CN111276569B - 一种增强perc背钝化效果的电池制作方法 - Google Patents

一种增强perc背钝化效果的电池制作方法 Download PDF

Info

Publication number
CN111276569B
CN111276569B CN202010095381.1A CN202010095381A CN111276569B CN 111276569 B CN111276569 B CN 111276569B CN 202010095381 A CN202010095381 A CN 202010095381A CN 111276569 B CN111276569 B CN 111276569B
Authority
CN
China
Prior art keywords
silicon wafer
holes
layer
passivation layer
perc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010095381.1A
Other languages
English (en)
Other versions
CN111276569A (zh
Inventor
唐超宛
林纲正
陈刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Aiko Solar Energy Technology Co Ltd
Original Assignee
Zhejiang Aiko Solar Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Aiko Solar Energy Technology Co Ltd filed Critical Zhejiang Aiko Solar Energy Technology Co Ltd
Priority to CN202010095381.1A priority Critical patent/CN111276569B/zh
Publication of CN111276569A publication Critical patent/CN111276569A/zh
Application granted granted Critical
Publication of CN111276569B publication Critical patent/CN111276569B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种增强PERC背钝化效果的电池制作方法,其中,制作方法包括打孔、清洗制绒、扩散、正面激光、刻蚀、退火、背面沉积钝化层、正面沉积氮化硅膜、背面开槽、丝网印刷、烧结退火的步骤;本发明在清洗制绒前先在硅片的背面形成若干个孔洞,使背面沉积钝化层时钝化层不仅覆盖在硅片上,还填充到孔洞内,不仅可以增加钝化层的面积,相同的镀膜时间内,沉积的钝化层含量和致密性都会增加,从而提高背钝化效果,提升太阳能电池的转换效率。

Description

一种增强PERC背钝化效果的电池制作方法
技术领域
本发明涉及太阳能电池技术领域,尤其涉及一种增强PERC背钝化效果的电池制作方法。
背景技术
近些年来,钝化发射极和背面电池(PERC)是光伏产业的研究重点之一。提高PERC电池效率的有效途径之一就是优化其表面钝化工艺。目前,针对PERC 电池背面的钝化工艺主要采用Al2O3/Si3N4叠层膜结构进行钝化。钝化分为化学钝化和体钝化,化学钝化主要利用Al2O3/Si3N4叠层膜中的氢原子去钝化硅基表面的悬挂键,从而降低表面态密度,减少载流子在硅片表面的复合。体钝化主要利用Al2O3表面带负电荷的性质,来吸引硅片产生的空穴,并阻碍电子的传入,达到载流子有效分离并抑制复合的作用。通过这两方面的钝化能有效增加载流子的传输寿命,提高短路电流以及开路电压,从而提高PERC电池的光电转换效率。
如何在现有研究基础上进一步优化背表面钝化效果,制成更高转换效率的 PERC电池是我们亟待研究和探索的方向。
发明内容
本发明所要解决的技术问题在于,提供一种增强PERC背钝化效果的电池制作方法,有效提高电池的钝化效果,提高电池的光电转换效率。
为了解决上述技术问题,本发明提供了一种增强PERC背钝化效果的电池制作方法,其特征在于,包括:
(1)在硅片背面形成若干个孔洞,所述孔洞的直径为20~80μm,所述孔洞的深度为硅片厚度的3%~8%,孔洞的总面积为硅片面积的0.5%~5%;
(2)采用清洗制绒工艺对硅片进行清洗;
(3)在硅片表面进行磷扩散;
(4)对硅片正面进行激光重掺杂;
(5)对硅片背面进行刻蚀;
(6)对硅片进行退火处理;
(7)在步骤(6)得到的硅片背面沉积钝化层,所述钝化层覆盖在硅片的背面并填充到孔洞内,所述钝化层包括Al2O3层和Si3N4层;
(8)在硅片正面沉积氮化硅膜;
(9)对硅片背面进行激光开槽;
(10)在硅片背面印刷背电极和背电场;正面印刷正电极;
(11)将步骤(10)得到的硅片进行高温烧结,得到PERC电池成品。
作为上述方案的改进,步骤(1)中,采用激光对硅片的背面进行雕刻,雕刻速度为4500~5000mm/s,激光频率为40~50kHz。
作为上述方案的改进,步骤(1)中,采用皮秒激光对硅片的背面进行雕刻,激光波长为532nm。
作为上述方案的改进,步骤(7)中,所述Al2O3层的厚度为5~10nm,所述 Si3N4层的厚度为90~105nm。
作为上述方案的改进,步骤(2)中,采用KOH和H2O2混合液去除硅片表面油污和损伤层,在硅片表面形成金字塔绒面,并在孔洞内形成金字塔绒面;
清洗后的硅片的减重量为0.45~0.75g,绒面反射率为10.5%~11.5%。
作为上述方案的改进,步骤(3)中,采用POCl3作为磷源,通过液态源扩散的方式来制备PN结,扩散的温度为800~900℃,管内压力为50~200mBar,扩散后硅片的方阻为120~160Ω/sq。
作为上述方案的改进,步骤(4)中,硅片重掺杂区域方阻与掺杂区域方阻差值为20~40Ω/sq。
作为上述方案的改进,步骤(5)中,采用HCl、HNO3和HF混合溶液对硅片背面进行刻蚀并去除磷硅玻璃,使硅片背面的反射率为23%~29%,采用HF 溶液去除正面氧化层。
作为上述方案的改进,步骤(6)中,退火温度为650~750℃,退火时间为 900~1500秒。
实施本发明,具有如下有益效果:
本发明在清洗制绒前先在硅片的背面形成若干个孔洞,以使钝化层不仅覆盖在硅片上,还填充到孔洞内,这样不仅可以增加钝化层的面积,相同的镀膜时间内,沉积的钝化层含量和致密性都会提高,从而提高钝化效果,提高太阳能电池的转换效率。
本发明采用波长为532nm的皮秒激光来雕刻硅片,以形成本发明所需大小和深度的孔洞,不仅可以减少对硅片的损伤,还能实现大规模的生产,降低成本。
此外,本发明采用KOH和H2O2混合液去除硅片表面油污和损伤层,在这个过程中,硅片表面形成金字塔绒面,同时孔洞内的硅片也会形成金字塔绒面,可以进一步提高电池的转换效率。
附图说明
图1是本发明硅片形成孔洞后的结构示意图;
图2是本发明PERC电池的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
本发明提供一种增强PERC背钝化效果的电池制作方法,包括:
(1)在硅片背面形成若干个孔洞;
参见图1,采用激光对硅片1的背面进行雕刻,以形成若干个孔洞8。本发明在清洗制绒前先在硅片的背面形成若干个孔洞,有效提钝化层的钝化效果,提高太阳能电池的转换效率。
需要说明的是,孔洞的直径、深度和孔洞的总面积对太阳能电池的背面钝化效果起着重要的影响。
若孔洞的深度太浅,则在清洗制绒后,孔洞容易消失;若孔洞深度太深,则对硅片造成较大机械损伤,影响太阳能电池的转换效率。优选的,所述孔洞的深度为硅片厚度的3%~8%。本发明硅片的厚度为180±10μm,孔洞的深度优选为7~9μm。
若孔洞的直径太小,则难以提高钝化效果,开压Uoc低;若孔洞的直径过大,则对硅片的损伤较大,硅片容易碎裂。优选的,所述孔洞的直径为20~80μm。更优的,所述孔洞的直径为40~60μm。
为了进一步提高钝化效果,本发明的孔洞大小相同,且呈阵列式排布,相邻孔洞的间距相等。
此外,孔洞的总面积不能太多,也不能太少。优选的,孔洞的总面积为硅片面积的0.5%~5%。孔洞的总面积决定的孔洞的数量。
由于硅片容易碎裂,若要在硅片上形成本发明的孔洞,则需要波长为532nm 的皮秒激光来雕刻硅片。皮秒激光对硅片的损伤小,且可以形成本发明所需大小和深度的孔洞,此外,波长为532nm的激光可快速形成所需孔洞,且对硅片损伤小,可实现大规模的生产,且成本低。
激光频率和雕刻速度的大小,会影响孔洞的形成。优选的,激光频率为40~50 kH,雕刻速度为4500~5000mm/s。
(2)采用清洗制绒工艺对硅片进行清洗;
采用清洗制绒工艺对硅片进行清洗,对硅片打孔造成的损伤进行修复并除去硅片表面的油污。
具体的,采用KOH和H2O2混合液去除硅片表面油污和损伤层,在这个过程中会减薄硅片,同时孔洞的深度会减少,且硅片表面形成金字塔绒面,孔洞内的硅片也会形成金字塔绒面。
具体的,清洗后的硅片的减重量为0.45~0.75g,绒面反射率为10. 5%~11.5%。
(3)在硅片表面进行磷扩散;
具体的,采用POCl3作为磷源,通过液态源扩散的方式来制备PN结,扩散的温度为800~900℃,管内压力为50~200mBar,扩散后硅片的方阻为 120~160Ω/sq;提升硅片的表面方阻,可降低表面掺杂浓度,不仅可以提高电池的短波效应,提高短路电流;而且可以使表面复合导致的暗饱和电流减小,开路电压增大;优化电池性能。
(4)对硅片正面进行激光重掺杂;
使用帝尔激光进行正面掺杂;激光掺杂提升了电极区掺杂浓度;降低了银浆与硅片之间的欧姆接触,进而提高了填充因子;提升了太阳能电池的性能。优选的,重掺杂后,硅片重掺杂区域方阻与掺杂区域方阻差值为20~40Ω/sq,优选的为20~30Ω/sq;重掺杂电极区方阻在此范围内可提升太阳能电池转化效率。
(5)对硅片背面进行刻蚀;
其中采用HCl、HNO3和HF混合溶液对硅片背面进行刻蚀并去除磷硅玻璃,使硅片背面的反射率为23%~29%;采用HF溶液去除正面的氧化层。
(6)对硅片进行退火处理;
使用热氧进行退火处理;优选的,退火温度为650~750℃,退火时间为 900~1500秒。本发明的退火处理可以修复硅片表面的缺陷并形成SiO2氧化层来增加电池抗PID的性能。
此外,本发明的退火处理还可以降低结区复合,提高开路电压,提高产品良率。
(7)在步骤(6)得到的硅片背面沉积钝化层,所述钝化层覆盖在硅片的背面并填充到孔洞内;
本发明的钝化层可以钝化背面的悬挂键以及各种缺陷,减少载流子的复合。优选的,所述钝化层的厚度为95~120nm。
具体的,所述钝化层包括Al2O3层和Si3N4层,其中,Al2O3层的厚度为 5~15nm,Si3N4层的厚度为90~105nm。
本发明的钝化层不仅覆盖在硅片上,还填充到孔洞内,这样不仅可以增加钝化层的面积,相同的镀膜时间内,沉积的钝化层含量和致密性都会提高,从而提高钝化效果,提高太阳能电池的转换效率。
(8)在硅片正面沉积氮化硅膜;
本发明的氮化硅膜用来减少光的反射,增加太阳光的吸收效率来产生更多的光生载流子并钝化缺陷,增加少子寿命。优选的,沉积厚度为70~90nm。
(9)对硅片背面进行激光开槽;
其中,采用激光在在硅片背面开槽,经过后续的烧结来形成良好的欧姆接触。激光开槽光斑的直接为35~45μm。
(10)在硅片背面印刷背电极和背电场;正面印刷正电极;
(11)将步骤(10)得到的硅片进行高温烧结,形成PERC电池成品。
参见图2,本发明制备得到的PERC电池,包括硅片1、N型发射极2、正面氮化硅3、正银电极4、背面氧化铝5、背面氮化硅6和铝背场7,其中,所述硅片的背面设有孔洞8,所述背面氧化铝5覆盖在硅片1的背面并填充到孔洞 8内,所述背面氮化硅6设置在背面氧化铝5上,铝背场7局部贯穿背面钝化层延伸到硅片1内。
下面将以具体实施例来进一步阐述本发明
实施例1
(1)打孔:采用波长为532nm的皮秒激光对硅片背面进行打孔,形成 490*490个孔洞,孔洞的直径为50μm,深度为7μm,硅片的厚度为180μm;
(2)清洗制绒:采用KOH和H2O2混合液去除硅片表面油污和损伤层,清洗后的硅片的减重量为0.55g,绒面反射率为11%;
(3)扩散:采用POCl3作为磷源制备PN结,扩散温度为850℃,管内压力为100mBar,扩散后硅片的方块电阻为140Ω/sq;
(4)正面激光:采用激光进行正面掺杂,硅片重掺杂区域方阻与为掺杂区域方阻差值为30Ω/sq;
(5)背面刻蚀:采用HCl、HNO3和HF混合溶液对背面进行刻蚀,去除背面磷硅玻璃,采用HF溶液去除正面氧化层;
(6)退火:对硅片进行退火处理,退火温度为700℃,退火时间为1100秒;
(7)背面沉积钝化层,所述钝化层包括Al2O3层和Si3N4层,其中,Al2O3层的厚度为8nm,Si3N4层的厚度为95nm;
(8)正面沉积氮化硅膜,其厚度为80nm;
(9)对硅片背面进行激光开槽,激光开槽光斑的直接为40μm;
(10)浆料印刷:通过丝网印刷工艺,在硅片背面印刷背电极和背电场,正面印刷正电极;
(11)烧结:在500℃下烧结得到PERC电池成品。
对比例1
对比例1与实施例1相比,只少了步骤(1),其他步骤均相同。
与对比例1相比,实施例1制作所得的太阳能电池,其光电转化效率提高 0.1%,开路电压Uoc提高0.3mV,填充因子FF提高0.3%。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (9)

1.一种增强PERC背钝化效果的电池制作方法,其特征在于,包括:
(1)在硅片背面形成若干个孔洞,所述孔洞的直径为20~80μm,所述孔洞的深度为硅片厚度的3%~8%,孔洞的总面积为硅片面积的0.5%~5%;
(2)采用清洗制绒工艺对硅片进行清洗制绒,在硅片表面形成金字塔绒面,并在孔洞内形成金字塔绒面;
(3)在硅片表面进行磷扩散;
(4)对硅片正面进行激光重掺杂;
(5)对硅片背面进行刻蚀;
(6)对硅片进行退火处理;
(7)在步骤(6)得到的硅片背面沉积钝化层,所述钝化层覆盖在硅片的背面并填充到孔洞内,所述钝化层包括Al2O3层和Si3N4层;
(8)在硅片正面沉积氮化硅膜;
(9)对硅片背面进行激光开槽;
(10)在硅片背面印刷背电极和背电场,正面印刷正电极;
(11)将步骤(10)得到的硅片进行高温烧结,得到PERC电池成品。
2.如权利要求1所述的增强PERC背钝化效果的电池制作方法,其特征在于,步骤(1)中,采用激光对硅片的背面进行雕刻,雕刻速度为4500~5000mm/s,激光频率为40~50kHz。
3.如权利要求2所述的增强PERC背钝化效果的电池制作方法,其特征在于,步骤(1)中,采用皮秒激光对硅片的背面进行雕刻,激光波长为532nm。
4.如权利要求1所述的增强PERC背钝化效果的电池制作方法,其特征在于,步骤(7)中,所述Al2O3层的厚度为5~10nm,所述Si3N4层的厚度为90~105nm。
5.如权利要求1所述的增强PERC背钝化效果的电池制作方法,其特征在于,步骤(2)中,采用KOH和H2O2混合液去除硅片表面油污和损伤层,在硅片表面形成金字塔绒面,并在孔洞内形成金字塔绒面;
清洗后的硅片的减重量为0.45~0.75g,绒面反射率为10.5%~11.5%。
6.如权利要求1所述的增强PERC背钝化效果的电池制作方法,其特征在于,步骤(3)中,采用POCl3作为磷源,通过液态源扩散的方式来制备PN结,扩散的温度为800~900℃,管内压力为50~200mBar,扩散后硅片的方阻为120~160Ω/sq。
7.如权利要求1所述的增强PERC背钝化效果的电池制作方法,其特征在于,步骤(4)中,硅片重掺杂区域方阻与掺杂区域方阻差值为20~40Ω/sq。
8.如权利要求1所述的增强PERC背钝化效果的电池制作方法,其特征在于,步骤(5)中,采用HCl、HNO3和HF混合溶液对硅片背面进行刻蚀并去除磷硅玻璃,使硅片背面的反射率为23%~29%;采用HF溶液去除正面的氧化层。
9.如权利要求1所述的增强PERC背钝化效果的电池制作方法,其特征在于,步骤(6)中,退火温度为650~750℃,退火时间为900~1500秒。
CN202010095381.1A 2020-02-17 2020-02-17 一种增强perc背钝化效果的电池制作方法 Active CN111276569B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010095381.1A CN111276569B (zh) 2020-02-17 2020-02-17 一种增强perc背钝化效果的电池制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010095381.1A CN111276569B (zh) 2020-02-17 2020-02-17 一种增强perc背钝化效果的电池制作方法

Publications (2)

Publication Number Publication Date
CN111276569A CN111276569A (zh) 2020-06-12
CN111276569B true CN111276569B (zh) 2022-10-11

Family

ID=71000592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010095381.1A Active CN111276569B (zh) 2020-02-17 2020-02-17 一种增强perc背钝化效果的电池制作方法

Country Status (1)

Country Link
CN (1) CN111276569B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112531074A (zh) * 2020-11-20 2021-03-19 浙江爱旭太阳能科技有限公司 背面钝化太阳能电池及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1074558A (zh) * 1991-12-27 1993-07-21 鲁道夫·赫策尔 一种太阳能电池的制造方法及其太阳能电池
EP1763086A1 (en) * 2005-09-09 2007-03-14 Interuniversitair Micro-Elektronica Centrum Photovoltaic cell with thick silicon oxide and silicon nitride passivation and fabrication method
CN102057497A (zh) * 2008-06-12 2011-05-11 太阳能公司 具有多晶硅掺杂区域的背面接触太阳能电池的沟槽工艺和结构
KR20130079792A (ko) * 2012-01-03 2013-07-11 주식회사 케이피이 태양전지 셀의 후면 전계 영역 형성방법 및 그에 의한 태양전지 셀
CN204464294U (zh) * 2015-03-27 2015-07-08 昱晶能源科技股份有限公司 太阳能电池
CN206179875U (zh) * 2016-10-28 2017-05-17 西安电子科技大学 一种ibc太阳能电池
CN109309147A (zh) * 2018-09-04 2019-02-05 苏州钱正科技咨询有限公司 一种n型单晶硅基太阳能电池及其制备方法
CN209675295U (zh) * 2019-05-23 2019-11-22 盐城阿特斯协鑫阳光电力科技有限公司 一种用于perc电池的基片和perc电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1074558A (zh) * 1991-12-27 1993-07-21 鲁道夫·赫策尔 一种太阳能电池的制造方法及其太阳能电池
EP1763086A1 (en) * 2005-09-09 2007-03-14 Interuniversitair Micro-Elektronica Centrum Photovoltaic cell with thick silicon oxide and silicon nitride passivation and fabrication method
CN102057497A (zh) * 2008-06-12 2011-05-11 太阳能公司 具有多晶硅掺杂区域的背面接触太阳能电池的沟槽工艺和结构
KR20130079792A (ko) * 2012-01-03 2013-07-11 주식회사 케이피이 태양전지 셀의 후면 전계 영역 형성방법 및 그에 의한 태양전지 셀
CN204464294U (zh) * 2015-03-27 2015-07-08 昱晶能源科技股份有限公司 太阳能电池
CN206179875U (zh) * 2016-10-28 2017-05-17 西安电子科技大学 一种ibc太阳能电池
CN109309147A (zh) * 2018-09-04 2019-02-05 苏州钱正科技咨询有限公司 一种n型单晶硅基太阳能电池及其制备方法
CN209675295U (zh) * 2019-05-23 2019-11-22 盐城阿特斯协鑫阳光电力科技有限公司 一种用于perc电池的基片和perc电池

Also Published As

Publication number Publication date
CN111276569A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
JP2022501837A (ja) 結晶シリコン太陽電池およびその製造方法
CN113345970A (zh) 一种p型背接触式晶硅太阳能电池、制备方法及电池组件
JP2011512687A (ja) 非対称ウエーハのエッチング方法、非対称エッチングのウエーハを含む太陽電池、及び太陽電池の製造方法
CN113809205B (zh) 太阳能电池的制备方法
CN114975691A (zh) 一种具有选择性发射极的钝化接触太阳电池及其制备方法、组件和系统
CN106653942A (zh) 一种n型单晶硅双面电池的制作方法
CN113675298A (zh) 具有纳微米结构的TOPCon晶硅太阳电池
CN116705915B (zh) 一种新型双面TOPCon电池的制备方法
TWI401810B (zh) 太陽能電池
CN115483310A (zh) 太阳电池的制备方法、发射结及太阳电池
CN115084314A (zh) 一种TOPCon钝化接触结构的IBC太阳能电池制备方法
CN104362219B (zh) 一种晶体硅太阳能电池制造工艺
US20230361227A1 (en) Laminated passivation structure of solar cell and preparation method thereof
CN114050105A (zh) 一种TopCon电池的制备方法
CN111276569B (zh) 一种增强perc背钝化效果的电池制作方法
CN106784049B (zh) 一种局部掺杂晶体硅太阳能电池的制备方法及其制得的电池
CN114725225A (zh) 一种高效p型ibc电池及其制备方法
TW201225324A (en) Solar cell
CN111092136A (zh) 一种降低反射率的单晶太阳能电池制备方法
TW201222851A (en) Manufacturing method of bifacial solar cells
US20230136715A1 (en) Laminated passivation structure of solar cell and preparation method thereof
CN214753793U (zh) 一种p型背接触式晶硅太阳能电池及太阳能电池组件
JP5645734B2 (ja) 太陽電池素子
KR101115195B1 (ko) 실리콘 이종접합 태양전지 및 이를 제조하는 방법
CN107611197B (zh) 一种ibc电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant