CN102259831A - 三维纳米结构阵列 - Google Patents

三维纳米结构阵列 Download PDF

Info

Publication number
CN102259831A
CN102259831A CN2010101848556A CN201010184855A CN102259831A CN 102259831 A CN102259831 A CN 102259831A CN 2010101848556 A CN2010101848556 A CN 2010101848556A CN 201010184855 A CN201010184855 A CN 201010184855A CN 102259831 A CN102259831 A CN 102259831A
Authority
CN
China
Prior art keywords
nano
substrate
round platform
nanometers
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010101848556A
Other languages
English (en)
Inventor
朱振东
李群庆
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN2010101848556A priority Critical patent/CN102259831A/zh
Priority to US12/970,085 priority patent/US20110293884A1/en
Priority to JP2011052715A priority patent/JP5255081B2/ja
Publication of CN102259831A publication Critical patent/CN102259831A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00111Tips, pillars, i.e. raised structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24174Structurally defined web or sheet [e.g., overall dimension, etc.] including sheet or component perpendicular to plane of web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Micromachines (AREA)

Abstract

本发明涉及一种三维纳米结构阵列。所述三维纳米结构阵列包括一基底以及多个三维纳米结构以阵列形式设置于该基底至少一表面,其中,所述三维纳米结构为阶梯状结构。

Description

三维纳米结构阵列
技术领域
本发明涉及一种纳米材料,尤其涉及一种三维纳米结构阵列。
背景技术
纳米材料自问世以来,受到科学界追捧,成为材料科学现今最为活跃的研究领域。纳米材料根据不同尺和性质,在电子行业、生物医药、环保、光学等领域都有着开发的巨大潜能。在将纳米材料应用到各行各业的同时,对纳米材料本身的制备方法和性质的研究也是目前国际上非常重视和争相探索的方向。
纳米材料按维度分类,大致可分为四类:零维、一维、二维和三维纳米材料。如果一个纳米材料的尺度在X、Y和Z三维空间受限,则称为零维,如纳米粒子;如果材料只在两个空间方向上受限,则称为一维,如纳米线和纳米管;如果是在一个空间方向上受限,则称为二维纳米材料,如石墨烯;如果在X、Y和Z三个方向上都不受限,但材料的组成部分是纳米孔、纳米粒子或纳米线,就被称为三维纳米结构材料。
纳米材料作为新兴的材料,目前最大的问题是如何制备批量、均匀、纯净的这种微型物质,从而进一步研究这类材料的实际性能及其机理。从目前的研究情况来看,在诸多纳米材料中,一维的碳纳米管和二维的石墨烯材料的研究热度最高,而三维纳米结构的报道比较少,通常为纳米球、纳米柱等结构简单的三维纳米结构。
发明内容
有鉴于此,有必要提供一种结构复杂的三维纳米结构阵列。
一种三维纳米结构阵列,其包括一基底以及多个三维纳米结构以阵列形式设置于该基底至少一表面,其中,所述三维纳米结构为阶梯状结构。
与现有技术相比较,由于本发明的三维纳米结构阵列的三维纳米结构为阶梯状结构,相当于包括至少两层阵列状设置的三维纳米结构,使得该三维纳米结构阵列具有广阔的应用前景。
附图说明
图1为本发明第一实施例提供的三维纳米结构阵列的结构示意图。
图2为图1的三维纳米结构阵列沿II-II线的剖视图。
图3为本发明第一实施例提供的包括多个图案的三维纳米结构阵列的结构示意图。
图4为本发明第一实施例提供的三维纳米结构阵列的制备方法的工艺流流程图。
图5为在基底表面六角形密堆排布之单层纳米微球的扫描电镜照片。
图6为在基底表面等间距行列式排布之单层纳米微球的扫描电镜照片。
图7为本发明第一实施例制备的三维纳米结构阵列的扫描电镜照片。
图8为本发明第二实施例提供的三维纳米结构阵列的结构示意图。
图9为本发明第三实施例提供的三维纳米结构阵列的结构示意图。
图10为本发明第四实施例提供的三维纳米结构阵列的结构示意图。主要元件符号说明
三维纳米结构阵列    10,20,30,40
基底                100,200,300,400
三维纳米结构        102,202,302,402
第一圆台            104,204,304
第二圆台            106,206,306
掩膜层              108
应性刻蚀气氛        110
第三圆台            308
第一圆台状空间      404
第二圆台状空间      406
具体实施方式
以下将结合附图详细说明本发明实施例的三维纳米结构阵列及其制备方法。
请参阅图1和图2,本发明第一实施例提供的三维纳米结构阵列10包括一基底100以及多个设置于该基底100至少一表面的三维纳米结构102。所述三维纳米结构102为一阶梯状结构。
所述基底100可以为硅基基底或半导体基底。具体地,所述基底100的材料可以为硅、二氧化硅、氮化硅、石英、玻璃、氮化镓、砷化镓、蓝宝石、氧化铝或氧化镁等。优选地,所述基底100为一半导体层。所述基底100的大小、厚度和形状不限,可以根据实际需要选择。本实施例中,所述基底100为一表面形成有一氮化镓半导体层的蓝宝石基底,且该基底100被切成一边长为2厘米的方形。
所述三维纳米结构102设置在所述基底100表面的阶梯状凸起结构或阶梯状凹陷结构。所述阶梯状凸起结构为从所述基底100表面向外延伸出的阶梯状突起的实体。所述阶梯状凹陷结构为从基底100表面向基底100内凹陷形成的阶梯状凹陷的空间。所述阶梯状凸起结构或阶梯状凹陷结构可以为一多层台状结构,如多层三棱台、多层四棱台、多层六棱台或多层圆台等。优选地,所述阶梯状凸起结构或阶梯状凹陷结构为多层圆台结构。所谓阶梯状凹陷结构为多层圆台结构是指所述阶梯状凹陷的空间为多层圆台形状。所述阶梯状凸起结构或阶梯状凹陷结构的最大尺度为小于等于1000纳米,即其长度、宽度和高度均小于等于1000纳米。优选地,所述阶梯状凸起结构或阶梯状凹陷结构长度、宽度和高度范围为10纳米~500纳米。
本实施例中,所述三维纳米结构102设置于基底100的氮化镓半导体层表面。所述三维纳米结构102为一阶梯状凸起的双层圆台结构。具体地,所述三维纳米结构102包括一第一圆台104以及一设置于该第一圆台104表面的第二圆台106。所述第一圆台104靠近基底100设置。所述第一圆台104的侧面垂直于基底100的表面。所述第二圆台106的侧面垂直于第一圆台104的底面。所述第一圆台104与第二圆台106形成一阶梯状凸起结构,所述第二圆台106设置在所述第一圆台104的范围内。优选地,所述第一圆台104与第二圆台106同轴设置。所述第一圆台104与第二圆台106为一体结构,即所述第二圆台106为第一圆台104的顶面延伸出的圆台状结构。
所述第一圆台104的底面直径大于第二圆台106的底面直径。所述第一圆台104的底面直径为30纳米~1000纳米,高度为50纳米~1000纳米。优选地,所述第一圆台104的底面直径为50纳米~200纳米,高度为100纳米~500纳米。所述第二圆台106的底面直径为10纳米~500纳米,高度为20纳米~500纳米。优选地,所述第二圆台106的底面直径为20纳米~200纳米,高度为100纳米~300纳米。本实施例中,所述第一圆台104与第二圆台106同轴设置。所述第一圆台104的底面直径为380纳米,高度为105纳米。所述第二圆台106的底面直径为280纳米,高度为55纳米。
所述三维纳米结构102的材料或定义该三维纳米结构102的材料可以与基底100的材料相同以形成一一体结构,或与基底100的材料不同。所述多个三维纳米结构102在基底100表面以阵列形式设置。所述阵列形式设置指所述多个三维纳米结构102可以按照等间距行列式排布、同心圆环排布或六角形密堆排布等方式排列。而且,所述以阵列形式设置的个三维纳米结构102可形成一个单一图案或多个图案。所述单一图案可以为三角形、平行四边形、体形、菱形、方形、矩形或圆形等。如图3所示,所述多个图案可以包括多个相同的或不同的上述单一图案所形成的图案化的阵列。所述相邻的两个三维纳米结构102之间的距离相等,即相邻的两个第一圆台104之间的距离相等,为10纳米~1000纳米,优选为10纳米~30纳米。本实施例中,所述多个三维纳米结构102呈六角形密堆排布形成一单一正方形图案,且相邻两个三维纳米结构102之间的距离约为30纳米。
由于本发明的三维纳米结构阵列10的三维纳米结构102为阶梯状结构,相当于包括至少两层阵列状设置的三维纳米结构,使得该三维纳米结构阵列10具有广阔的应用前景。该三维纳米结构阵列10可以应用在纳米光学、纳米集成电路以及纳米集成光学等领域。
请参阅图4,本发明第一实施例提供一种三维纳米结构阵列10的制备方法,其包括以下步骤:步骤S10,提供一基底100;步骤S11,在该基底100表面形成掩膜层108;步骤S12,采用反应性刻蚀气氛110对基底100进行刻蚀同时对所述掩膜层108进行裁剪,形成阶梯状结构的三维纳米结构阵列10;步骤S13,去除掩膜层108。
步骤S10,提供一基底100。
所述基底100可以为硅基基底或半导体基底。具体地,所述基底100的材料可以为硅、二氧化硅、氮化硅、石英、玻璃、氮化镓、砷化镓、蓝宝石、氧化铝或氧化镁等。优选地,所述基底100为一半导体层。所述基底100的大小、厚度和形状不限,可以根据实际需要选择。
本实施例中,先通过金属有机化学气相沉积法(MOCVD)在一蓝宝石基底表面生长一氮化镓半导体层得到一基底100,再将该基底100切成边长为2厘米的方形。进一步,本实施例中,还可以对该氮化镓半导体层进行掺杂以形成N型或P型半导体层。
进一步,本实施例可以对该基底100进行亲水处理。
当所述基底100的材料为硅或二氧化硅时,首先,清洗基底100,清洗时采用超净间标准工艺清洗。然后,在温度为30℃~100℃,体积比为NH3 H2O∶H2O2∶H2O=x∶y∶z的溶液中温浴30分钟~60分钟,进行亲水处理,之后用去离子水冲洗2次~3次。其中,x的取值为0.2~2,y的取值为0.2~2,z的取值为1~20。最后,用氮气吹干。
本实施例中,所述基底100的材料为氮化镓,对该基底100进行亲水处理的方法包括以下步骤:首先,清洗基底100,清洗时采用超净间标准工艺清洗。然后,采用微波等离子体处理上述基底100。具体地,可将所述基底100放置于微波等离子体系统中,该微波等离子体系统的一感应功率源可产生氧等离子体、氯等离子体或氩等离子体。等离子体以较低的离子能量从产生区域扩散并漂移至所述基底100表面,进而改善基底100的亲水性。
当采用氧等离子体处理上述基底100时,氧等离子体系统的功率为10瓦~150瓦,氧等离子体的通入速率为10标况毫升每分(standard-state cubiccentimeter per minute,sccm)~20标况毫升每分,形成的气压为2帕~3帕,采用氧等离子体处理时间为1秒~30秒,优选的为5秒~10秒。通过上述方法,改善基底100的亲水性。
当采用氯等离子体处理上述基底100时,氯等离子体系统的功率是50瓦~100瓦,氯等离子体的通入速率为10标况毫升每分~30标况毫升每分,形成的气压为2帕~10帕,采用氯等离子体刻蚀时间为3秒~5秒。通过上述方法,改善基底100的亲水性。
当采用氩等离子体处理上述基底100时,氩等离子体系统的功率是50瓦~100瓦,氩等离子体的通入速率为2标况毫升每分~10标况毫升每分,形成的气压为2帕~10帕,采用氩等离子体刻蚀时间为10秒~30秒。通过上述方法,改善基底100的亲水性。
进一步,还可以对该基底100进行二次亲水处理,其方式如下:将亲水处理过后的所述基底100在2wt%~5wt%的十二烷基硫酸钠溶液(SDS)中浸泡2小时~24小时,以使基底100有利于后续的工序。即,在SDS中浸泡过后的基底100有利于后续纳米微球的铺展一形成长城有序排列的大面积纳米微球。
步骤S11,在该基底100表面形成掩膜层108。
所述在该基底100表面形成掩膜层108的方法可以为在基底100表面形成单层纳米微球或形成具有多个开孔的连续膜。可以理解,采用单层纳米微球作为掩膜层108,可以在纳米微球对应的位置制备得到阶梯状凸起结构,而采用具有多个开孔的连续膜作为掩膜层108,可以在开孔对应的位置制备得到阶梯状凹陷结构。所述具有多个开孔的连续膜可以通过纳米压印、模板沉积等方式制备。
本实施例中,在基底100表面形成单层纳米微球作为掩膜层108,其具体包括以下步骤:
步骤S111,制备一纳米微球的溶液。
本实施例中,在直径为15毫米的表面皿中依序加入150毫升的纯水、3微升~5微升的0.01wt%~10wt%的纳米微球、以及当量的0.1wt%~3wt%的SDS后形成混合物,将上述混合物静置分钟30~60分钟。待纳米微球充分分散于混合物中后,再加入1微升~3微升的4wt%的SDS,以调节纳米微球的表面张力,有利于形成单层纳米微球阵列。其中,纳米微球的直径可为60纳米~500纳米,具体地,纳米微球的直径可为100纳米、200纳米、300纳米或400纳米,上述直径偏差为3纳米~5纳米。优选的纳米微球的直径为200纳米或400纳米。所述纳米微球可以为聚合物纳米微球或硅纳米微球等。所述聚合物纳米微球的材料可以为聚苯乙烯(PS)或聚甲基丙烯酸甲酯(PMMA)。可以理解额,依实际需求表面皿也可采用直径为15毫米~38毫米的表面皿,所述表面皿中的混合物也可依实际需求而按比例调制。
步骤S112,在基底100表面形成单层纳米微球溶液,在基底100上形成的单层纳米微球以阵列形式设置。
所述在基底100表面形成单层纳米微球溶液的方法可以为提拉法或旋涂法。所述单层纳米微球可以呈六角密堆排布、等间距行列式排布或同心圆环排布等。
所述采用提拉法在基底100表面形成单层纳米微球溶液的方法包括以下步骤:首先,将经亲水处理后的所述基底100缓慢的倾斜的沿着表面皿的侧壁滑入表面皿的混合物中,所述基底100的倾斜角度为9°~15°。然后,将所述基底100由表面皿的混合物中缓慢的提取。其中,上述滑下和提起速度相当均为5毫米/小时~10毫米/小时的速度缓慢进行。该过程中,所述纳米微球的溶液中的纳米微球通过自组装形成呈六角密堆排布的单层纳米微球。所得到的多个三维纳米结构102的排列方式与纳米微球的排列方式有关。
本实施例中,采用旋涂法在基底100表面形成单层纳米微球溶液,其包括以下步骤:首先,在基底100上形成单层纳米微球前,将亲水处理过后的所述基底100在2wt%的十二烷基硫酸钠溶液中浸泡2小时~24小时,在十二烷基硫酸钠溶液中浸泡过的基底100的一个表面旋涂3微升~5微升的聚苯乙烯。其次,以旋涂转速为400转/分钟~500转/分钟的速度旋涂5秒~30秒。然后,以旋涂转速为800转/分钟~1000转/分钟的速度旋涂30秒~2分钟后。最后将旋涂转速提高至1400转/分钟~1500转/分钟,旋涂10秒~20秒,除去边缘多余的微球,在基底100上形成呈六角密堆排布的单层纳米微球。
步骤S113,将混合物中提取的分布有纳米微球的基底100进行干燥后即可得到单层纳米微球。
本实施例中,所述纳米微球的直径可为400纳米。请参阅图5,所述单层纳米微球中的纳米微球以能量最低的排布方式排布,即六角密堆排布。所述单层纳米微球排布最密集,占空比最大。所述单层纳米微球中任意三个相邻的纳米微球呈一等边三角形。请参阅图6,通过控制纳米微球溶液的表面张力,可以使单层纳米微球中的纳米微球呈等间距行列式排布。
进一步,在基底100表面形成单层纳米微球之后还可以包括一对基底100进行烘烤的步骤。所述烘烤的温度为50℃~100℃,烘烤的时间为1分钟~5分钟。
步骤S12,采用反应性刻蚀气氛110对基底100进行刻蚀同时对所述掩膜层108进行裁剪,形成阶梯状结构的三维纳米结构阵列10。
所述采用反应性刻蚀气氛110对基底100进行刻蚀的步骤在一微波等离子体系统中进行。所述微波等离子体系统为反应离子刻蚀(Reaction-Ion-Etching,RIE)模式。所述采用反应性刻蚀气氛110对基底100进行刻蚀的同时,可以对所述掩膜层108进行裁剪。当所述掩膜层108为单层纳米微球时,纳米微球的直径会在刻蚀的过程中缩小,当掩膜层108为具有多个开孔的连续膜时,所述开孔的直径会在刻蚀的过程中变大。由于反应性刻蚀气氛110对基底100进行刻蚀的同时,可以对所述掩膜层108进行裁剪,所以可以形成阶梯状结构的三维纳米结构102。
本实施例中,将形成有单层纳米微球的基底100放置于微波等离子体系统中,且该微波等离子体系统的一感应功率源产生反应性刻蚀气氛110。该反应性刻蚀气氛110以较低的离子能量从产生区域扩散并漂移至所述基底100的单层纳米微球表面,此时该单层纳米微球被所述反应性刻蚀气氛110刻蚀,形成更小直径的纳米微球,即单层纳米微球中的每一纳米微球被刻蚀削减为更小直径的纳米微球,进而增大邻纳米微球之间的间隙。与此同时,反应性刻蚀气氛110对基底100同时进行刻蚀。由于裁剪和刻蚀的步骤同时进行,所以邻纳米微球之间的间隙增大的同时,反应性刻蚀气氛110与基底100开始反应,并随着邻纳米微球之间的间隙增大,刻蚀的范围也增大,从而形成台阶状三维纳米结构102。
本实施例中,所述微波等离子体系统的工作气体包括氯气(Cl2)和氩气(Ar)。其中,氯气的通入速率为10标况毫升每分~60标况毫升每分,氩气的通入速率为4标况毫升每分~20标况毫升每分。所述工作气体形成的气压为2帕~10帕。所述等离子体系统的功率为40瓦~70瓦。所述采用反应性刻蚀气氛110刻蚀时间为1分钟~2.5分钟。优选地,所述微波等离子体系统的功率与微波等离子体系统的工作气体的气压的数值比小于20∶1。可以理解,本实施例中,通过控制采用反应性刻蚀气氛110刻蚀时间可以控制三维纳米结构102之间的间距,即相邻圆台侧面之间的最小距离。
进一步,所述反应性刻蚀气氛110中还可以加入四氟化硫(SF4)、三氯化硼(BCl3)或其混合气体等其它气体以调节刻蚀速率。所述四氟化硫(SF4)、三氯化硼(BCl3)或其混合气体的流量可以为20标况毫升每分~40标况毫升每分的。
步骤S13,去除纳米微球。
采用四氢呋喃(THF)、丙酮、丁酮、环己烷、正己烷、甲醇或无水乙醇等无毒或低毒环保容剂作为剥离剂,溶解纳米微球,可以去掉纳米微球,保留形成在基底100表面的三维纳米结构102。本实施例中,通过丁酮中超声清洗去除聚苯乙烯纳米微球。请参见图7为本发明第一实施例制备的三维纳米结构阵列的扫描电镜照片。
本发明通过掩膜层108和反应性刻蚀气氛110刻蚀相结合的方法可以制备阶梯状结构的三维纳米结构阵列10,且该方法工艺简单,成本低廉。
请参阅图8,本发明第二实施例提供的三维纳米结构阵列20包括一基底200以及多个设置于该基底200相对两表面的三维纳米结构202。所述三维纳米结构202包括一第一圆台204和设置于第一圆台204表面的第二圆台206。本发明第二实施例提供的三维纳米结构阵列20与第一实施例提供的三维纳米结构阵列10的结构基本相同,其区别为第二实施例的基底200相对的两表面均设置有多个三维纳米结构202。
请参阅图9,本发明第三实施例提供的三维纳米结构阵列30包括一基底300以及多个设置于该基底300一表面的三维纳米结构302。所述三维纳米结构302包括一第一圆台304,一设置于第一圆台304表面的第二圆台306以及一设置于第二圆台306表面的第三圆台308。本发明第三实施例提供的三维纳米结构阵列30与第一实施例提供的三维纳米结构阵列10的结构基本相同,其区别为第三实施例的三维纳米结构302为一三层圆台结构。
请参阅图10,本发明第四实施例提供的三维纳米结构阵列40包括一基底400以及多个设置于该基底400一表面的三维纳米结构402。本发明第四实施例提供的三维纳米结构阵列40与第一实施例提供的三维纳米结构阵列10的结构基本相同,其区别为第三实施例的三维纳米结构402为一阶梯状凹陷结构,即由基底400定义的凹陷空间。所述三维纳米结构402的形状为一双层圆台状空间,具体包括一第一圆台状空间404,以及一于第一圆台状空间404联通的第二圆台状空间406。所述第一圆台状空间404与第二圆台状空间406同轴设置。所述第一圆台状空间404与第二圆台状空间406同轴设置。所述第二圆台状空间406靠近基底400表面设置。所述第二圆台状空间406的直径大于第一圆台状空间404的直径。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (15)

1.一种三维纳米结构阵列,其包括一基底以及多个三维纳米结构以阵列形式设置于该基底至少一表面,其特征在于,所述三维纳米结构为阶梯状结构。
2.如权利要求1所述的三维纳米结构阵列,其特征在于,所述三维纳米结构为设置在所述基底表面的阶梯状凸起结构或阶梯状凹陷结构。
3.如权利要求2所述的三维纳米结构阵列,其特征在于,所述阶梯状凸起结构或阶梯状凹陷结构的尺度小于等于1000纳米。
4.如权利要求1所述的三维纳米结构阵列,其特征在于,所述三维纳米结构为一多层阶梯状圆台结构。
5.如权利要求4所述的三维纳米结构阵列,其特征在于,所述三维纳米结构包括一第一圆台以及一设置于该第一圆台表面的第二圆台。
6.如权利要求5所述的三维纳米结构阵列,其特征在于,所述第一圆台与第二圆台同轴设置且形成一体结构。
7.如权利要求5所述的三维纳米结构阵列,其特征在于,所述第一圆台靠近基底设置,所述第一圆台的底面直径大于第二圆台的底面直径,所述第一圆台的侧面垂直于基底的表面,所述第二圆台的侧面垂直于第一圆台的底面。
8.如权利要求5所述的三维纳米结构阵列,其特征在于,所述第一圆台的底面直径为50纳米~1000纳米,高度为100纳米~1000纳米;所述第二圆台的底面直径为10纳米~500纳米,高度为20纳米~500纳米。
9.如权利要求5所述的三维纳米结构阵列,其特征在于,所述三维纳米结构进一步包括一设置于第二圆台表面的第三圆台。
10.如权利要求1所述的三维纳米结构阵列,其特征在于,所述多个三维纳米结构按照等间距行列式排布、同心圆环排布或六角形密堆排布的方式设置在基底表面。
11.如权利要求1所述的三维纳米结构阵列,其特征在于,所述设置在基底表面的多个三维纳米结构形成一个单一图案或多个图案。
12.如权利要求1所述的三维纳米结构阵列,其特征在于,所述三维纳米结构与基底形成一体结构。
13.如权利要求1所述的三维纳米结构阵列,其特征在于,所述相邻的两个三维纳米结构之间的距离为10纳米~1000纳米。
14.如权利要求1所述的三维纳米结构阵列,其特征在于,所述基底具有相对的两表面,且相对的两表面均设置有多个三维纳米结构。
15.如权利要求1所述的三维纳米结构阵列,其特征在于,所述基底为一硅基基底或半导体基底。
CN2010101848556A 2010-05-27 2010-05-27 三维纳米结构阵列 Pending CN102259831A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010101848556A CN102259831A (zh) 2010-05-27 2010-05-27 三维纳米结构阵列
US12/970,085 US20110293884A1 (en) 2010-05-27 2010-12-16 Three-dimensional nano-structure array
JP2011052715A JP5255081B2 (ja) 2010-05-27 2011-03-10 三次元ナノ構造体アレイ及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101848556A CN102259831A (zh) 2010-05-27 2010-05-27 三维纳米结构阵列

Publications (1)

Publication Number Publication Date
CN102259831A true CN102259831A (zh) 2011-11-30

Family

ID=45006706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101848556A Pending CN102259831A (zh) 2010-05-27 2010-05-27 三维纳米结构阵列

Country Status (3)

Country Link
US (1) US20110293884A1 (zh)
JP (1) JP5255081B2 (zh)
CN (1) CN102259831A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226144A (zh) * 2015-11-16 2016-01-06 河北工业大学 具有双层微纳米阵列结构的led图形化衬底的制作方法
CN106025030A (zh) * 2016-08-08 2016-10-12 泉州市三星消防设备有限公司 一种具有双阶级图层的图形化衬底的制备方法
CN106229399A (zh) * 2016-08-16 2016-12-14 东晶电子金华有限公司 一种iii‑氮化物半导体发光器件图形化衬底及其制备方法
CN108011001A (zh) * 2017-12-18 2018-05-08 苏州亿沃光电科技有限公司 具有羽化表面的堆叠式图形化led衬底及led器件
CN108441151A (zh) * 2018-03-19 2018-08-24 深圳市华星光电技术有限公司 一种碳纳米管导电球、碳纳米管导电胶及液晶显示器
CN110998821A (zh) * 2019-09-09 2020-04-10 重庆康佳光电技术研究院有限公司 一种巨量转移装置及其方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20022394A1 (it) 2002-11-13 2004-05-14 Bracco Spa Uso di triiodotironina 3-solfato come farmaco ad attivita' tireomimetica e relative formulazioni farmaceutiche.
ITMI20110713A1 (it) 2011-04-29 2012-10-30 Bracco Imaging Spa Processo per la preparazione di un derivato solfatato di3,5-diiodo-o-[3-iodofenil]-l-tirosina
CN102169088B (zh) * 2010-12-31 2013-02-13 清华大学 单分子检测方法
WO2014152509A1 (en) 2013-03-15 2014-09-25 Solan, LLC Plasmonic device enhancements
JP6256220B2 (ja) * 2013-06-17 2018-01-10 王子ホールディングス株式会社 半導体発光素子用基板、半導体発光素子、半導体発光素子用基板の製造方法、および、半導体発光素子の製造方法
WO2020247184A1 (en) * 2019-06-07 2020-12-10 Applied Materials, Inc. Photoresist loading solutions for flat optics fabrication
WO2022082366A1 (zh) * 2020-10-19 2022-04-28 重庆康佳光电技术研究院有限公司 一种转移构件及其制备方法、转移头

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020094533A1 (en) * 2000-10-10 2002-07-18 Hess Robert A. Apparatus for assay, synthesis and storage, and methods of manufacture, use, and manipulation thereof
US6707518B1 (en) * 1999-07-12 2004-03-16 Coho Holdings, Llc Electro-optic device allowing wavelength tuning
US20060002656A1 (en) * 2004-05-25 2006-01-05 Cowan James J Surface relief structure
CN1791967A (zh) * 2003-04-25 2006-06-21 分子制模股份有限公司 使用压印平板印刷术形成有台阶的结构的方法
CN1872659A (zh) * 2006-06-01 2006-12-06 中山大学 三维半导体纳米结构阵列及其制备方法
CN101057132A (zh) * 2004-11-04 2007-10-17 Meso光子学有限公司 用于增强的拉曼光谱学的金属纳米孔光子晶体
CN101079383A (zh) * 2006-05-23 2007-11-28 冲电气工业株式会社 半导体器件的制造方法和制造装置
CN101281133A (zh) * 2008-05-12 2008-10-08 中国科学院合肥智能机械研究所 大面积微纳树状结构阵列的表面增强拉曼活性基底的制备方法
KR20090098935A (ko) * 2008-03-15 2009-09-18 조주희 발광 소자의 나노 사파이어 기판 및 이의 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4244542B2 (ja) * 2001-08-28 2009-03-25 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子及びその製造方法
KR100598155B1 (ko) * 2004-03-17 2006-07-07 (주)옵토웨이 무반사 처리된 고효율 발광 다이오드 소자
US7161188B2 (en) * 2004-06-28 2007-01-09 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting element, semiconductor light emitting device, and method for fabricating semiconductor light emitting element
SG140481A1 (en) * 2006-08-22 2008-03-28 Agency Science Tech & Res A method for fabricating micro and nano structures
US7965388B2 (en) * 2009-04-01 2011-06-21 Hewlett-Packard Development Company, L.P. Structure for surface enhanced raman spectroscopy

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707518B1 (en) * 1999-07-12 2004-03-16 Coho Holdings, Llc Electro-optic device allowing wavelength tuning
US20020094533A1 (en) * 2000-10-10 2002-07-18 Hess Robert A. Apparatus for assay, synthesis and storage, and methods of manufacture, use, and manipulation thereof
CN1791967A (zh) * 2003-04-25 2006-06-21 分子制模股份有限公司 使用压印平板印刷术形成有台阶的结构的方法
US20060002656A1 (en) * 2004-05-25 2006-01-05 Cowan James J Surface relief structure
CN101057132A (zh) * 2004-11-04 2007-10-17 Meso光子学有限公司 用于增强的拉曼光谱学的金属纳米孔光子晶体
US7483130B2 (en) * 2004-11-04 2009-01-27 D3 Technologies, Ltd. Metal nano-void photonic crystal for enhanced Raman spectroscopy
CN101079383A (zh) * 2006-05-23 2007-11-28 冲电气工业株式会社 半导体器件的制造方法和制造装置
CN1872659A (zh) * 2006-06-01 2006-12-06 中山大学 三维半导体纳米结构阵列及其制备方法
KR20090098935A (ko) * 2008-03-15 2009-09-18 조주희 발광 소자의 나노 사파이어 기판 및 이의 제조방법
CN101281133A (zh) * 2008-05-12 2008-10-08 中国科学院合肥智能机械研究所 大面积微纳树状结构阵列的表面增强拉曼活性基底的制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226144A (zh) * 2015-11-16 2016-01-06 河北工业大学 具有双层微纳米阵列结构的led图形化衬底的制作方法
CN105226144B (zh) * 2015-11-16 2017-12-26 河北工业大学 具有双层微纳米阵列结构的led图形化衬底的制作方法
CN106025030A (zh) * 2016-08-08 2016-10-12 泉州市三星消防设备有限公司 一种具有双阶级图层的图形化衬底的制备方法
CN106025030B (zh) * 2016-08-08 2018-10-23 泉州市三星消防设备有限公司 一种具有双阶级图层的图形化衬底的制备方法
CN106229399A (zh) * 2016-08-16 2016-12-14 东晶电子金华有限公司 一种iii‑氮化物半导体发光器件图形化衬底及其制备方法
CN108011001A (zh) * 2017-12-18 2018-05-08 苏州亿沃光电科技有限公司 具有羽化表面的堆叠式图形化led衬底及led器件
CN108441151A (zh) * 2018-03-19 2018-08-24 深圳市华星光电技术有限公司 一种碳纳米管导电球、碳纳米管导电胶及液晶显示器
CN108441151B (zh) * 2018-03-19 2021-04-27 Tcl华星光电技术有限公司 一种碳纳米管导电球、碳纳米管导电胶及液晶显示器
CN110998821A (zh) * 2019-09-09 2020-04-10 重庆康佳光电技术研究院有限公司 一种巨量转移装置及其方法
WO2021046684A1 (zh) * 2019-09-09 2021-03-18 重庆康佳光电技术研究院有限公司 一种巨量转移装置及其方法

Also Published As

Publication number Publication date
JP2011249765A (ja) 2011-12-08
US20110293884A1 (en) 2011-12-01
JP5255081B2 (ja) 2013-08-07

Similar Documents

Publication Publication Date Title
CN102259832A (zh) 三维纳米结构阵列的制备方法
CN102259831A (zh) 三维纳米结构阵列
US9522821B2 (en) Method of fabricating nano-scale structures and nano-scale structures fabricated using the method
CN103030106B (zh) 三维纳米结构阵列
CN108321079A (zh) 半导体结构及其形成方法
TWI780251B (zh) 半導體裝置結構及其製作方法
CN103030107B (zh) 三维纳米结构阵列的制备方法
CN108206131A (zh) 半导体结构以及半导体结构的形成方法
CN108574010A (zh) 半导体结构及其形成方法
TWI739812B (zh) 選擇性蝕刻奈米結構之方法
CN105742153A (zh) 形成级联纳米线的方法
CN100397587C (zh) 一种能够避免微沟槽现象的硅栅刻蚀工艺
CN102963862A (zh) 一种单晶硅纳米线网状阵列结构的制作方法
KR20200077646A (ko) 금속 촉매 화학 식각을 이용한 마이크로 및 나노 구조물 형성방법
CN103700622B (zh) 硅通孔的形成方法
CN109727858A (zh) 定向自组装模板转移方法
Yasukawa et al. Morphological control of periodic GaAs hole arrays by simple Au-mediated wet etching
CN105719961B (zh) 堆叠纳米线制造方法
US20160089723A1 (en) Method of fabricating nanostructures using macro pre-patterns
TWI449658B (zh) 三維奈米結構陣列之製備方法
KR101355930B1 (ko) 측벽 스페이서 기술과 촉매 금속 식각 방법을 이용한 수직 나노튜브 구조 제조 방법 및 이에 의하여 제조된 수직 나노튜브 구조
JP5824620B2 (ja) ノンプラズマドライエッチング装置
US8828520B2 (en) Micro-posts having improved uniformity and a method of manufacture thereof
TWI428273B (zh) 三維奈米結構陣列
Gebremichael et al. Pattern transfer optimization for the fabrication of arrays of silicon nanowires

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20111130