CN102239572B - 形成有多晶硅掺杂区的背面接触太阳能电池 - Google Patents

形成有多晶硅掺杂区的背面接触太阳能电池 Download PDF

Info

Publication number
CN102239572B
CN102239572B CN200980148588.2A CN200980148588A CN102239572B CN 102239572 B CN102239572 B CN 102239572B CN 200980148588 A CN200980148588 A CN 200980148588A CN 102239572 B CN102239572 B CN 102239572B
Authority
CN
China
Prior art keywords
doped region
polysilicon layer
solar cell
type doped
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980148588.2A
Other languages
English (en)
Other versions
CN102239572A (zh
Inventor
戴维·D·史密斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maikesheng Solar Energy Co ltd
Original Assignee
SunPower Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SunPower Corp filed Critical SunPower Corp
Publication of CN102239572A publication Critical patent/CN102239572A/zh
Application granted granted Critical
Publication of CN102239572B publication Critical patent/CN102239572B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1872Recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种太阳能电池包括在多晶硅层的邻接部分中的毗邻的P型掺杂区(120)和N型掺杂区(121)。可以在薄电介质层(103)上形成多晶硅层,电介质层(103)形成在太阳能电池衬底(101)(例如,硅晶片)的背面上。多晶硅层具有相对较大的平均晶粒尺寸,以降低或消除在P型掺杂区(120)和N型掺杂区(121)之间的空间电荷区中的复合,从而增大效率。

Description

形成有多晶硅掺杂区的背面接触太阳能电池
相关申请的交叉引用
本申请要求于2008年12月4日提交的美国临时申请No.61/119,955的优先权,通过引用将其全部内容合并于此。
技术领域
本发明一般来说涉及太阳能电池,更具体但并非排他地涉及太阳能电池的制造工艺和结构。
背景技术
太阳能电池是公知的将太阳辐射转换为电能的设备。可以使用半导体工艺技术在半导体晶片上制造太阳能电池。太阳能电池包括P型和N型掺杂区。照射到太阳能电池上的太阳辐射产生迁移到掺杂区的电子和空穴,从而产生掺杂区间的电压差。在背面接触太阳能电池中,掺杂区和耦接至掺杂区的叉指型金属接触指两者都在太阳能电池的背面。接触指允许外部电路耦接到太阳能电池并由太阳能电池供电。
效率是太阳能电池的一个重要特性,这是因为其与太阳能电池的发电能力直接相关。因此,通常期望用于增加太阳能电池的效率的技术。本发明通过提供用于制造新颖的太阳能电池结构的工艺来增大太阳能电池效率。
发明内容
一种太阳能电池,包括在多晶硅层的邻接部分中的毗邻的P型和N型掺杂区。可以在薄电介质层上形成多晶硅层,电介质层形成在太阳能电池衬底(例如,硅晶片)的背面上。多晶硅层具有相对较大的平均晶粒尺寸,以降低或消除在P型和N型掺杂区之间的空间电荷区中的复合(recombination),从而提高效率。
在阅读包括附图和权利要求书的本公开的全部内容之后,本发明的这些和其他特征对于本领域普通技术人员来说将是显而易见的。
附图说明
图1至图12示出了对根据本发明的一个实施例的太阳能电池的制造进行示例性说明的剖面图。
图13示意性地示出了根据本发明的另一个实施例的太阳能电池的截面图。
在不同附图中使用的相同参考标记表示相同或相似的部件。附图未按比例绘制。
具体实施方式
在本公开中,提供了许多特定细节(诸如材料的示例、工艺参数、工艺步骤和结构)来提供对于本发明的实施例的透彻理解。然而本领域普通技术人员应当认识到,不具有特性细节中的一个或多个也可以实现本发明。在另一些实例中,没有示出或说明已知的细节以避免使得本发明的方面模糊。
在衬底中具有P型和N型掺杂区的太阳能电池中,P型和N型掺杂区可以形成有分离或毗邻的周边。然而,对于多晶硅掺杂区来说并不是这样,这是因为由于多晶硅中的电荷载流子的寿命非常短,从而使得在多晶硅掺杂区接触的空间电荷区中的复合的几率非常高。即,接触的多晶硅掺杂区对于效率具有不利的影响。一种消除或减少这种损耗机理的方式是如2008年6月12日由发明人所提交的标题为“TrenchProcessandStructureforBacksideContactSolarCellswithPolysiliconDiffusionRegions”的美国临时申请No.61/060,921所描述的那样使用沟槽将多晶硅P型和N型掺杂区物理地分离。在本文中公开了另一种方式,其不需要在掺杂区之间形成沟槽。如下面将更加清晰描述的那样,也可以根据应用与沟槽相结合地使用本发明的实施例。
图1至图12示出了对根据本发明的一个实施例的太阳能电池的制造进行示例性说明的剖面图。图1至图12示出了晶片到太阳能电池的顺序加工。然而应当理解的是,根据实现,一些工艺步骤可以不按顺序执行或者根本不执行。
通过进行损伤蚀刻步骤来准备用于加工成太阳能电池的衬底101(图1)。在此示例中,衬底101包括N型硅晶片,并且由于晶片提供商为了从衬底的坯料切割衬底101所使用的锯剖工艺,其通常得到受损表面。从晶片提供商得到时,衬底101可以具有约100至200微米的厚度。在一个实施例中,损伤蚀刻步骤包括使用包括氢氧化钾的湿法蚀刻工艺从衬底101的每一侧去除约10至20μm厚度。损伤蚀刻步骤还可以包括清洗衬底101以消除金属污染。
分别在衬底101的前表面和后表面上形成薄电介质层102和103(图2)。薄电介质层可以包括在衬底101的表面上热生长至到厚度小于或等于40埃(例如,在5至40埃之间,优选地为20埃)的二氧化硅。衬底101的前表面和在其上形成的材料被称作在太阳能电池的正面上,这是因为在正常操作期间它们面对太阳以接收太阳辐射。类似地,衬底101的后表面和在其上形成的材料被称作在太阳能电池的与正面相对的背面上。
在太阳能电池的背面上的薄电介质层103上形成多晶硅层104(图3)。在此制造阶段还没有被掺杂的多晶硅层104可以通过LPCVD被形成为厚度约为1000至2000埃。
在多晶硅层104上形成掺杂二氧化硅层105(图4)。掺杂二氧化硅层105作为随后在多晶硅层104中形成的掺杂区的掺杂剂源,该掺杂区在此示例中为P型掺杂区120(图7)。因此,掺杂二氧化硅层105可以掺杂有P型掺杂剂,诸如硼。在一个实施例中,掺杂二氧化硅层105包括通过常压化学气相沉积(APCVD)形成的厚度约为1000埃的BSG(硼硅玻璃)。
掺杂二氧化硅层105被图案化为保留在多晶硅层104上的要形成P型掺杂区120的区域(图5)。
在掺杂二氧化硅层105和多晶硅层104上形成掺杂二氧化硅层107(图6)。掺杂二氧化硅层107作为随后在多晶硅层104中形成的掺杂区的掺杂剂源,该掺杂区在此示例中为N型掺杂区121(图7)。因此,掺杂二氧化硅层107可以掺杂有N型掺杂剂,诸如磷。在一个实施例中,掺杂二氧化硅层107包括通过APCVD形成的厚度约为2000埃的PSG(磷硅玻璃)。
热驱入(drive-in)步骤将掺杂剂从掺杂二氧化硅层105和掺杂二氧化硅层107扩散至下面的多晶硅层104,以分别在多晶硅层104的邻接部分中形成毗邻的P型掺杂区120和N型掺杂区121(图7)。将多晶硅层104重新标记为P型掺杂区120和N型掺杂区121,以反映在此工艺阶段的多晶硅层104的掺杂状态。如可以认识到的那样,典型的太阳能电池具有多个掺杂区,而不仅仅是为了示例说明的清晰而示出的两个掺杂区。
P型掺杂区120和N型掺杂区121作为太阳能电池的背面上的形成扩散区。P型掺杂区120和N型掺杂区121在多晶硅层104的邻接部分中并物理地毗邻。
在一个实施例中,执行热驱入步骤,使得多晶硅层104再结晶以具有较大的晶粒尺寸,优选地平均晶粒尺寸为至少1微米,更优选地为至少5微米,而最优选地为至少10微米。多晶硅层104的较大的晶粒尺寸在多晶硅层104中增加了少数载流子的生命期,从而减少了空间电荷区中的复合并改进了效率。
还优选地执行热驱入步骤,使得所得到的P型掺杂区120和N型掺杂区121为重掺杂的。优选的驱入条件给出了重掺杂的(例如,大于1e20cm-3)多晶硅层104,其在整个薄膜的厚度上均匀并且在多晶硅之下具有非常少的掺杂,例如小于或等于1e18cm-3
可以重掺杂多晶硅层104并对其再结晶以通过多晶硅层104的垂直定位加热而没有实质地增加薄电介质层103上的表面复合来具有较大的晶粒尺寸。可以通过例如使用准分子激光器退火来执行这种垂直定位(相对于覆盖层(blanket))加热。可以使用诸如能够从Coherent公司得到的那些准分子激光器退火工具来扫描图6的掺杂二氧化硅层107的表面。准分子激光器退火工艺将掺杂剂从掺杂剂源驱动至多晶硅层104,从而形成掺杂区120和121。
衬底101的正面被随机地纹理化以形成纹理化表面108(图8)。在一个实施例中,使用包括氢氧化钾和异丙醇的湿法蚀刻工艺对衬底101的正面进行纹理化,使衬底101的正面具有随机金字塔的纹理。纹理化表面108有助于增加太阳辐射收集。
掺杂衬底101的正面以在太阳能电池的正面上形成N型掺杂区109(图9)。可以通过在扩散步骤期间在扩散炉中引入诸如磷之类的N型掺杂剂来形成N型掺杂区109。
在纹理化表面108上形成钝化氧化物110(图10)。钝化氧化物110可以包括在衬底101的纹理化正面表面上热生长至厚度约为10至250埃的二氧化硅。
在纹理化表面108上形成抗反射涂层111(图11)。抗反射涂层111例如可以包括通过PECVD形成至厚度约为450埃的氮化硅层。
通过形成金属接触112和113来完成太阳能电池的制造(图12)。在此示例中,金属接触112穿过层107和105与P型掺杂区120电连接,而金属接触113穿过层107与N型掺杂区121电连接。金属接触112和113允许外部电路耦接至太阳能电池并由太阳能电池供电。
金属接触112和113可以包括单层或多层金属接触。例如,金属接触112和113中的每一个都可以包括下列材料的堆叠:在二氧化硅层(例如,层105或107)上形成的朝向掺杂区(例如,掺杂区120或121)的铝;在铝上形成的包括钛-钨的扩散阻挡;以及在扩散阻挡上形成的包括铜的种子(seed)层。例如,可以通过在铜种子层上电镀铜来形成叉指型金属指以电连接至金属接触。有利地的是,金属接触112和113中的铝与下面的二氧化硅形成红外反射器,从而增加效率。
与具有分隔掺杂区的沟槽的太阳能电池比较,本发明的实施例有利地具有较少的工艺步骤。具体而言,本发明的实施例不需要制造使掺杂区分隔的沟槽。而这保留了具有沟槽分离的掺杂区的太阳能电池的反向击穿(reversebiasbreakdown)电特性。本发明的实施例还潜在地允许较低的反向击穿电压。
如从前述可以认识到的那样,还可以与具有沟槽分离结合地使用本发明的实施例。这可以在不能够将多晶硅层104的颗粒重结晶到足够大来防止或最小化掺杂区之间的空间电荷区中的复合的应用中来进行。参考图13来讨论这种可替换的实施例。
图13示意性地示出了根据本发明的另一实施例的太阳能电池的截面图。在图13的示例中,太阳能电池包括使得P型掺杂区120与N型掺杂区121物理地分离的沟槽115。
在沟槽115中以氮化硅层114的形式形成电介质。在图13的示例中,氮化硅层114还形成在层107上。氮化硅层114优选地具有相对较大的正(positive)的固定电荷密度,以使得沟槽115下面的硅表面处于累积(accumulation)状态并提供良好的表面钝化。在氮化硅层114上的正的固定电荷密度可以作为PECVD工艺的一部分自然产生。例如,可以通过PECVD将氮化硅层114形成至厚度约为400埃。氮化硅层114优选地具有平坦的(例如,如沉积的)表面。可以在将掺杂剂热驱入至多晶硅层104的准分子激光器退火步骤(如前面参考图7所讨论的那样)之后形成沟槽115和氮化硅层114。
已经公开了改进的太阳能电池制造工艺和结构。虽然已经提供了本发明的具体实施例,但应当理解,这些实施例是出于示例说明的目的而不是进行限制。对于阅读了本公开的本领域普通技术人员来说,很多另外的实施例将是显而易见的。

Claims (13)

1.一种制造太阳能电池的方法,该方法包括:
在硅衬底的整个背面上形成电介质层;
在整个电介质层上形成多晶硅层;
在该多晶硅层上形成第一掺杂剂源和第二掺杂剂源;以及
对该多晶硅层进行局部加热,以将掺杂剂从第一掺杂剂源和第二掺杂剂源驱动至该多晶硅层,以在该多晶硅层的邻接部分中形成P型掺杂区和N型掺杂区,并且使该多晶硅层再结晶以增加其平均晶粒尺寸。
2.如权利要求1所述的方法,其中使用激光器对所述多晶硅层进行局部加热。
3.如权利要求1所述的方法,其中所述电介质层包括被形成为厚度小于40埃的二氧化硅。
4.如权利要求1所述的方法,其中所述第一掺杂剂源包括硼并且所述第二掺杂剂源包括磷。
5.如权利要求1所述的方法,其中使所述多晶硅层再结晶,以具有至少1微米的平均晶粒尺寸。
6.如权利要求1所述的方法,还包括:
形成与所述P型掺杂区和N型掺杂区电连接的金属接触,对该金属接触进行配置,以允许外部电路耦接至所述太阳能电池并由所述太阳能电池供电。
7.一种太阳能电池,包括:
硅衬底;
电介质层,其形成在所述硅衬底的整个背面上,所述背面与在正常操作期间面对太阳的正面相对;以及
多晶硅层,其形成在整个所述电介质层上,该多晶硅层具有在该多晶硅层的邻接部分中形成的P型掺杂区和N型掺杂区,该多晶硅层在所述P型掺杂区和N型掺杂区之间的界面处具有至少1微米的平均晶粒尺寸。
8.如权利要求7所述的太阳能电池,其中所述电介质层包括二氧化硅。
9.如权利要求7所述的太阳能电池,其中所述电介质层包括被形成为厚度小于40埃的二氧化硅。
10.如权利要求7所述的太阳能电池,还包括:
金属接触,其将所述P型掺杂区和N型掺杂区电耦接至由所述太阳能电池供电的外部电路。
11.如权利要求7所述的太阳能电池,其中所述硅衬底包括N型硅晶片。
12.如权利要求7所述的太阳能电池,其中所述硅衬底具有纹理化的正面表面。
13.如权利要求7所述的太阳能电池,还包括抗反射涂层,其在所述硅衬底的正面之上。
CN200980148588.2A 2008-12-04 2009-11-30 形成有多晶硅掺杂区的背面接触太阳能电池 Active CN102239572B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US11995508P 2008-12-04 2008-12-04
US61/119,955 2008-12-04
US12/626,483 2009-11-25
US12/626,483 US8242354B2 (en) 2008-12-04 2009-11-25 Backside contact solar cell with formed polysilicon doped regions
PCT/US2009/066046 WO2010065434A1 (en) 2008-12-04 2009-11-30 Backside contact solar cell with formed polysilicon doped regions

Publications (2)

Publication Number Publication Date
CN102239572A CN102239572A (zh) 2011-11-09
CN102239572B true CN102239572B (zh) 2015-11-25

Family

ID=42229732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980148588.2A Active CN102239572B (zh) 2008-12-04 2009-11-30 形成有多晶硅掺杂区的背面接触太阳能电池

Country Status (6)

Country Link
US (2) US8242354B2 (zh)
EP (1) EP2374160B1 (zh)
JP (1) JP5465729B2 (zh)
KR (1) KR101645756B1 (zh)
CN (1) CN102239572B (zh)
WO (1) WO2010065434A1 (zh)

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170005206A1 (en) * 2007-10-06 2017-01-05 Solexel, Inc. Patterning of silicon oxide layers using pulsed laser ablation
US20220209037A1 (en) * 2008-06-12 2022-06-30 Sunpower Corporation Trench process and structure for backside contact solar cells with polysilicon doped regions
US7851698B2 (en) * 2008-06-12 2010-12-14 Sunpower Corporation Trench process and structure for backside contact solar cells with polysilicon doped regions
US8242354B2 (en) * 2008-12-04 2012-08-14 Sunpower Corporation Backside contact solar cell with formed polysilicon doped regions
US20110048505A1 (en) * 2009-08-27 2011-03-03 Gabriela Bunea Module Level Solution to Solar Cell Polarization Using an Encapsulant with Opened UV Transmission Curve
JP5792523B2 (ja) 2010-06-18 2015-10-14 株式会社半導体エネルギー研究所 光電変換装置の作製方法
US8377738B2 (en) * 2010-07-01 2013-02-19 Sunpower Corporation Fabrication of solar cells with counter doping prevention
JP5485062B2 (ja) * 2010-07-30 2014-05-07 三洋電機株式会社 太陽電池の製造方法及び太陽電池
US20120073650A1 (en) * 2010-09-24 2012-03-29 David Smith Method of fabricating an emitter region of a solar cell
US8492253B2 (en) 2010-12-02 2013-07-23 Sunpower Corporation Method of forming contacts for a back-contact solar cell
US8586403B2 (en) * 2011-02-15 2013-11-19 Sunpower Corporation Process and structures for fabrication of solar cells with laser ablation steps to form contact holes
US8802486B2 (en) 2011-04-25 2014-08-12 Sunpower Corporation Method of forming emitters for a back-contact solar cell
EP2740149B1 (en) * 2011-08-05 2020-05-20 IMEC vzw Method for forming patterns of differently doped regions
US8992803B2 (en) 2011-09-30 2015-03-31 Sunpower Corporation Dopant ink composition and method of fabricating a solar cell there from
US9559228B2 (en) 2011-09-30 2017-01-31 Sunpower Corporation Solar cell with doped groove regions separated by ridges
US8586397B2 (en) * 2011-09-30 2013-11-19 Sunpower Corporation Method for forming diffusion regions in a silicon substrate
KR20130050721A (ko) 2011-11-08 2013-05-16 삼성에스디아이 주식회사 태양 전지
CN102437238A (zh) * 2011-11-30 2012-05-02 晶澳(扬州)太阳能科技有限公司 一种用于晶体硅太阳电池硼掺杂的方法
JP6029023B2 (ja) * 2011-12-02 2016-11-24 パナソニックIpマネジメント株式会社 太陽電池、太陽電池モジュール及び太陽電池の製造方法
TWI685984B (zh) * 2011-12-21 2020-02-21 美商太陽電子公司 混合式多晶矽異質接面背接觸電池
KR101879781B1 (ko) * 2012-05-11 2018-08-16 엘지전자 주식회사 태양 전지, 불순물층의 형성 방법 및 태양 전지의 제조 방법
CN102800716B (zh) 2012-07-09 2015-06-17 友达光电股份有限公司 太阳能电池及其制作方法
US10014425B2 (en) * 2012-09-28 2018-07-03 Sunpower Corporation Spacer formation in a solar cell using oxygen ion implantation
US9812590B2 (en) 2012-10-25 2017-11-07 Sunpower Corporation Bifacial solar cell module with backside reflector
US9035172B2 (en) 2012-11-26 2015-05-19 Sunpower Corporation Crack resistant solar cell modules
US20140166093A1 (en) * 2012-12-18 2014-06-19 Paul Loscutoff Solar cell emitter region fabrication using n-type doped silicon nano-particles
US9312406B2 (en) * 2012-12-19 2016-04-12 Sunpower Corporation Hybrid emitter all back contact solar cell
US9812592B2 (en) * 2012-12-21 2017-11-07 Sunpower Corporation Metal-foil-assisted fabrication of thin-silicon solar cell
US9530923B2 (en) * 2012-12-21 2016-12-27 Sunpower Corporation Ion implantation of dopants for forming spatially located diffusion regions of solar cells
US8796061B2 (en) 2012-12-21 2014-08-05 Sunpower Corporation Module assembly for thin solar cells
DE112014001476T5 (de) * 2013-03-15 2015-12-17 Sunpower Corporation Reduzierter Kontaktwiderstand und verbesserte Lebensdauer von Solarzellen
WO2014145930A1 (en) * 2013-03-15 2014-09-18 Amberwave, Inc. Solar cell
EP4092757A1 (en) 2013-04-03 2022-11-23 Lg Electronics Inc. Method for fabricating a solar cell
KR101613843B1 (ko) * 2013-04-23 2016-04-20 엘지전자 주식회사 태양 전지 및 이의 제조 방법
KR102045001B1 (ko) * 2013-06-05 2019-12-02 엘지전자 주식회사 태양 전지 및 이의 제조 방법
KR101622089B1 (ko) * 2013-07-05 2016-05-18 엘지전자 주식회사 태양 전지 및 이의 제조 방법
US9685571B2 (en) 2013-08-14 2017-06-20 Sunpower Corporation Solar cell module with high electric susceptibility layer
DE102013219564A1 (de) * 2013-09-27 2015-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen einer photovoltaischen Solarzelle mit einem Heteroübergang
DE102013219565A1 (de) 2013-09-27 2015-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Photovoltaische Solarzelle und Verfahren zum Herstellen einer photovoltaischen Solarzelle
DE102013219561A1 (de) 2013-09-27 2015-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen einer photovoltaischen Solarzelle mit zumindest einem Heteroübergang
US9196758B2 (en) * 2013-12-20 2015-11-24 Sunpower Corporation Solar cell emitter region fabrication with differentiated p-type and n-type region architectures
KR102173644B1 (ko) * 2014-01-29 2020-11-03 엘지전자 주식회사 태양 전지 및 이의 제조 방법
US9947812B2 (en) 2014-03-28 2018-04-17 Sunpower Corporation Metallization of solar cells
US9337369B2 (en) * 2014-03-28 2016-05-10 Sunpower Corporation Solar cells with tunnel dielectrics
US20150349180A1 (en) * 2014-05-30 2015-12-03 David D. Smith Relative dopant concentration levels in solar cells
DE102014218948A1 (de) 2014-09-19 2016-03-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solarzelle mit einer amorphen Siliziumschicht und Verfahren zum Herstellen solch einer photovoltaischen Solarzelle
KR102219804B1 (ko) 2014-11-04 2021-02-24 엘지전자 주식회사 태양 전지 및 그의 제조 방법
EP3026713B1 (en) 2014-11-28 2019-03-27 LG Electronics Inc. Solar cell and method for manufacturing the same
KR20160084261A (ko) * 2015-01-05 2016-07-13 엘지전자 주식회사 태양 전지 및 이의 제조 방법
US20160284917A1 (en) * 2015-03-27 2016-09-29 Seung Bum Rim Passivation Layer for Solar Cells
US11355657B2 (en) * 2015-03-27 2022-06-07 Sunpower Corporation Metallization of solar cells with differentiated p-type and n-type region architectures
KR102272433B1 (ko) 2015-06-30 2021-07-05 엘지전자 주식회사 태양 전지 및 이의 제조 방법
NL2015534B1 (en) * 2015-09-30 2017-05-10 Tempress Ip B V Method of manufacturing a solar cell.
KR102600379B1 (ko) 2015-12-21 2023-11-10 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양 전지와 그 제조 방법
KR102526398B1 (ko) * 2016-01-12 2023-04-27 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양 전지 및 이의 제조 방법
US10217880B2 (en) 2016-03-30 2019-02-26 Sunpower Corporation Voltage breakdown device for solar cells
JP6133465B2 (ja) * 2016-04-01 2017-05-24 シャープ株式会社 光電変換装置およびその製造方法
USD822890S1 (en) 2016-09-07 2018-07-10 Felxtronics Ap, Llc Lighting apparatus
KR102257824B1 (ko) 2016-12-05 2021-05-28 엘지전자 주식회사 태양 전지 제조 방법
US10749052B2 (en) 2017-02-14 2020-08-18 Alliance For Sustainable Energy, Llc Methods of forming interdigitated back contact solar cells
US10775030B2 (en) 2017-05-05 2020-09-15 Flex Ltd. Light fixture device including rotatable light modules
US10714652B2 (en) 2017-06-21 2020-07-14 Alliance For Sustainable Energy, Llc Methods of forming interdigitated back contact layers
USD862777S1 (en) 2017-08-09 2019-10-08 Flex Ltd. Lighting module wide distribution lens
USD832494S1 (en) 2017-08-09 2018-10-30 Flex Ltd. Lighting module heatsink
USD872319S1 (en) 2017-08-09 2020-01-07 Flex Ltd. Lighting module LED light board
USD877964S1 (en) 2017-08-09 2020-03-10 Flex Ltd. Lighting module
USD846793S1 (en) 2017-08-09 2019-04-23 Flex Ltd. Lighting module locking mechanism
USD833061S1 (en) 2017-08-09 2018-11-06 Flex Ltd. Lighting module locking endcap
USD832495S1 (en) 2017-08-18 2018-10-30 Flex Ltd. Lighting module locking mechanism
USD862778S1 (en) 2017-08-22 2019-10-08 Flex Ltd Lighting module lens
USD888323S1 (en) 2017-09-07 2020-06-23 Flex Ltd Lighting module wire guard
EP3982421A1 (en) 2020-10-09 2022-04-13 International Solar Energy Research Center Konstanz E.V. Method for local modification of etching resistance in a silicon layer, use of this method in the production of passivating contact solar cells and thus-created solar cell
CN112397596A (zh) * 2020-12-28 2021-02-23 东方日升新能源股份有限公司 一种低成本的高效太阳能电池及其制备方法
DE102022116798A1 (de) 2022-07-06 2024-01-11 EnPV GmbH Rückseitenkontaktierte Solarzelle mit passivierten Kontakten und Herstellungsverfahren

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057439A (en) * 1990-02-12 1991-10-15 Electric Power Research Institute Method of fabricating polysilicon emitters for solar cells
US6692985B2 (en) * 2001-06-07 2004-02-17 Industrial Technology Research Institute Solar cell substrate with thin film polysilicon
US7339110B1 (en) * 2003-04-10 2008-03-04 Sunpower Corporation Solar cell and method of manufacture

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961997A (en) * 1975-05-12 1976-06-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Fabrication of polycrystalline solar cells on low-cost substrates
US4230508A (en) * 1979-07-19 1980-10-28 Solarex Corporation Method of making semicrystalline silicon article
US4427839A (en) * 1981-11-09 1984-01-24 General Electric Company Faceted low absorptance solar cell
US4476475A (en) * 1982-11-19 1984-10-09 Northern Telecom Limited Stacked MOS transistor
US4665277A (en) * 1986-03-11 1987-05-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Floating emitter solar cell
US4927770A (en) * 1988-11-14 1990-05-22 Electric Power Research Inst. Corp. Of District Of Columbia Method of fabricating back surface point contact solar cells
US5217539A (en) * 1991-09-05 1993-06-08 The Boeing Company III-V solar cells and doping processes
US5053083A (en) * 1989-05-08 1991-10-01 The Board Of Trustees Of The Leland Stanford Junior University Bilevel contact solar cells
US5030295A (en) * 1990-02-12 1991-07-09 Electric Power Research Institut Radiation resistant passivation of silicon solar cells
US5242858A (en) * 1990-09-07 1993-09-07 Canon Kabushiki Kaisha Process for preparing semiconductor device by use of a flattening agent and diffusion
US5164019A (en) * 1991-07-31 1992-11-17 Sunpower Corporation Monolithic series-connected solar cells having improved cell isolation and method of making same
US5266125A (en) * 1992-05-12 1993-11-30 Astropower, Inc. Interconnected silicon film solar cell array
US5346850A (en) * 1992-10-29 1994-09-13 Regents Of The University Of California Crystallization and doping of amorphous silicon on low temperature plastic
US5360990A (en) * 1993-03-29 1994-11-01 Sunpower Corporation P/N junction device having porous emitter
US5369291A (en) * 1993-03-29 1994-11-29 Sunpower Corporation Voltage controlled thyristor
DE19508712C2 (de) * 1995-03-10 1997-08-07 Siemens Solar Gmbh Solarzelle mit Back-Surface-Field und Verfahren zur Herstellung
US5641362A (en) * 1995-11-22 1997-06-24 Ebara Solar, Inc. Structure and fabrication process for an aluminum alloy junction self-aligned back contact silicon solar cell
US6552414B1 (en) * 1996-12-24 2003-04-22 Imec Vzw Semiconductor device with selectively diffused regions
US5918140A (en) * 1997-06-16 1999-06-29 The Regents Of The University Of California Deposition of dopant impurities and pulsed energy drive-in
US6262359B1 (en) * 1999-03-17 2001-07-17 Ebara Solar, Inc. Aluminum alloy back junction solar cell and a process for fabrication thereof
US6387726B1 (en) * 1999-12-30 2002-05-14 Sunpower Corporation Method of fabricating a silicon solar cell
US6423568B1 (en) * 1999-12-30 2002-07-23 Sunpower Corporation Method of fabricating a silicon solar cell
US6337283B1 (en) * 1999-12-30 2002-01-08 Sunpower Corporation Method of fabricating a silicon solar cell
US6274402B1 (en) * 1999-12-30 2001-08-14 Sunpower Corporation Method of fabricating a silicon solar cell
US6313395B1 (en) * 2000-04-24 2001-11-06 Sunpower Corporation Interconnect structure for solar cells and method of making same
US6333457B1 (en) * 2000-08-29 2001-12-25 Sunpower Corporation Edge passivated silicon solar/photo cell and method of manufacture
JP2002305311A (ja) * 2001-01-31 2002-10-18 Shin Etsu Handotai Co Ltd 太陽電池の製造方法および太陽電池
US6524880B2 (en) * 2001-04-23 2003-02-25 Samsung Sdi Co., Ltd. Solar cell and method for fabricating the same
JP4084039B2 (ja) * 2001-11-19 2008-04-30 株式会社 液晶先端技術開発センター 薄膜半導体装置及びその製造方法
US7348607B2 (en) * 2002-02-01 2008-03-25 Picometrix, Llc Planar avalanche photodiode
US6682992B2 (en) * 2002-05-15 2004-01-27 International Business Machines Corporation Method of controlling grain size in a polysilicon layer and in semiconductor devices having polysilicon structures
US6713371B1 (en) * 2003-03-17 2004-03-30 Matrix Semiconductor, Inc. Large grain size polysilicon films formed by nuclei-induced solid phase crystallization
US7388147B2 (en) * 2003-04-10 2008-06-17 Sunpower Corporation Metal contact structure for solar cell and method of manufacture
US20040231590A1 (en) * 2003-05-19 2004-11-25 Ovshinsky Stanford R. Deposition apparatus for the formation of polycrystalline materials on mobile substrates
US6998288B1 (en) * 2003-10-03 2006-02-14 Sunpower Corporation Use of doped silicon dioxide in the fabrication of solar cells
US20050268963A1 (en) * 2004-02-24 2005-12-08 David Jordan Process for manufacturing photovoltaic cells
US7838868B2 (en) * 2005-01-20 2010-11-23 Nanosolar, Inc. Optoelectronic architecture having compound conducting substrate
US20060130891A1 (en) * 2004-10-29 2006-06-22 Carlson David E Back-contact photovoltaic cells
US7507648B2 (en) * 2005-06-30 2009-03-24 Ramesh Kakkad Methods of fabricating crystalline silicon film and thin film transistors
US7468485B1 (en) * 2005-08-11 2008-12-23 Sunpower Corporation Back side contact solar cell with doped polysilicon regions
US7339728B2 (en) * 2005-10-11 2008-03-04 Cardinal Cg Company Low-emissivity coatings having high visible transmission and low solar heat gain coefficient
US20070137692A1 (en) 2005-12-16 2007-06-21 Bp Corporation North America Inc. Back-Contact Photovoltaic Cells
AU2006335142B2 (en) * 2005-12-21 2011-09-22 Sunpower Corporation Back side contact solar cell structures and fabrication processes
WO2008039461A2 (en) * 2006-09-27 2008-04-03 Thinsilicon Corp. Back contact device for photovoltaic cells and method of manufacturing a back contact
US7705237B2 (en) * 2006-11-27 2010-04-27 Sunpower Corporation Solar cell having silicon nano-particle emitter
US8198528B2 (en) * 2007-12-14 2012-06-12 Sunpower Corporation Anti-reflective coating with high optical absorption layer for backside contact solar cells
US8222516B2 (en) * 2008-02-20 2012-07-17 Sunpower Corporation Front contact solar cell with formed emitter
CN101999175A (zh) * 2008-04-09 2011-03-30 应用材料股份有限公司 用于多晶硅发射极太阳能电池的简化背触点
US7851698B2 (en) * 2008-06-12 2010-12-14 Sunpower Corporation Trench process and structure for backside contact solar cells with polysilicon doped regions
US8242354B2 (en) * 2008-12-04 2012-08-14 Sunpower Corporation Backside contact solar cell with formed polysilicon doped regions
US8409911B2 (en) * 2009-02-24 2013-04-02 Sunpower Corporation Methods for metallization of solar cells
CN105023973A (zh) 2009-04-21 2015-11-04 泰特拉桑有限公司 形成太阳能电池中的结构的方法
WO2010123980A1 (en) 2009-04-22 2010-10-28 Tetrasun, Inc. Localized metal contacts by localized laser assisted conversion of functional films in solar cells
US8324015B2 (en) * 2009-12-01 2012-12-04 Sunpower Corporation Solar cell contact formation using laser ablation
US8211731B2 (en) * 2010-06-07 2012-07-03 Sunpower Corporation Ablation of film stacks in solar cell fabrication processes
US8377738B2 (en) * 2010-07-01 2013-02-19 Sunpower Corporation Fabrication of solar cells with counter doping prevention

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057439A (en) * 1990-02-12 1991-10-15 Electric Power Research Institute Method of fabricating polysilicon emitters for solar cells
US6692985B2 (en) * 2001-06-07 2004-02-17 Industrial Technology Research Institute Solar cell substrate with thin film polysilicon
US7339110B1 (en) * 2003-04-10 2008-03-04 Sunpower Corporation Solar cell and method of manufacture

Also Published As

Publication number Publication date
EP2374160B1 (en) 2018-04-18
JP5465729B2 (ja) 2014-04-09
US8647911B2 (en) 2014-02-11
EP2374160A1 (en) 2011-10-12
CN102239572A (zh) 2011-11-09
KR101645756B1 (ko) 2016-08-04
US8242354B2 (en) 2012-08-14
EP2374160A4 (en) 2012-10-03
JP2012511258A (ja) 2012-05-17
US20120276685A1 (en) 2012-11-01
KR20110101180A (ko) 2011-09-15
US20100139764A1 (en) 2010-06-10
WO2010065434A1 (en) 2010-06-10

Similar Documents

Publication Publication Date Title
CN102239572B (zh) 形成有多晶硅掺杂区的背面接触太阳能电池
US11183607B2 (en) Trench process and structure for backside contact solar cells with polysilicon doped regions
US7633006B1 (en) Back side contact solar cell with doped polysilicon regions
EP4345921A2 (en) Front contact solar cell with backside poly-crystalline silicon emitter
CN111029437B (zh) 一种小片电池的制备方法
JP2020129666A (ja) 太陽電池内の相対的ドーパント濃度レベル
CN106784049B (zh) 一种局部掺杂晶体硅太阳能电池的制备方法及其制得的电池
US20220209037A1 (en) Trench process and structure for backside contact solar cells with polysilicon doped regions
CN115692516A (zh) 一种新型topcon电池及其制作方法
CN115483310A (zh) 太阳电池的制备方法、发射结及太阳电池
CN111276569B (zh) 一种增强perc背钝化效果的电池制作方法
CN114497278B (zh) 基于PECVD的TOPCon电池硼扩SE的制作方法
US7994064B2 (en) Selective etch for damage at exfoliated surface
CN109659397B (zh) 一种ibc电池及其制作方法
JP2006066802A (ja) 太陽電池の製造方法および太陽電池
Mason et al. 1. BP Solar, Chertsey Road, Sunbury TW16 7LN, UK. Tel:+ 44 1932 739634, E-mail: nigel. mason@ bp. com 2. Fraunhofer ISE, Heidenhofstrasse 2, 97110 Freiburg, Germany 3. BP Solar España, Pol. Ind. Tres Cantos, 28760 Tres Cantos (Madrid), Spain

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220824

Address after: Singapore, Singapore City

Patentee after: Maikesheng solar energy Co.,Ltd.

Address before: California, USA

Patentee before: SUNPOWER Corp.