消化,从PBAD-tetR表达载体 pVER7314切割出野生型TetR(B)。用小牛肠磷酸酶处理pVER7314主链片段,并纯化,然后插入用SacI/AscI限制酶消化的完全延伸的文库片段集合(~500bp),以产生L1质粒文库。测序大约50个来自文库L1的随机克隆,并为了质量对照目的,编辑信息。结果表明,代表了在多样性集合中靶向的几乎所有氨基酸(数据未显示)。测序揭示,17%的序列含有终止密码子。这小于预测的27%(例如,10个位置具有1/32密码子是终止密码子,1-(31/32)10 ~ 27%)。另外,序列分析表明,13%的克隆具有由重叠延伸过程中的错误引起的移码。因而,共大约30%的文库由编码截短的多肽的克隆组成。
C.     筛选建立
为了测试文库中罕见的与甲基噻吩磺隆 (Ts)起反应的克隆,开发了敏感的基于大肠杆菌的遗传筛选。所述筛选是确定的测定系统(Wissmann 等人(1991) Genetics 128:225-232)的改进。所述筛选由2部分组成:阻遏物预筛选,然后是诱导筛选。为此,开发了具有两种功能的大肠杆菌菌株。对于阻遏物预筛选,开发了遗传级联,其中编码卡那霉素抗性的nptIII基因是在lac启动子控制下。lac启动子受到lacI编码的 Lac阻遏物的抑制,所述 Lac阻遏物的表达又受tet启动子 (PtetR)控制。tet启动子受到TetR抑制,所述TetR阻断LacI生产,并因此最终实现要表达的卡那霉素抗性。
由于tet调节子具有二价启动子(一个tetR启动子和一个tetA启动子),用在tetA启动子 (PtetA)控制下的编码酶报告物β-半乳糖苷酶的大肠杆菌lacZ基因工程化了相同菌株。编码lacI和lacZ的双调节子然后以强转录终止子为边界:大肠杆菌RNA核糖体操纵子终止子 rrnB T1-T2 (Ghosh 等人 (1991) J Mol Biol 222:59-66)和大肠杆菌RNA 聚合酶亚基C 终止子 rpoC,使得在任一个tet启动子方向阅读的假转录物不会干扰任意其它转录物的表达。在有功能性TetR存在下,菌株表现出lac - 表型,且通过新颖的利用X-gal的化学法,可以针对诱导容易地评分菌落,其中诱导产生增加的蓝菌落颜色。另外,使用色度法或荧光底物,通过采用β-半乳糖苷酶酶测定法,可以定量地测量新颖的化学法在液体培养物中的诱导。
宿主菌株的另一个改进是,用进入的Plac-nptIII报告物敲除tolC基因座。这样做的目的是,得到SU化合物向大肠杆菌中的更好渗透(Robert LaRossa – DuPont: 个人通信)。将强转录终止子(来自鼠伤寒沙门氏菌噬菌体P22的T22)放在lac启动子的上游,以阻止条件性的卡那霉素抗性标志物的失调的泄漏表达。最终的工程化的菌株的名称是大肠杆菌KM3。
将重排的tetR LBD’s群体克隆进基于Apr/ColE1的载体pVER7314中,在PBAD启动子后面。这用于通过生长培养基中阿拉伯糖浓度的变化来实现TetR表达的精细控制(Guzman 等人 (1995) J Bacteriol 177:4121-4130)。尽管在PBAD启动子控制下,在没有加入的阿拉伯糖存在下,在足够的水平表达TetR蛋白,以实现菌株KM3中的卡那霉素抗性的选择。虽然如此,通过加入阿拉伯糖可以增加表达,例如,如果需要测定严格性的变化。
D.     文库筛选
在装配L1寡物和捕获进载体pVER7314中以后,将得到的文库转化进大肠杆菌菌株KM3,并涂布在含有50 μg/ml羧苄西林(用于选择文库质粒)和60 μg/ml 卡那霉素(用于在没有靶配体(“阻遏物原”)存在下选择活性阻遏物群体)的LB上。该选择的群体的DNA序列分析指示,该步骤高度富集几个文库位置,表明在配体结合域中的几个氨基酸组合导致与N-端结构域的DNA结合相容的构象。另外,该步骤消除了含有早熟的终止密码子和/或移码突变的克隆。随后,在Harmony? (Ts)存在下,针对阻遏物活性的改变,筛选这些阻遏物原序列。这如下实现:将来自384-孔形式的液体培养物的Kmr预选择的群体影印培养到M9琼脂上,所述M9琼脂含有0.1%甘油作为碳源、0.04%酪蛋白氨基酸(用于防止由磺酰脲施用造成的支链氨基酸饥饿)、50 μg/ml羧苄西林(用于质粒维持)、0.004%X-gal(用于检测β-半乳糖苷酶活性)和+/- SU 诱导物Ts(在20 μg/ml)。在30℃温育2天后,从筛选过对Ts的应答的近20,000个菌落群体鉴别出最初的命中(hit)。然后在相同条件下,但是以96-孔形式,重新测试14个鉴别的推定的‘命中’ (图3)。
DNA序列分析揭示,克隆L1-3和L1-19是相同的,最强烈的应答命中(L-2、-3(19)、-5、-9、-11和-20)在几个文库位置具有显著富集,直接地或间接地指示在配体相互作用中的参与。然后重新筛选相同的文库,以鉴别另外10个命中,使克隆总数达到23。
随后以与一组9种登记用于商业用途的磺酰脲(SU)化合物(表3)相同的平板测定形式,筛选所有23个假定命中,其中发现11个命中对其它SU配体显著应答 (表4)。对于该实验,以96-孔形式排列编码L1命中或野生型TetR (SEQ ID NO: 2) 的大肠杆菌克隆,并影印在M9 X-gal测定培养基上,所述培养基含有或不含有20 μg/ml的实验SU化合物。在30℃培养48小时后,对平板数字成像,并将菌落颜色强度转化成β-半乳糖苷酶活性的相对值。使用的诱导物: 在20 ppm的噻吩磺隆 (Ts)、甲磺隆 (Ms)、嘧磺隆 (Sm)、胺苯磺隆 (Es)、苯磺隆 (Tb)、豆磺隆 (Ci)、烟嘧磺隆 (Ns)、砜嘧磺隆 (Rs)、氯磺隆 (Cs),和在0.4 μM的脱水四环素(atc)作为阳性对照,用于诱导野生型TetR。令人惊奇地,一些磺酰脲化合物(具体地豆磺隆、胺苯磺隆和氯磺隆)是比起始配体Harmony?更有效的活化剂。
表3.
表4
在表5中总结了这11个顶命中的氨基酸置换。将所述序列与野生型TetR(B)相对比,仅具有差异的位置用根据TetR(B) (例如,SEQ ID NO: 1)的编号显示。在比对中的破折号指示与野生型TetR配体结合域相比没有变化。
表5
文库1的初步筛选也检测出具有反阻遏物活性的文库成员(SEQ ID NO: 1206-1213),其中所述多肽在有SU配体存在下结合到操纵基因上。这些命中证实没有SU配体的β-半乳糖苷酶表达,所述表达在加入配体(例如噻吩磺隆)后大幅减少。随后使用一组9种登记用于商业用途的磺酰脲(SU)化合物 (表3),在与上述相同的平板测定形式中,筛选这些命中,其中发现8个命中对其它SU配体显著应答 (表6)。
表6
在表7中总结了这8个反阻遏物命中的氨基酸置换 (由 SEQ ID NO: 1214-1221编码的SEQ ID NO: 1206-1213)。将所述序列与野生型TetR(B)相对比,仅具有差异的位置用根据TetR(B) (例如,SEQ ID NO: 1)的编号显示。在比对中的破折号指示与野生型TetR配体结合域相比没有变化。
表7
E.     第一轮重排结果与结构模型的关联
在大部分文库位置发生显著的富集,其中富集包括偏爱特定氨基酸的偏倚和不偏爱特定氨基酸的偏倚。初步筛选包括鉴别阻遏物和去阻遏物功能的2个阶段。富集发生在2个筛选阶段。在第一个阶段,通过“阻遏物原’(也就是说,在没有配体存在下,抑制基因转录的蛋白)的选择来富集位置。在第二个阶段,通过““活化剂”(也就是说,在有配体存在下,允许基因转录的蛋白)的选择来富集位置。通过任一个选择标准,通过两个选择标准,或不通过两个选择标准,可以富集位置。下面总结了阻遏物活性的第一轮筛选结果:
在活化剂水平的富集与SU结合的计算模型相一致:将最靠近建模的配体发生的空间选择的位置(例如,60、86、104、105、113、138、139)、在建模的磺酰基部分发生的静电选择的位置(例如,135、147、151、177) 和芳族选择的位置(例如,100、105、147、174) 建模,以形成与噻吩磺隆中的平面环结构的芳族叠加相互作用。在阻遏物原水平的富集与DNA结合的预测模型相一致:将富集的位置建模成能调节阻遏蛋白与DNA操纵基因序列的结合。
在SU诱导筛选的情况下,通过过度表现的氨基酸和未充分表现的氨基酸来证实富集,所述过度表现的氨基酸被模型化,以形成与配体的有利相互作用(例如,在位置116处的甲硫氨酸(M)和缬氨酸(V)被模型化成针对SU分子的三嗪环良好包装),且所述未充分表现的氨基酸被模型化,以生成与配体的不利相互作用(例如,在位置86处的色氨酸 (‘W’)被模型化成过大而不能适应结合袋中的配体)。在阻遏物原的情况下,富集采取两种过度表现的氨基酸和未充分表现的氨基酸的形式,所述过度表现的氨基酸被模型化,得到能在没有配体存在下结合DNA操纵基因序列的功能阻遏物构象(例如,在位置113处的丙氨酸 (‘A’) ,其维持该α-螺旋的结构完整性),且所述未充分表现的氨基酸被模型化成在没有配体存在下破坏活性抑制构象(例如,在位置113处的甘氨酸和脯氨酸 (‘P’),其减少该α-螺旋的结构完整性)。
来自不同轮的筛选和选择的结果可以生成在某些位置的改变的富集,作为与其它选择的氨基酸或与小分子的相互作用的结果。富集的序列仅证实,侧链可以促成有活性的诱导物,且不能排除任意氨基酸。因而,选择的命中可能只代表可能的活性序列的子集。对于相同的SU分子,许多可能的配体-结合模式和蛋白相互作用是可能的,因而在特定位置处的几类侧链的富集可能代表多个活性蛋白群体。在为筛选和选择轮回实现氨基酸多样性的优先化的范围内,富集的序列的计算建模是有用的。
总之,这些富集结果支持总计算模型,并促进了其它设计。被构建成完全简并的密码子(所有20个氨基酸)的几个位置返回与提议的计算模型相一致的第一轮筛选结果。例如,计算建模暗示,在位置100处的芳族侧链W、Y和F有利于SU结合。用在该位置的简并密码子筛选第一轮文库,且氨基酸W、Y和F被显著富集。设计的文库允许在文库位置处缩窄序列多样性,强调在偶联的位置处减少多样性,使得完全简并的密码子可以被避免。另外,可以为多样化募集更多位置,以实现更高质量、更集中的序列文库的更大覆盖。这允许构建文库,用足够少的成员进行良好覆盖的筛选,且具有足够的多样性来发现具有可检测活性的序列。然后可以通过在文库位置处导入更多的多样性,使用筛选或选择来选定最佳克隆(独立于模型预测),改善这样的序列。以此方式,计算建模和定向进化的组合允许产生工程化的序列,所述序列不太可能单独地通过任一种技术被发现。
F.     第二轮重排
原始文库指定为噻吩磺隆,但是用其它SU化合物(具有比原始配体潜在地更好的土壤和植物原位(in planta)稳定性质)建立诱导活性后,将进化过程重新指向这些替代配体。特别令人感兴趣的是除草剂甲磺隆、嘧磺隆、胺苯磺隆和氯磺隆。为了该目的,选择亲本克隆L1-9、-22、-29和-44用于进一步重排。克隆L1-9具有对胺苯磺隆和氯磺隆的强活性;克隆L1-22具有强嘧磺隆活性;克隆L1-29具有中等甲磺隆活性;且克隆L1-44具有对甲磺隆、胺苯磺隆和氯磺隆的中等活性(表4)。在初步筛选中没有发现克隆特别地与甲磺隆反应。由于它们的相对强的阻遏物活性,在没有诱导物时表现出低β-gal背景活性,还选择这4个克隆。强阻遏物活性对于建立下述系统而言是重要的,所述系统对诱导物的存在是高度敏感的,且在没有诱导物存在时被紧密地关闭。
基于来自亲本克隆L1-9、-22、-29和-44的序列信息,设计、构建和筛选了2个第二轮文库。第一个文库L2由‘家族’重排组成,因此其中使用寡核苷酸的合成装配来改变在选择的亲本克隆之间的氨基酸多样性,从而发现对4个新靶配体中的任一个的应答性有提高的克隆。在表8中显示了文库L2的使用的多样性和得到的命中序列的总结。
表8    
在表9中显示了用于构建文库的寡核苷酸。按照关于文库L1所述的方法,装配、克隆和筛选L2寡核苷酸,例外是,在 2 ppm测试每个配体,以增加测定的严格性,这是第1轮文库筛选浓度的1/10。
表9
G.     文库L2的筛选结果
对接近8,000个源自阻遏物预筛选的菌落进行在M9试验培养基上的活化筛选,所述培养基含有2 ppm的潜在诱导物胺苯磺隆、嘧磺隆、甲磺隆或氯磺隆。在 30℃温育48小时后,分析平板。将12个来自这些平板的假定命中重新排列成96-孔形式,并在相同的培养基集合上重新测试 (表10)。仅克隆L2-14对在该更低的2 ppm剂量的任意诱导物具有强诱导应答和紧密调节,其中它对Cs和没有诱导物的低背景具有强应答。克隆L2-18对该配体和低背景具有中等应答。克隆L2-9 也对Cs较好地应答,但是具有更高的背景活性(没有诱导物)。没有分离物表现出对甲磺隆的显著应答。一个意外的观察是,亲本克隆L1-9对 2 ppm Es具有敏感性。来自文库2的命中克隆的序列分析(表6)指示,F86M、G138R和F177K是应答命中中的优选置换。这在位置138是特别显著的,其中A在未选择的群体中远远过度代表,且仍然有5个克隆具有在该位置的R,尽管仅一个具有丙氨酸。R105W也是重要的,但是在随机序列群体中,W105已经偏倚超过C或Y。
表10
H.     第二轮文库L4装配
使用克隆L1-9作为模板,并将新颖的氨基酸多样性注入序列 (基于34 个TetR和相关分子的种系发生对比),从合成寡核苷酸建立另一个第二轮文库L4。在下面显示了使用GCG SeqWeb PILEUP (Accelrys, San Diego, CA)(在间隙权重 = 8、间隙长度权重 = 2的缺省参数下)和BLOSUM62矩阵产生的SEQ ID NO: 1和SEQ ID NO: 402-433的多序列比对:
考虑将在家族成员之间具有相对保守的氨基酸置换的氨基酸位置用于收获多样性。另外,为基于间隔的变化选择位置,以限制在一对重叠的寡核苷酸中的变化的数目。在表11中显示了文库的总结。该文库的目的是,回收针对胺苯磺隆或氯磺隆的反应性提高的命中。
表11
象对于以前的文库一样,装配L4文库合成寡核苷酸,例外是,使用2组寡核苷酸库。首先,合并代表在单个寡核苷酸退火位置处的多样性的多个寡核苷酸(在表12中的“组”)。接着,合并等体积的每个寡物组,以代表新颖的L4多样性。同样地,合并代表L1-9主链序列的寡核苷酸(表13)。通过在大约1:3比例,将寡核苷酸多样性库掺加到L1-9主链库中,进行L4装配反应。
表12
表13
将装配反应产物克隆进pVER7314主链中,并转化进测试品系大肠杆菌KM3。为了进行文库多样性分析,对来自在LB + 仅Cb (代表没有阻遏物阳性的选择偏倚)上生长的96个菌落的DNA制品进行序列分析。这些数据表明,大约30%的回收的克隆是未改变的L1-9主链,且剩余的克隆具有大约1-2个靶向的变化/克隆。在突变的群体中回收了其它未靶向的残基变化,其要么由于PCR错误,要么来自掺入装配反应中的差质量的寡核苷酸。
I. 文库L4筛选
使用M9测定平板,针对0、0.2和1 μg/ml 浓度的胺苯磺隆的活化,测试了大约20,000个源自阻遏物预筛选的克隆。令人惊奇地,从 0.2 μg/ml 胺苯磺隆处理观察到超过100个命中。将这些假定命中重新排列成96-孔形式,并使用基于液体培养的测定系统,重新测试0、0.2和1 ppm 胺苯磺隆的β-半乳糖苷酶诱导。图4 显示了45个示例性的推定的文库L4命中克隆97-142相对于0、0.2和1 ppm 胺苯磺隆的相对β-半乳糖苷酶活性。将以96-孔形式培养的培养物继代培养进新鲜的含有指定浓度的诱导物的LB中,并过夜培养,然后处理,用于酶测定。对于诱导的活性的检测,使用5 μl穿孔的细胞混合物。对于背景活性的检测,使用25 μl细胞,使得在所有处理的相同时帧中可以测量可检测的活性。将背景活性值乘以10,以使它们进入图范围。在每个样品下面的数字是指文库克隆数目。该图的后一部分含有对照第1轮命中L1-9以及野生型TetR。
测定了所有142个推定的命中克隆的DNA序列,并比对翻译的多肽。在与相对的胺苯磺隆应答的比对中分配每个多肽以后,鉴别出与高或低应答活性和高或低未诱导的活性有关的不同的或突变的残基处的氨基酸掺入模式。来自该分析的最重要的发现是:C138G或L170V 突变在顶部克隆L4-59、-89、-110、-116、-118、-120、-124、-129、-133、-139、-140和-142中非常偏爱;且K108Q在0.2ppm的最低剂量重度掺入具有最高活性的克隆中,但是这些克隆表现出稍泄漏的背景(例如,L4-98、-106、-113、-126、-130和-141)。来自具有K108Q 的克隆L4-18 的结果显示出L55M的另一个可能令人感兴趣的突变。用 0.2 ppm Es将该克隆诱导至高水平,但是没有证实有关的高背景活性(对于含有K108Q的克隆经常观察到)。L55M突变可能具有增加的阻遏物活性。令人感兴趣的是,除了L55M以外的这些变化都不是设计的多样性——全部源自文库装配过程中核苷酸的错误掺入,且这些变化中的很少数在未选择的克隆群体中被代表。
J.第三轮文库设计和筛选
文库L6: 增强的氯磺隆应答的重排
由于克隆L2-14和L2-18具有来自文库L2的最好氯磺隆活性特性,将它们的氨基酸多样性用作下一轮重排的基础。除了由这些主链序列提供的多样性以外,还包括基于3D模型预测认为会增强氯磺隆的包装的额外残基变化。新的靶向的氨基酸位置是67、109、112和173 (参见,表14)。经证实,对于获得增加的SU应答性而言,在位置108处的Gln (Q)和在位置170处的Val (V) 的置换可能是文库L4中的重要变化,所以在这里也被改变。在表14中显示了多样性选择的总结。在表15中显示了为产生文库6而设计和使用的寡核苷酸。
装配、挽救文库L6,连接进pVER7314,转化进大肠杆菌KM3,并象以前一样涂布在LB羧苄西林/卡那霉素上,对照培养基仅含有羧苄西林。然后将文库平板挑入42个384-孔微孔滴定板(~16,000克隆),每个孔含有60 μl LB羧苄西林(Cb)培养基。在37℃培养过夜后,将培养物影印在M9测定平板上,所述平板含有0诱导物、0.2 ppm和2.0 ppm 氯磺隆作为实验诱导物。在30℃培养~48小时后,将通过增加的蓝菌落颜色测得的对氯磺隆处理做出应答的假定命中重新排列在6个96-孔微孔滴定板中,并用于影印一个新的M9测定平板集合,以确认上述结果。对于氯磺隆的相对诱导的更详细的分析,在30℃培养的不同时间点以后,拍摄平板的数字照片,并使用数字图像分析免费软件程序ImageJ (Rasband, US National Institutes of Health, Bethesda, MD, USA, rsb.info.nih.gov/ij/, 1997-2007),测量菌落颜色强度。使用这些结果,可以按照背景活性(无诱导物)、具有低或高水平诱导物施加的活化(具有诱导物的蓝色)和倍数活化(活化除以背景),以多种形式排序克隆。使用0.2 μg/ml 氯磺隆作为诱导物的活化研究(对于顶部克隆集合)显示出活化至大约3倍的提高,同时得到更低的未诱导的表达水平 (表12)。除了该分析以外,得到了大多数克隆(490个克隆)的DNA序列信息,并将推论的多肽彼此比对,以及与它们的对应活性信息相比对。从该分析,衍生出序列-活性关系(表12)。以更大的粗体类型,指示提高的活性所偏倚的残基。简而言之,在位置100处的C和在位置108和109处的Q与活化强烈相关,而在位置138处的R、在位置170处的L、和在位置173处的A或G在具有最低背景活性的克隆中是高度优选的。尽管有些位置是强烈偏倚的,即,在选择的群体中更频繁地观察到,在整个命中群体中观察到导入的多样性的整体性。该信息有助于其它文库的设计,以提高对氯磺隆的应答性。
表14
表15
K.     文库L7:增强的胺苯磺隆应答的重排
代表文库L7的氨基酸残基多样性的亲本的选择是基于文库L4 分析的结论——即突变K108Q、C138G和L170V的掺入。还选择克隆,以带入在L4中以低很多的频率发生、但是可能已经有助于活性的其它变化。这些残基是L55M、N129H、V137A和F140Y。除了家族多样性以外,将其它残基修饰导入在氨基酸位置67、109、112、117、131和173(基于结构建模)。该信息总结在表14中,显示了L7多样性总结。在表16中还显示了序列比对,进行L7命中的顶部10个限于命中和野生型TetR之间的差异。使用在含有 0、0.02或0.2 ppm 胺苯磺隆的M9测定平板上的菌落颜色图像分析(ImageJ 软件),测定活性。在表16的底部总结了从超过300个克隆衍生出的整个数据集的序列-活性关系分析,以更大的粗体类型,显示强烈偏倚的位置。尽管有些位置是强烈偏倚的,即,在选择的群体中更频繁地观察到,例如,在位置55处的M,在整个命中群体中观察到导入的多样性的整体性。
表16
使用下面表17所示的寡核苷酸集合,象对于文库L1一样构建L7文库。
表17
在将文库转化进大肠杆菌KM3中并涂布在LB+Cb+Km上以后,将得到的菌落重新排列进52个384-孔微孔滴定板 (~20,000 菌落)中,随后用于复制涂布到M9试验培养基上,所述培养基含有0 μg/ml、0.02 μg/ml或0.2 μg/ml 胺苯磺隆。在30℃温育48小时后,观察平板,并鉴别对 0.02 μg/ml 诱导物做出应答的326个命中,并重新排列成96-孔形式。在30℃温育15、24、48和120小时后,拍摄平板的数字图像,并将相对菌落颜色信息转化成数字数据。平行地进行DNA序列分析,合并2个数据集,用于计算序列-活性关系。在表16中显示了顶部10个克隆的序列数据以及序列-活性关系的总结。序列-活性关系研究的结果揭示了影响推定的胺苯磺隆阻遏物(EsR’s)的活化和背景活性的偏爱(preference)。例如,来自该文库的一个重要发现是,修饰L55M极大地降低了背景活性,因而增强了倍数活化水平。从文库L4和L6可以看出,K108Q和野生型Q109是活化所优选的。也存在向与活化有关的L170V的高度偏倚。这不同于在文库L6中看到的L170A或L170G偏倚,因为那些修饰与降低文库L6中的背景活性具有强烈关联。最后,对活化具有更低显著性的影响,但是尽管如此,优选F67Y。
L.      顶部L7命中在液体培养物中的诱导性质
基于重新排列的命中的表现,进行第二次重新排列,并测试克隆以及野生型TetR对照在液体培养物中的β-半乳糖苷酶活性,并选择第2轮命中,以进一步分析它们的表现和重排进展。将来自L7文库的顶部命中重新排列,并以 96-孔培养形式测试0.02和0.2 ug/ml 诱导物的相对诱导或没有诱导物的背景活性(图5)。将培养物培养过夜,然后继代培养进含有适当处理的新鲜培养基中。在培养6小时后,处理细胞,用于酶测定。对于诱导的活性的测定,使用5 μl穿孔的细胞混合物,对于背景活性,使用25 μl细胞,使得可以在相同时帧中测量所有处理的可检测的活性。为了使它们进入图的显示范围,将背景活性值乘以10。在每个样品下面的数字表示最终的重新排列孔ID (垂直书写)和最初的重新排列孔ID (水平书写)。图的最后部分含有对照。显示了第2轮命中L4-89和L4-120以及野生型TetR。最终的样品显示了包含野生型TetR的对照,其含有0.4 μM atc作为同源诱导物,用于对比。结果表明,10-15个顶部命中具有诱导的活性,其接近用0.4 μM atc诱导的野生型TetR的活性。另外,许多命中具有几乎象野生型TetR一样低的背景活性。一些最佳命中具有0.2 ppm 诱导物(0.5 μM)的诱导比,其接近野生型TetR的70-80% (~1200-倍)。令人感兴趣的是,在0.02 ppm (50nM)的低诱导物浓度表现最好的命中也倾向于具有更高的背景活性,表明它们更低紧密性地结合tet操纵基因,且更容易地从瞬时诱导物结合中释放出来。
第二轮和第三轮命中之间的诱导活性对比是显著的,表现出大于200-倍提高。考虑到该提高,单独的额外轮的重排和筛选可能产生这样的磺酰脲阻遏物(SuR),其对胺苯磺隆的敏感度几乎象野生型TetR对四环素一样。
总结
图9提供了从筛选试验得到的有活性的SuR中导入的多样性和观察到的氨基酸的累积总结。尽管有些位置是强烈偏倚的,即,在选择的群体中更频繁地观察到,如由更大的粗体类型所指示的,在整个命中群体中观察到导入的多样性的整体性。
M. 通过体外诱变的新颖的多样性
将第3轮命中L7-A11的残基A64、M86、C100、G104、F105、Q108、A113、S116、M134、Q135、I139、Y140、L147、L151、V170、L174和K177各自诱变成所有可能的20种氨基酸,以产生一组340个克隆。将每个克隆复制涂布到含有0、5、20和200 ppb 胺苯磺隆的M9试验培养基上。为了评估每个突变体的相对活性,在37℃培养18小时后,对含有配体的平板照相。为了测定阻遏物克隆的泄漏程度,在37℃培养24小时、然后在 25℃培养48小时后,对没有添加配体的平板照相。通过使用 ImageJ 软件扫描每个菌落的数字照片中的蓝色,进行定量测量。
这些数据揭示,在位置L60、A64、N82、M86、A113、S116、M134、L174和K177处的选择置换表现出胺苯磺隆敏感性相对于亲本克隆L7-A11的增加。
N.    第5轮重排
进行了为提高的胺苯磺隆敏感性而设计的重排。将文库L13 (表18) 设计成掺入通过实施例1M中的体外诱变实验生成的新颖多样性,其对活性具有阳性或中性作用。另外,所述文库也掺入在列出的主链中的选择的半胱氨酸残基处的多样性 (表18)。预测的文库大小是124,000个成员。
表18
使用前面在该实施例中所述的方法,从在表19中列出的合成寡核苷酸装配文库。
表19
然后将装配的文库克隆进pVER7571中。该载体与载体pVER7314相同,例外是,具有突变的核糖体结合位点,以减少每个细胞产生的阻遏物的量。该修饰允许在标准的蓝/白遗传平板测定中,以及在基于液体的全细胞定量β-半乳糖苷酶测定中,更严格地评估阻遏物活性。在涂布文库后,将大约5,000个克隆重新排列,并复制涂布到没有添加或添加了2 ppb 胺苯磺隆+0.002%阿拉伯糖的M9测定平板上。选择对胺苯磺隆的应答最强烈、同时保持白色(没有诱导物)的菌落作为命中。发现命中之一L13-23比第3轮亲本L7-A11提高至约3倍,且在该对比中具有最好的阻遏物活性 (图11)。在表20中显示了第5轮命中相对于亲本分子L7-A11和野生型TetR的序列变化。
表20
实施例 2:   植物测定发展
A.     本氏烟草叶浸润测定:
在转基因植物中测试之前,需要植物原位瞬时测定系统来植物原位地快速地证实候选物SU-响应性的阻遏物的功能。因此,开发了基于土壤杆菌属的叶浸润测定,用于测量抑制和去抑制活性。采用的策略是,用报告物和效应物(阻遏物)土壤杆菌属菌株的混合物浸润叶子,使得在有效应物存在下,报告物活性降低~90%,然后在用诱导物处理后去抑制。
选择2种胺苯磺隆阻遏物EsR A11和EsR D01,用于与野生型TetR 对照一起测试对胺苯磺隆的剂量响应,这通过在本氏烟草叶子中的瞬时表达来实现 (图6)。为此目的,通过用3个不同的基于T-DNA的载体转化根癌农杆菌EHA105,衍生出3个实验菌株。构建了土壤杆菌属菌株,其携带含有35S::tetO-Renilla 萤光素酶报告物和dPCSV-tetR或-SuR效应物变体的二元载体。除了这些测试培养物以外,将现有的携带dMMV-GFP T-DNA的土壤杆菌属菌株加入测定混合物中,以监测用于取样目的的土壤杆菌属感染的进展。
为了测试该系统的化学开关活化,将含有10%35S::tetO-ReLuc 报告物Agro、10%dMMV-GFP Agro和80%dPCSV-野生型tetR Agro的测试土壤杆菌属培养物的混合物浸润进本氏烟草叶子中,并在生长室中共培养36小时。此时,切离浸润的叶子,并将叶柄放入水(阴性对照)或在图6指出的实验浓度的诱导物中,并共培养另外36小时。测定感染的叶子区域的Renilla 萤光素酶活性,并对比诱导物处理。结果表明,对于所有测试的阻遏物,无诱导物处理(水对照)对报告物活性的显著抑制(~90%),和在低至 0.02 ppm Es的诱导物浓度, EsR D01阻遏物的显著的、但是不完全的诱导。在0.2 ppm Es,两种EsR’s 被完全诱导,而TetR仅在2.0 ppm 脱水四环素(atc)被完全诱导 (图6)。
B.     使用N. tabacum BY-2 细胞培养的高处理量植物原位测定开发
除了叶测定以外,希望具有植物原位测定,以实现 SuR文库的最佳植物功能的高处理量筛选。我们设计了与叶测定类似的系统,但是使用96-孔形式的烟草BY-2 细胞培养物。用dMMV-HRA构建体转化BY-2 细胞培养物,使得所述培养物会耐受目标磺酰脲实验化合物的处理。得到细胞系生长,且完全耐受200 ppb 氯磺隆。
实施例 3:   操纵基因结合测定
为了证实磺酰脲配体直接地结合修饰的阻遏物分子并造成去抑制,进行了体外 tet操纵基因凝胶转移研究。
进行了 EsR变体的电泳凝胶迁移率变动测定(EMSA),以监测与tet操纵基因(tetO)序列的结合以及复合物对诱导物Es和Cs的应答。TetO由合成的 48碱基对的含有tetO的片段组成,所述片段从下述两个寡核苷酸的杂交产生:
寡核苷酸 tetO1 (SEQ ID NO: 1155):
和互补的寡核苷酸 tetO2 (SEQ ID NO: 1156):
tet操纵基因用粗体显示。
寡核苷酸和它的相同大小的不含有回文序列的互补物用作对照(SEQ ID NO: 1157):
和互补的寡核苷酸寡核苷酸 (SEQ ID NO: 1158):
在含有20mM Tris-HCl (pH8.0)和10mM EDTA的络合缓冲液中,将5 pmol TetO或对照DNA与指定量(图7)的胺苯磺隆阻遏蛋白(L7A11)或BSA对照(含有或没有诱导物)相混合。将混合物在室温温育0.5小时,然后装载上凝胶。在室温、38 V、在0.5 X TBE缓冲液中,在Novex 6%DNA阻滞凝胶(Invitrogen, EC6365BOX)上电泳反应物约2小时。通过溴化乙锭染色,检测DNA。DNA大小标志物由低DNA质量梯度 (InVitrogen 10068-013)组成。
结果如图7所示。这些结果直接地证实,修饰的阻遏物结合操纵基因DNA (泳道 1相对于泳道3-5),然后以诱导物-特异性的和剂量依赖性的方式从操纵基因序列释放出来。所述数据也指示 Es与Cs相比对操纵基因释放的诱导物偏好 (泳道 9相对于10)。与没有诱导物相比,通过atc不能检测到操纵基因释放的变化 (泳道 5相对于11)。
实施例 4:   结合和解离常数
使用Biacore? SPR技术 (Biacore, GE Healthcare, USA),进一步表征了选择SU阻遏物的操纵基因和配体结合、亲和力和解离动力学。所述技术是基于表面等离子体共振(SPR),即能实时检测未标记的相互作用物的光学现象。基于SPR的生物传感器可以用于测定活性浓度,以亲和力和动力学的方式筛选和表征。
从传感器图(sensorgram)的信息,可以确定相互作用的动力学(即,络合物形成(ka)和解离(kd)的速率)。如果随着样品在准备的传感器表面上穿过而发生结合,传感器图中的应答会增加。如果达到平衡,看到恒定的信号。用缓冲液替换样品会造成结合的分子解离和应答减少。通过把数据拟合至相互作用模型,Biacore评价软件产生ka和kd值。
从随着样品浓度而变化的在平衡时的结合水平(视作恒定信号),确定相互作用的亲和力。还从动力学测量,确定亲和力。对于简单的1:1相互作用,平衡常数KD是动态速率常数之比kd/ka
A.     阻遏物的操纵基因结合表征
B.     阻遏物的SU结合表征
实施例 5:   磺酰脲阻遏物配体-结合域融合
可以将来自本文提供的磺酰脲阻遏物的配体结合域融合至替代DNA结合域上,以便产生选择性地和特异性地结合其它DNA序列的其它磺酰脲阻遏物(例如,Wharton和Ptashne (1985) Nature 316:601-605)。已经公开了许多域交换实验,证实了该方案的宽度和柔性。通常,使用来自不同阻遏物系统的操纵基因结合域或特异性的氨基酸/操纵基因接触残基,但是也可以使用其它DNA结合域。例如,使用任意标准的分子生物学方法或其组合,包括限制酶消化和连接、PCR、合成寡核苷酸、诱变或重组克隆,可以构建编码TetR(D)/SuR 嵌合多肽的多核苷酸,所述嵌合多肽由来自TetR(D)的DNA结合域 (例如,氨基酸残基1–50)和SuR 残基的配体结合域(例如,来自TetR(B)的氨基酸残基51–208)组成。例如,通过PCR (Landt 等人 (1990) Gene 96:125–128; Schnappinger 等人 (1998) EMBO J 17:535-543),可以构建编码SuR(包括TetR(D)/SuR嵌合体)的多核苷酸,并克隆进合适的表达盒和载体中。可以置换任意其它TetOp结合域,以生成特异性地结合同源tet操纵基因序列的 SuR。
另外,可以使用来自变体TetR’s的突变型TetOc结合域,其对组成型操纵基因序列 (tetO-4C和tetO-6C)具有抑制物活性 (参见,例如,Helbl和Hillen (1998) J Mol Biol 276:313-318;和Helbl 等人 (1998) J Mol Biol 276:319-324)。此外,可以修饰编码这些DNA结合域的多核苷酸,以改变它们的操纵基因结合性质。例如,可以重排多核苷酸,以增强与野生型或修饰的tet操纵基因序列的结合强度或特异性,或选择用于特异性地结合新的操纵基因序列。
通过将 SuR阻遏物或SuR配体结合域融合到活化结构域上,可以制备其它变体。使用Tet阻遏物,已经开发了这样的系统。例如,通过阻遏物与转录反式激活域(诸如单纯疱疹病毒 VP16)的融合和tet阻遏物(tTA, Gossen和Bujard (1992) Proc Natl Acad Sci USA 89:5547-5551),一个系统将tet阻遏物转化成活化剂。阻遏物融合与最小启动子一起使用,所述最小启动子在没有四环素存在下通过tTA与tet操纵基因序列的结合而活化。四环素灭活反式活化剂,并抑制转录。
实施例 6: 在大豆中测试阻遏蛋白
任意转化方法、培养技术、大豆来源、和培养基和分子克隆技术可以与所述组合物和方法一起使用。
A  大豆 (Glycine max)的转化和再生
使用BIORAD Biolistic PDS1000/He仪器和质粒或片段DNA,通过基因枪轰击方法 (Klein 等人 Nature 327:70-73 (1987); 美国专利号4,945,050),生产转基因的大豆系。将下述的储备溶液和培养基用于大豆植物的转化和再生:
储备溶液:
硫酸盐100 X母液:  37.0 g MgSO4.7H2O, 1.69 g MnSO4.H2O, 0.86 g ZnSO4.7H2O, 0.0025 g CuSO4.5H2O
卤化物100 X母液:  30.0 g CaCl2.2H2O, 0.083 g KI, 0.0025 g CoCl2.6H2O
P、B、Mo 100X母液:  18.5 g KH2PO4, 0.62 g H3BO3, 0.025 g Na2MoO4.2H2O
Fe EDTA 100X母液:  3.724 g Na2EDTA, 2.784 g FeSO4.7H2O
2,4-D母液: 10 mg/mL 2,4-二氯苯氧基醋酸
B5维生素1000X母液:  100.0 g 肌醇, 1.0 g 烟酸, 1.0 g盐酸吡哆醇, 10 g 硫胺.HCL。
培养基(每升):
SB199固体培养基: 1包MS盐 (Gibco/ BRL, 目录号11117-066), 1 mL B5维生素 1000X母液, 30g 蔗糖, 4 ml 2, 4-D (40 mg/L 终浓度), pH 7.0, 2 g Gelrite
SB1固体培养基: 1包MS盐 (Gibco/ BRL, 目录号11117-066), 1 mL B5维生素 1000X母液, 31.5 g 葡萄糖, 2 mL 2, 4-D (20 mg/L 终浓度), pH 5.7, 8 g TC琼脂
SB196: 10 ml每种上述储备溶液1-4, 1 mL B5维生素母液, 0.463 g (NH4)2 SO4, 2.83 g KNO3, 1 mL 2,4 D母液, 1 g 天冬酰胺, 10 g 蔗糖, pH 5.7
SB71-4: Gamborg氏B5盐, 20 g 蔗糖, 5 g TC琼脂, pH 5.7。
SB103: 1 pk. Murashige & Skoog盐混合物, 1 mL B5维生素母液, 750 mg MgCl2 六水合物, 60 g 麦芽糖, 2 g gelrite, pH 5.7。
SB166:  添加了5 g/升的活性炭的SB103。
大豆胚发生悬浮培养开始:
每月开始大豆培养2次,每次开始之间间隔5-7天。在播种后45-55天,挑取来自可得到的大豆植物的含有未成熟种子的豆荚,从它们的壳中取出,放入灭菌的品红盒子中。通过在含有1滴乳白色肥皂的5%Clorox 溶液(即,95 ml高压灭菌的蒸馏水+ 5 mL Clorox和1滴肥皂,混合均匀)中摇动它们15 min,将大豆种子灭菌。使用2个1-升瓶子的无菌蒸馏水冲洗种子,并将小于3 mm的那些放在单个显微镜载玻片上。切割种子的小端,并将子叶压出种皮。将子叶转移至含有SB199培养基的平板(25-30个子叶/平板) 2 周,然后转移至SB1 2-4周。用纤维带缠绕平板。该时间以后,切出次生胚,并放入SB196液体培养基7天。
培养条件:
在旋转摇床上、在150 rpm、26 ℃,在60-85 μE/m2/s的光强度,以16:8 h白天/黑夜光周期,使用冷白荧光灯,在50 mL液体培养基SB196中维持大豆胚发生悬浮培养物(cv. Jack)。每7天至2周继代培养培养物,将大约35 mg组织接种进50 ml新鲜液体SB196 (优选的继代培养间隔是每7天)。
用于轰击的DNA的制备:
在基因枪轰击操作中,可能使用纯化的完整质粒DNA;或仅含有目标重组DNA表达盒的DNA片段。对于每17个轰击转化,制备85 μL含有1至90皮克(pg)质粒DNA(每个DNA质粒的每个碱基对)的悬浮液。如下将两种重组DNA质粒共沉淀到金颗粒上。将悬浮液中的DNA加入50 μL 10 - 60 mg/mL 0.6 μm金颗粒悬浮液中,然后与50 μL CaCl2 (2.5 M)和20 μL 精脒 (0.1 M)相混合。将混合物涡旋5秒,在微量离心机中旋转5秒,去除上清液。然后用150 μL 100%乙醇洗涤DNA包被的颗粒一次,涡旋,并沉淀,然后重新悬浮于85 μL 无水乙醇中。然后将5 μL DNA包被的金颗粒装载上每个大载体盘。
组织制备和DNA轰击:
将大约150至250 mg 2周龄悬浮培养物放入空的60 mm X 15 mm培养皿中,使用吸量管从组织取出残余的液体。将组织放置在离保留筛约3.5英寸,轰击每板组织一次。将膜破裂压力设定在650 psi,并将室抽真空至–28英寸Hg。轰击后,将来自每个平板的组织分入2个烧瓶中,放回液体培养基中,并如上所述培养。
转化的胚的选择和植物再生:
轰击后,分离来自每个轰击平板的组织,并放入2个烧瓶的SB196 液体培养维持培养基中(每板轰击的组织)。在轰击后7天,用添加了100ng/ml选择剂(选择培养基)的新鲜SB196培养维持培养基替换每个烧瓶中的液体培养基。使用磺酰脲(SU)化合物诸如2-氯-N-((4-甲氧基-6-甲基-1,3,5-三嗪-2-基)氨基羰基)-苯磺酰胺 (通用名: DPX-W4189和氯磺隆),可以选择转化的大豆细胞。 氯磺隆 (Cs)是DuPont 磺酰脲除草剂GLEAN?的活性成分。每2周替换含有SU的选择培养基,持续6-8周。6-8周选择阶段后,观察到从未转化的坏死的胚发生簇生长出绿色的转化组织岛。分离这些推定的转基因事件,并保持在含有100 ng/ml的Cs的SB196液体培养基中另外2-6周,每1-2周更换培养基,以产生新的、无性繁殖的、转化的胚发生悬浮培养物。胚与Cs接触共约8-12周。继代培养悬浮培养物,并维持为未成熟的胚簇,并还通过单个体细胞胚的成熟和萌芽,再生成整株植物。
在成熟培养基上4周(在SB166上1 周,然后在SB103上3周)后,体细胞胚变得适合萌芽。然后从成熟培养基取出它们,并在空的培养皿中干燥最多7天。然后将干燥的胚种植在SB71 4培养基中,使它们在其中在与上述相同的光和温度条件下萌芽。将萌芽的胚转移至盆栽培养基,并培养至成熟,用于种子生产。
B. 载体构建和测试
使用标准程序制备质粒,并根据在实施例 6A中所述的方法,使用限制内切核酸酶和琼脂糖凝胶纯化,从这些质粒分离DNA片段。每个DNA片段含有3个盒子。盒子1是报告物表达盒;盒子2是阻遏物表达盒;且盒子3是提供HRA基因的表达盒。在盒子2中测试的阻遏物如表21所述。合成包含阻遏物编码区的多核苷酸,以包含植物偏好的密码子。在所有情况下,盒子1含有驱动DsRed的表达的35S花椰菜花叶病毒启动子,其具有3个导入在TATA盒附近的tet操纵基因 (Gatz 等人 (1992) Plant J 2:397-404 (3XOpT 35S)),其后面是35S 花椰菜花叶病毒 3’终止子区域。在所有情况下,盒子3含有S-腺苷基甲硫氨酸合酶启动子,其后面是HRA形式的乙酰乳糖酶合酶(ALS)基因,其后面是大豆 ALS 3’ 终止子。HRA形式的ALS基因赋予对磺酰脲除草剂的抗性。EF1A1是在专利公开US20080313776中所述的大豆翻译延伸因子EF1 α的启动子。
表21
根据在实施例 6A中所述的方法,将DNA片段用于大豆转化。再生植物,并从嫩叶收获叶盘(~ 0.5 cm)。在含有0 ppm、0.5 ppm或5 ppm 胺苯磺隆的SB103液体培养基中温育叶盘2-5天。胺苯磺隆 (产品编号PS-2183)购自Chem Service (West Chester, PA),并溶解在10mM NaOH或10mM NH4OH中。在每天,在具有DsRed带通滤色片的解剖显微镜下检查叶盘。对DsRed的存在进行视觉评分。
在0时刻表达DsRed的植物评分为泄漏。在5天后不表达DsRed的植物评分为阴性的。在加入胺苯磺隆后表达DsRed的植物评分为可诱导的。在表22中显示了从表21所述的DNA衍生出的植物的结果。
表22
* 在这些情况下,总数不等于100%,因为从某些事件检查出多个植物,且在某些情况下,来自相同事件的不同植物表现不同。
这表明,通过诱导DsRed的表达,阻遏蛋白对胺苯磺隆做出应答。在温育3天后,从前4个片段衍生出的植物表现出DsRed的视觉证据。在温育2天后,从最后2个片段衍生出的植物表现出DsRed的视觉证据。对DsRed的存在进行视觉评分,但是这得到蛋白印迹分析的确认,其中使用来自Abcam (Cambridge, MA)的兔多克隆抗体 (ab41336)选择转化体。
如上所述,从转化体的选择收获叶冲片(Leaf punch),并在含有0、5、50、250和500 ppb 胺苯磺隆的SB103培养基中温育。在所有胺苯磺隆浓度,在温育3天后,叶子表现出DsRed的视觉证据。在最低浓度(5 ppb),DsRed的存在限于在叶盘外缘附近的“晕圈”。
如实施例 6A所述,使植物成熟。由于大豆是自授粉的,预期源自这些植物的T1 种子会分离1野生型: 2半合子: 1 纯合子(如果在转化过程中仅产生一个转基因基因座)。种植来自5个不同事件的16个种子,并允许萌芽。从幼苗收集叶冲片,并在含有0和5 ppm 胺苯磺隆的SB103培养基中温育。对叶盘评分DsRed表达,0和3天和结果如表23所示。
表23.
实施例 7:在玉米中测试阻遏蛋白
为了在植物中评价SU阻遏物,构建了RFP 报告物构建体,并使用下面的T-DNA构型,通过土壤杆菌属转化进玉米细胞中:
RB-35S/TripleOp/Pro::RFP-Ubi Pro::EsR-HRA盒-PAT盒-LB。
使用标准的分子生物学和克隆技术,构建T-DNA载体,其具有包含选择的第3轮的SU阻遏物(EsRs)的上述构型。合成包含阻遏物编码区的多核苷酸,以包含植物偏好的密码子。构建体总结如下:
报告物构建体T-DNA含有驱动Red荧光蛋白基因的表达的35S启动子(2个tet操纵基因侧接TATA盒,1个在转录起始位点附近的下游(如Gatz 等人 (1992) Plant Cell 2:397-404所述))、泛素驱动的SU阻遏物(EsR)、含有玉米 HRA基因的表达盒(用于SU 抗性)和moPAT表达盒(用于选择)。
使用标准方法和培养基,转化未成熟的胚。简而言之,从玉米分离未成熟的胚,并接触土壤杆菌属悬浮液,以将含有磺酰脲表达盒的T-DNA转移至至少一个未成熟的胚的至少一个细胞。将未成熟的胚浸入土壤杆菌属悬浮液中,开始接种,并培养7天。然后将胚转移至含有羧苄西林的培养基,以杀死任意残余的土壤杆菌属。接着,在含有羧苄西林和双丙氨磷(一种选择剂)的培养基上培养接种的胚,并回收生长的转化的愈伤组织。然后在固体培养基上将愈伤组织再生成小植物,再转移至土壤,以生成成熟的植物。将来自每个构建体的大约10个单个拷贝事件送至温室中。
为了评价去阻遏,将愈伤组织转移至含有和不含有胺苯磺隆和氯磺隆的培养基,并在显微镜下观察RFP荧光(参见图10A)。大多数事件被去阻遏,在测试的第3轮阻遏物之间没有明显差异。为了在植物中评价去阻遏,在有胺苯磺隆存在下,使单个拷贝植物的种子萌芽,并观察荧光,和照相(参见图10B)。作为阳性对照,将含有与PHP37707-10相同的表达盒构型、但是用UBI::TetR代替UBI::EsR的载体转化进玉米未成熟的胚中,并在多西环素上测试诱导。当在有1 mg/l多西环素存在下生长时,转基因的愈伤组织和含有TetR表达盒的植物被诱导超过类似的5-6天阶段。
冠词“一个”和“一种”表示一个或超过一个该冠词的语法对象。作为实例,“一个元件”是指一个或更多个元件。在本说明书中提及的所有书籍、期刊、专利公开和授权都指示本领域技术人员的水平。所有出版物和专利申请通过引用并入本文中,其程度如同特别地且单个地指示各个出版物或专利申请通过引用并入本文中。尽管为了清楚理解的目的,通过图解和实施例已经对前述发明进行了一些细节描述,但某些改变和变化可在所附权利要求书的范围内得到实现。这些实施例和描述是说明性的,不应解读为限制所附权利要求的范围。

Claims (24)

1.一种分离的多肽,其包含胺苯磺隆-响应性的阻遏物,所述阻遏物特异性地结合包含操纵基因序列的多核苷酸,其中所述结合受到胺苯磺隆的调节,其中所述多肽选自:SEQ ID NO:1232-1233和1240-1243。
2.一种分离的多核苷酸,其编码如权利要求1所述的多肽。
3.权利要求2的分离的多核苷酸,其中所述多核苷酸选自:SEQ ID NO: 1238-1239和1244-1247。
4.一种非人宿主细胞,其包含稳定地整合进它的基因组中的如权利要求3所述的分离的多核苷酸。
5.如权利要求4所述的宿主细胞,其中所述多核苷酸可操作地连接到在宿主细胞中起作用的启动子上。
6.如权利要求4或5所述的宿主细胞,其中所述宿主细胞是原核细胞。
7.如权利要求6所述的宿主细胞,其中所述原核细胞是细菌。
8.如权利要求7所述的宿主细胞,其中所述细菌是大肠杆菌或土壤杆菌属。
9.如权利要求4或5所述的宿主细胞,其中所述宿主细胞是真核细胞。
10.如权利要求9所述的宿主细胞,其中所述真核细胞是植物细胞。
11.如权利要求10所述的宿主细胞,其中所述植物细胞来自大豆、稻、玉米或烟草。
12.如权利要求11所述的宿主细胞,其中所述宿主细胞是在植物中。
13.一种调节目标多核苷酸在宿主细胞中的转录的方法,所述方法包括:
(a) 提供宿主细胞,所述宿主细胞包含可操作地连接到启动子上的目标多核苷酸,所述启动子包含至少一个操纵基因序列;
(b) 提供权利要求1所述的多肽,其中所述多肽特异性地结合操纵基因序列;和,
(c) 提供胺苯磺隆,其中所述胺苯磺隆结合所述多肽,形成复合物,所述复合物修饰所述多肽与操纵基因的结合性质。
14.如权利要求13所述的方法,其中在有胺苯磺隆存在下,所述多肽从操纵基因序列特异性地释放出来。
15.如权利要求13或14所述的方法,其中所述宿主细胞是原核细胞。
16.如权利要求15所述的方法,其中所述原核细胞是细菌。
17.如权利要求16所述的方法,其中所述细菌是大肠杆菌。
18.如权利要求13或14所述的方法,其中所述宿主细胞是真核细胞。
19.如权利要求18所述的方法,其中所述真核细胞是植物细胞。
20.如权利要求19所述的方法,其中所述植物细胞是来自大豆、稻、玉米或烟草。
21.如权利要求13或14所述的方法,其中所述宿主细胞是胺苯磺隆耐受细胞。
22.如权利要求13或14所述的方法,其中提供所述多肽包括,使所述细胞接触包含启动子的表达盒,所述启动子在所述细胞中有功能,且可操作地连接到编码所述多肽的多核苷酸上。
23.如权利要求22所述的方法,其中所述多核苷酸选自:SEQ ID NO: 1238-1239和1244-1247。
24.如权利要求13或14所述的方法,其中在0.02 μg/ml至20 μg/ml的浓度提供胺苯磺隆。
CN200980152630.8A 2008-10-28 2009-10-22 磺酰脲-响应性的阻遏蛋白 Expired - Fee Related CN102264758B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10891708P 2008-10-28 2008-10-28
US61/108,917 2008-10-28
US61/108917 2008-10-28
PCT/US2009/061661 WO2010062518A1 (en) 2008-10-28 2009-10-22 Sulfonylurea-responsive repressor proteins

Publications (2)

Publication Number Publication Date
CN102264758A CN102264758A (zh) 2011-11-30
CN102264758B true CN102264758B (zh) 2015-04-22

Family

ID=42026787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980152630.8A Expired - Fee Related CN102264758B (zh) 2008-10-28 2009-10-22 磺酰脲-响应性的阻遏蛋白

Country Status (9)

Country Link
US (7) US8993315B2 (zh)
EP (1) EP2364322A1 (zh)
CN (1) CN102264758B (zh)
CA (1) CA2740147A1 (zh)
MX (1) MX2011003766A (zh)
RU (1) RU2532854C2 (zh)
UA (2) UA106458C2 (zh)
WO (1) WO2010062518A1 (zh)
ZA (1) ZA201102495B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA106458C2 (uk) 2008-10-28 2014-08-26 Піонер Хай-Бред Інтернешенл, Інк. Чутливий до сульфонілсечовини репресорний білок
US20110287936A1 (en) * 2010-04-23 2011-11-24 E.I. Dupont De Nemours And Company Gene switch compositions and methods of use
US20140173781A1 (en) 2012-12-13 2014-06-19 Pioneer Hi-Bred International, Inc. Methods and compositions for producing and selecting transgenic wheat plants
BR112015022737A2 (pt) * 2013-03-11 2018-04-24 Pioneer Hi-Bred International, Inc construto de polinucleotídeo recombinante, célula vegetal, planta, semente, método para regular expressão
CA2905399A1 (en) * 2013-03-11 2014-10-09 Pioneer Hi-Bred International, Inc. Methods and compositions employing a sulfonylurea-dependent stabilization domain
EP3036334A1 (en) 2013-08-22 2016-06-29 E. I. du Pont de Nemours and Company A soybean u6 polymerase iii promoter and methods of use
CA2996329A1 (en) 2015-10-20 2017-04-27 Pioneer Hi-Bred International, Inc. Restoring function to a non-functional gene product via guided cas systems and methods of use
WO2017083092A1 (en) * 2015-11-10 2017-05-18 Dow Agrosciences Llc Methods and systems for predicting the risk of transgene silencing
US20190195864A1 (en) * 2016-08-15 2019-06-27 Enevolv, Inc. Cell-free sensor systems
CA3087861A1 (en) 2018-03-02 2019-09-06 Pioneer Hi-Bred International, Inc. Plant health assay
WO2020005933A1 (en) 2018-06-28 2020-01-02 Pioneer Hi-Bred International, Inc. Methods for selecting transformed plants
JP2022512817A (ja) 2018-10-31 2022-02-07 パイオニア ハイ-ブレッド インターナショナル, インコーポレイテッド オクロバクテリウム(Ochrobactrum)媒介植物形質転換のための組成物及び方法
CN113412333A (zh) 2019-03-11 2021-09-17 先锋国际良种公司 用于克隆植物生产的方法
CA3127173A1 (en) 2019-03-28 2020-10-01 Pioneer Hi-Bred International, Inc. Modified agrobacterium strains and use thereof for plant transformation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020811A2 (en) * 2000-09-09 2002-03-14 Basf Plant Science Gmbh Modified tet-inducible system for regulation of gene expression in plants

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US564168A (en) * 1896-07-14 George armes tower
US4476227A (en) * 1982-10-06 1984-10-09 Smithkline Beckman Corporation Cosmid cloning vectors
US5605011A (en) * 1986-08-26 1997-02-25 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
DE4100594A1 (de) 1991-01-08 1992-07-09 Inst Genbiologische Forschung Neue plasmide zur zeitlichen und oertlichen kontrollierten expression eines heterologen produktes in pflanzen
AU683227B2 (en) * 1992-08-26 1997-11-06 Bioscience 2002 Llc Tetracycline repressor-mediated binary regulation system for control of gene expression in transgenic animals
EP0705334A1 (en) 1993-06-14 1996-04-10 Basf Aktiengesellschaft Tight control of gene expression in eucaryotic cells by tetracycline-responsive promoters
US5912411A (en) 1993-06-14 1999-06-15 University Of Heidelberg Mice transgenic for a tetracycline-inducible transcriptional activator
US5464758A (en) 1993-06-14 1995-11-07 Gossen; Manfred Tight control of gene expression in eucaryotic cells by tetracycline-responsive promoters
US6004941A (en) 1993-06-14 1999-12-21 Basf Aktiengesellschaft Methods for regulating gene expression
US5814618A (en) 1993-06-14 1998-09-29 Basf Aktiengesellschaft Methods for regulating gene expression
US5866755A (en) 1993-06-14 1999-02-02 Basf Aktiengellschaft Animals transgenic for a tetracycline-regulated transcriptional inhibitor
US5789156A (en) 1993-06-14 1998-08-04 Basf Ag Tetracycline-regulated transcriptional inhibitors
US5654168A (en) 1994-07-01 1997-08-05 Basf Aktiengesellschaft Tetracycline-inducible transcriptional activator and tetracycline-regulated transcription units
US5888981A (en) 1993-06-14 1999-03-30 Basf Aktiengesellschaft Methods for regulating gene expression
US5859310A (en) 1993-06-14 1999-01-12 Basf Aktiengesellschaft Mice transgenic for a tetracycline-controlled transcriptional activator
US5589362A (en) 1993-06-14 1996-12-31 Basf Aktiengesellschaft Tetracycline regulated transcriptional modulators with altered DNA binding specificities
US5723765A (en) 1994-08-01 1998-03-03 Delta And Pine Land Co. Control of plant gene expression
EG23907A (en) 1994-08-01 2007-12-30 Delta & Pine Land Co Control of plant gene expression
US5851796A (en) 1995-06-07 1998-12-22 Yale University Autoregulatory tetracycline-regulated system for inducible gene expression in eucaryotes
US6087166A (en) 1997-07-03 2000-07-11 Basf Aktiengesellschaft Transcriptional activators with graded transactivation potential
AU1467399A (en) 1997-11-20 1999-06-15 William Marsh Rice University Lactose repressor proteins with altered ligand responsivity
EP1200607B1 (en) 1999-06-07 2010-02-24 TET Systems Holding GmbH & Co. KG Tet repressor-based transcriptional regulatory proteins
AU2002226400B2 (en) * 2000-12-07 2006-11-02 Centelion S.A.S. Sequences upstream of the carp gene, vectors containing them and uses thereof
GB0123401D0 (en) 2001-09-28 2001-11-21 Novartis Forschungsstiftung Methods of inducing gene expression
US20030186281A1 (en) 2001-12-21 2003-10-02 Wolfgang Hillen Modified tetracycline repressor protein compositions and methods of use
CN1385527A (zh) 2002-02-08 2002-12-18 复旦大学 一种受化学除草剂诱导的启动子及其应用
WO2004020645A2 (en) 2002-08-28 2004-03-11 Universität Heidelberg Chromosomal loci for the stringent control of gene activities via transcription activation systems
US20040148649A1 (en) 2002-10-03 2004-07-29 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Agriculture And Foo Repressor-mediated selection strategies
US20040133944A1 (en) 2003-01-08 2004-07-08 Delta And Pine Land Company Seed oil suppression to enhance yield of commercially important macromolecules
GB2404382B (en) 2003-07-28 2008-01-30 Oxitec Ltd Pest control
WO2005070088A2 (en) 2004-01-15 2005-08-04 University Of Georgia Research Foundation, Inc. Chimeric sequences for tissue-specific gene expression in plants
US7674621B2 (en) * 2004-05-21 2010-03-09 The United States Of America As Represented By The Department Of Health And Human Services Plasmids and phages for homologous recombination and methods of use
WO2005123923A2 (en) 2004-06-17 2005-12-29 Wolfgang Hillen Inducer specific tetracycline repressor proteins and methods of use thereof
WO2006124502A2 (en) 2005-05-12 2006-11-23 Delta And Pine Land Company An inducible genetic cascade for triggering protein expression in subsequent generations of plants
JP2009543544A (ja) 2006-05-15 2009-12-10 パラテック ファーマシューティカルズ インコーポレイテッド 置換されたテトラサイクリン化合物を用いて、遺伝子または遺伝子産物の発現を調節する方法
US8080647B2 (en) * 2006-11-22 2011-12-20 Pioneer Hi Bred International Inc Tetracycline repressor and uses thereof
UA106458C2 (uk) * 2008-10-28 2014-08-26 Піонер Хай-Бред Інтернешенл, Інк. Чутливий до сульфонілсечовини репресорний білок

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020811A2 (en) * 2000-09-09 2002-03-14 Basf Plant Science Gmbh Modified tet-inducible system for regulation of gene expression in plants

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Sulfonylurea herbicides;Mark H. Russell等;《Pesticide Outlook》;20020829;第13卷(第4期);第166-173页 *
Teaching TetR to recognize a new inducer;Oliver Scholz等;《Journal of Molecular Biology》;20030530;第329卷(第2期);第217-227页 *

Also Published As

Publication number Publication date
US20110212838A1 (en) 2011-09-01
UA105017C2 (uk) 2014-04-10
US8993315B2 (en) 2015-03-31
ZA201102495B (en) 2012-06-27
CA2740147A1 (en) 2010-06-03
US20100105141A1 (en) 2010-04-29
US20120295354A1 (en) 2012-11-22
US9206432B2 (en) 2015-12-08
US20110294216A1 (en) 2011-12-01
RU2532854C2 (ru) 2014-11-10
US8257956B2 (en) 2012-09-04
US8580556B2 (en) 2013-11-12
US8877503B2 (en) 2014-11-04
RU2011121542A (ru) 2012-12-10
CN102264758A (zh) 2011-11-30
US20150184169A1 (en) 2015-07-02
UA106458C2 (uk) 2014-08-26
WO2010062518A1 (en) 2010-06-03
US20160060304A1 (en) 2016-03-03
MX2011003766A (es) 2011-04-27
US20140033371A1 (en) 2014-01-30
WO2010062518A4 (en) 2010-08-05
EP2364322A1 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
CN102264758B (zh) 磺酰脲-响应性的阻遏蛋白
US20140243203A1 (en) Gene switch compositions and methods of use
JP4469833B2 (ja) 構造に基づきデザインされた除草剤耐性生産物
Fang et al. Overexpressing exogenous 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) genes increases fecundity and auxin content of transgenic Arabidopsis plants
US8003777B2 (en) Use of untranslated region of osmotin gene to enhance transgene expression in plants
CN104011063A (zh) 增加大豆针对害虫的防御
US8080647B2 (en) Tetracycline repressor and uses thereof
CN108291236A (zh) 植物epsp合酶和使用方法
AU2016280684A1 (en) Identification of transcription factors that improve nitrogen and sulphur use efficiency in plants
WO2023111961A1 (en) Spatio-temporal promoters for polynucleotide expression in plants
US20160152995A1 (en) Methods and compositions to improve the spread of chemical signals in plants
US20160326540A1 (en) Methods and Compositions Employing a Sulfonylurea-Dependent Stabilization Domain
US20240344074A1 (en) Compositions and methods to enhance homology-directed repair and/or editing uniformity in plants
WO2024030824A2 (en) Plant regulatory sequences and expression cassettes
JP2005211001A (ja) 植物における導入遺伝子発現を向上させるためのオスモチン遺伝子の非翻訳領域の使用
Garcia Seedling stress tolerance requires the action of a unique family of plant-specific proteins
WO2017044372A1 (en) Chloroplast transit peptides and methods of their use

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150422

Termination date: 20161022

CF01 Termination of patent right due to non-payment of annual fee