CN102214574B - 一种半导体器件的制造方法 - Google Patents

一种半导体器件的制造方法 Download PDF

Info

Publication number
CN102214574B
CN102214574B CN201010142041.6A CN201010142041A CN102214574B CN 102214574 B CN102214574 B CN 102214574B CN 201010142041 A CN201010142041 A CN 201010142041A CN 102214574 B CN102214574 B CN 102214574B
Authority
CN
China
Prior art keywords
side wall
active area
grid
stacking
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010142041.6A
Other languages
English (en)
Other versions
CN102214574A (zh
Inventor
钟汇才
梁擎擎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201010142041.6A priority Critical patent/CN102214574B/zh
Priority to US13/061,824 priority patent/US8460988B2/en
Priority to PCT/CN2010/077311 priority patent/WO2011124060A1/zh
Publication of CN102214574A publication Critical patent/CN102214574A/zh
Priority to US13/888,930 priority patent/US8691641B2/en
Application granted granted Critical
Publication of CN102214574B publication Critical patent/CN102214574B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • H01L29/41783Raised source or drain electrodes self aligned with the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种半导体器件的制造方法,在形成栅堆叠及其第一侧墙后,进而形成第二侧墙和第三侧墙;而后去除第二侧墙,在第一侧墙与第三侧墙间形成开口。通过在第一侧墙(208)和第三侧墙(212)之间形成开口(214)来限定提升有源区(220)的形成范围,在开口(214)内自对准的形成提升有源区(220),可以获得更好的提升有源区(220)的外形,避免无限定方式下造成可能的相邻器件的短路,并且基于这种制造方法,易于实现栅电极(204)与提升有源区(220)的等高,也易于实现双应力氮化物工艺,以提高器件的迁移率。

Description

一种半导体器件的制造方法
技术领域
本发明通常涉及半导体器件制造方法,具体来说,涉及一种自对准和自限制形成提升有源区的半导体器件制造方法。
背景技术
对于传统的提升有源区的器件制造工艺,是在整个有源区上,即源极区和漏极区上,通过外延生长形成提升有源区,这种方法可以减小延伸电阻率并更易形成接触,因此在步入32nm及以下时代以后,仍希望能够使用该工艺,但是,由于生长提升有源区时,是在整个有源区上通过外延生长来形成,在隔离区一侧并没有任何限制,这样有可能导致提升有源区生长时跨过隔离区造成相邻器件的短路,也很难使其与栅电极同高,并很难在此工艺中实现为提高迁移率的双应力氮化物工艺(Dual stress nitrideprocess)。
因此,需要提出一种能够自对准和自限制形成提升有源区的半导体器件的制造方法。
发明内容
本发明提供了一种半导体器件的制造方法,所述方法包括:提供半导体衬底;在所述半导体衬底上形成栅堆叠,以及在栅堆叠侧壁形成第一侧墙;在所述第一侧墙的侧壁形成第二侧墙,以及在第二侧墙的侧壁形成第三侧墙;去除所述第二侧墙,以形成开口;利用所述开口刻蚀半导体衬底,以形成填充区;在所述填充区内形成嵌入有源区;在所述开口内形成提升有源区;硅化所述器件以形成金属硅化物层。
本发明还提供了一种半导体器件的制造方法,所述方法包括:提供半导体衬底;在所述半导体衬底上形成栅堆叠,以及在所在栅堆叠侧壁形成第一侧墙;刻蚀所述栅堆叠两侧的部分半导体衬底,以形成填充区;在所述填充区中形成嵌入有源区;在所述第一侧墙的侧壁形成第二侧墙,以及在第二侧墙的侧壁形成第三侧墙;去除所述第二侧墙,以形成开口;在所述开口内形成提升有源区;硅化所述器件以形成金属硅化物层。
通过采用本发明所述的方法,可以有效限定提升有源区的生长范围,以自对准的方式形成提升有源区。
附图说明
图1示出根据了本发明的第一实施例的半导体器件的制造方法的流程图;
图2-11示出了根据本发明的第一实施例的半导体器件各个制造阶段的示意图;
图12示出根据了本发明的第二施例的半导体器件的制造方法的流程图;
图13-21示出了根据本发明的第二实施例的半导体器件各个制造阶段的示意图。
具体实施方式
本发明通常涉及制造半导体器件的方法。下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。另外,以下描述的第一特征在第二特征之“上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
第一实施例
根据本发明的第一实施例,参考图1,图1示出了根据本发明的第一实施例的半导体器件的制造方法的流程图。在步骤S101,提供半导体衬底200,参考图2。在本实施例中,衬底200包括位于晶体结构中的硅衬底(例如晶片),还可以包括其他基本半导体或化合物半导体,例如Ge、GeSi、GaAs、InP、SiC或金刚石等。根据现有技术公知的设计要求(例如p型衬底或者n型衬底),衬底200可以包括各种掺杂配置。此外,衬底200可以可选地包括外延层,可以被应力改变以增强性能,以及可以包括绝缘体上硅(SOI)结构。
在步骤S102,在所述半导体衬底200上形成栅堆叠300,以及在栅堆叠300侧壁形成第一侧墙208,如图2所示。栅堆叠300通常包括栅介质层202和栅电极204,优选地,栅堆叠300还可以进一步包括栅电极204之上的栅帽206,所述栅帽206通常可以由氮化物材料形成,用来保护栅电极204不被后续工艺步骤损伤,本发明对栅堆叠300的结构、材料以及形成工艺、步骤等不做限定。在一个实施例中,所述栅堆叠300可以通过在所述半导体衬底200上依次形成栅介质层202、和栅电极204和栅帽206,而后利用干法或湿法蚀刻技术将所述栅介质层202、和栅电极204以及栅帽206图形化,从而形成形成栅堆叠300。所述栅介质层202可包括但不限于氮化物、氧化物、氮氧化物或者高k介质材料等。所述栅电极204可以是一层或多层结构,可包括但不限于金属、金属化合物、多晶硅和金属硅化物,及其他们的组合。所述第一侧墙208可以为一层或多层结构,可以由氮化物或氧化物材料及其组合或其他适合的材料形成,在一个实施例中,第一侧墙208为氮化物形成的一层结构,在另外的实施例中第一侧墙208还可以为由氮化物和其他材料形成的两层结构或其他多层结构,这些仅是示例,并不限于此。所述栅堆叠300和第一侧墙208可以采用常规工艺形成,例如热氧化、溅射、PLD、MOCVD、ALD、PEALD或其他合适的方法。
在步骤S 103,在所述第一侧墙208的侧壁形成第二侧墙210,以及在第二侧墙210的侧壁形成第三侧墙212,如图3所示。所述第二侧墙210可以为氧化物材料,第三侧墙212可以为氮化物材料,第三侧墙212可以为一层或多层结构,在一个实施例中第三侧墙212为氮化物形成的一层结构,在另外的实施例中第三侧墙212还可以为由氮化物和其他材料形成的两层结构或其他多层结构,这些仅是示例,并不限于此。所述第二侧墙210和第三侧墙212可以采用常规沉积工艺形成,例如溅射、PLD、MOCVD、ALD、PEALD或其他合适的方法。
在一个实施例中,所述第一侧墙208、第三侧墙212和栅帽206由氮化物材料,所述第二侧墙210为氧化物材料,所述第一侧墙208、第二侧墙210、第三侧墙212以及栅帽206还可以根据刻蚀选择性或其他工艺要求选择合适的材料形成,本领域技术人员可以知道有多种材料组合方式来形成,这些方式均可实现本发明,因此均应包含在本发明的保护范围之内。
在步骤S104,去除所述第二侧墙210,以形成开口214,如图4所示。所述第二侧墙210具有与第一侧墙208、第三侧墙212以及栅帽206不同的刻蚀选择性,可以通过RIE的方法选择性去除所述第二侧墙210,形成开口214。
在步骤S 105,利用所述开口214刻蚀半导体衬底200,以形成填充区216,如图5所示。利用所述开口214,使用干法或者湿法或两者结合的刻蚀工艺在半导体衬底200内形成填充区216。在所述第三侧墙212下的半导体衬底200可以选择性的留下或去除。
在步骤S106,在所述填充区216内形成嵌入有源区218,如图6所示。所述嵌入有源区218通常是指嵌入源极区和嵌入漏极区。所述嵌入有源区218可以通过在填充区216内沉积SiGe、SiC或其他合适的材料,并同时进行在内掺杂(In situ doping)p型或n型掺杂物或杂质到所述嵌入有源区218中形成。
在步骤S107,在所述开口214内形成提升有源区220,如图7所示。可用外延生长(Epi)的方式形成提升有源区220。所述提升有源区220在开口220内以自对准、自限定的方式形成,可以获得更好的提升有源区220的外形,避免无限定方式造成可能的相邻器件的短路。
特别地,在形成提升有源区220后,可以对所述器件平坦化,例如可以使用化学机械抛光(CMP)或其他腐蚀方法,使栅堆叠300与提升有源区220在同一高度,在一个实施例中,需要去除全部的栅帽206,实现器件的平坦化,如图8所示。在另外的实施例中,还可以只去除部分栅帽206,实现器件的平坦化(图中未有示出)。此处的目的是实现栅堆叠300与提升有源区220的大致同高,可以按照需要去除相应的部分,本发明对此处不做限定。
在步骤S 108,硅化所述器件以形成金属硅化物层222,如图9所示,可以通过自对准方式形成金属硅化物层222,首先在所述器件上沉积金属,例如Co、Ni、Mo、Pt和W等,而后进行退火,金属和与其任一接触的硅表面反应生成金属硅化物,硅表面可以为提升有源区220和/或栅堆叠300中栅电极204的多晶硅层等,然后去除未反应的金属,形成自对准的金属硅化物层222。
特别地,在形成金属硅化物层222之后,可以利用干法或湿法刻蚀技术选择性去除第三侧墙212和部分第一侧墙208,如图10所示,而后可以通过但不限于PECVD的方法沉积氮化物材料,以形成应力氮化物层224,如图11所示,从而起到提高器件的迁移率作用。
以上对利用第一侧墙208和第三侧墙212之间的开口214来限定提升有源区220的形成范围的器件制造方法进行了描述,在此实施例中,嵌入有源区218在开口214形成之后形成。
第二实施例
下面将仅就第二实施例区别于第一实施例的方面进行阐述。未描述的部分应当认为与第一实施例采用了相同的步骤、方法或者工艺来进行,因此在此不再赘述。
参考图12,图12示出了根据本发明的第二实施例的制造半导体器件的方法的流程图,根据本发明的第二实施例的步骤S201至步骤S202,同第一实施例中的步骤S101至步骤S102相同,视为与第一实施例采用了相同的步骤、方法或者工艺来进行,在此不再赘述。
在步骤S203,刻蚀所述栅堆叠300两侧的部分半导体衬底200,以形成填充区216,如图13所示。可以使用干法或者湿法或两者结合的刻蚀工艺在半导体衬底200内形成填充区216。
在步骤S204,在所述填充区216中形成嵌入有源区218,如图14所示。所述嵌入有源区218通常是指嵌入源极区和嵌入漏极区。所述嵌入有源区218可以通过在填充区216内沉积SiGe、SiC或其他合适的材料,并同时进行在内掺杂(In situ doping)p型或n型掺杂物或杂质到所述嵌入有源区218中形成。
在步骤S205,在所述第一侧墙208的侧壁形成第二侧墙210,以及在第二侧墙210的侧壁形成第三侧墙212,如图15所示。所述第二侧墙210可以为氧化物材料,第三侧墙212可以为氮化物材料。所述第二侧墙210和第三侧墙212可以采用常规沉积工艺形成,例如溅射、PLD、MOCVD、ALD、PEALD或其他合适的方法。所述第一侧墙208和第三侧墙212可以为一层或多层结构,可以由氮化物或氧化物材料及其组合或其他适合的材料形成,在一个实施例中,第一208和第三侧墙212为氮化物形成的一层结构,在另外的实施例中第一208和第三侧墙212还可以为由氮化物和其他材料形成的两层结构或其他多层结构,这些仅是示例,并不限于此。
在一个实施例中,所述第一侧墙208、第三侧墙212和栅帽206由氮化物材料,所述第二侧墙210为氧化物材料,所述第一侧墙208、第二侧墙210、第三侧墙212以及栅帽206还可以根据刻蚀选择性或其他工艺要求选择合适的材料形成,本领域技术人员可以知道有多种材料组合方式来形成,这些方式均可实现本发明,因此均应包含在本发明的保护范围之内。
在步骤S206,去除所述第二侧墙210,以形成开口214,如图16所示。所述第二侧墙210具有与第一侧墙208、第三侧墙212以及栅帽206不同的刻蚀选择性,可以通过RIE的方法选择性去除所述第二侧墙210,形成开口214。所述第一侧墙208、第二侧墙210、第三侧墙212以及栅帽206可以根据刻蚀选择性或其他工艺要求选择合适的材料形成,本领域技术人员可以知道有多种材料组合方式来形成,这些方式均可实现本发明,因此均应包含在本发明的保护范围之内。
在步骤S207,在所述开口214内形成提升有源区220,如图17所示。可用外延生长(Epi)的方式形成提升有源区220。所述提升有源区220在开口220内以自对准、自限定的方式形成,可以获得更好的提升有源区220的外形,避免无限定方式造成可能的相邻器件的短路。
特别地,在形成提升有源区220后,可以对所述器件平坦化,例如可以使用化学机械抛光(CMP)或其他腐蚀方法,使栅堆叠300与提升有源区220在同一高度。在一个实施例中,需要去除全部的栅帽206,实现器件的平坦化,如图18所示。在另外的实施例中,还可以只去除部分栅帽206,实现器件的平坦化(图中未有示出)。此处的目的是实现栅堆叠300与提升有源区220的大致同高,可以按照需要去除相应的部分,本发明对此处不做限定。
在步骤S208,硅化所述器件以形成金属硅化物层222,如图19所示,可以通过自对准方式形成金属硅化物层222,首先在所述器件上沉积金属,例如Co、Ni、Mo、Pt和W等,而后进行退火,金属和与其任一接触的硅表面反应生成金属硅化物,硅表面可以为提升有源区220和/或栅堆叠300中栅电极204的多晶硅层,然后去除未反应的金属,形成自对准的金属硅化物层222。
特别地,在形成金属硅化物层222之后,可以利用干法或湿法刻蚀技术选择性去除第三侧墙212和部分第一侧墙208,如图20所示,而后可以通过但不限于PECVD的方法沉积氮化物材料,以形成应力氮化物层224,如图21所示,从而起到提高器件的迁移率作用。
以上对利用第一侧墙208和第三侧墙212之间的开口214来限定提升有源区220的形成范围的器件制造方法进行了描述,在此实施例中,开口214在嵌入有源区218形成之后形成。
本发明对通过形成自对准、自限定的提升有源区的器件制造方法进行了描述,根据本发明,通过在第一侧墙208和第三侧墙212之间形成开口214来限定提升有源区220的形成范围,在开口214内自对准的形成提升有源区220,可以获得更好的提升有源区220的外形,避免无限定方式下造成可能的相邻器件的短路,并且基于这种制造方法,易于实现栅电极204与提升有源区220的等高,也易于实现双应力氮化物工艺,以提高器件的迁移率。
虽然关于示例实施例及其优点已经详细说明,应当理解在不脱离本发明的精神和所附权利要求限定的保护范围的情况下,可以对这些实施例进行各种变化、替换和修改。对于其他例子,本领域的普通技术人员应当容易理解在保持本发明保护范围内的同时,工艺步骤的次序可以变化。
此外,本发明的应用范围不局限于说明书中描述的特定实施例的工艺、机构、制造、物质组成、手段、方法及步骤。从本发明的公开内容,作为本领域的普通技术人员将容易地理解,对于目前已存在或者以后即将开发出的工艺、机构、制造、物质组成、手段、方法或步骤,其中它们执行与本发明描述的对应实施例大体相同的功能或者获得大体相同的结果,依照本发明可以对它们进行应用。因此,本发明所附权利要求旨在将这些工艺、机构、制造、物质组成、手段、方法或步骤包含在其保护范围内。

Claims (10)

1.一种半导体器件的制造方法,所述方法包括:
A.提供半导体衬底;
B.在所述半导体衬底上形成栅堆叠,以及在栅堆叠侧壁形成第一侧墙;
C.在所述第一侧墙的侧壁形成第二侧墙,以及在第二侧墙的侧壁形成第三侧墙;
D.去除所述第二侧墙,以形成开口;
E.利用所述开口刻蚀半导体衬底,以形成填充区;
F.在所述填充区内形成嵌入有源区;
G.在所述开口内形成提升有源区;
H.硅化所述器件以形成金属硅化物层。
2.根据权利要求1所述的方法,在所述步骤G和步骤H之间还包括以下步骤:平坦化所述器件使所述栅堆叠与所述提升有源区相平。
3.根据权利要求1所述的方法,在所述步骤H之后还包括以下步骤:去除所述第三侧墙以及部分第一侧墙,并覆盖所述器件以形成应力氮化物层。
4.根据权利要求1至3任一项所述的方法,其中所述第一侧墙、第三侧墙和所述栅堆叠中栅电极之上的栅帽由氮化物材料形成。
5.根据权利要求1至3任一项所述的方法,其中所述第二侧墙由氧化物材料形成。
6.一种半导体器件的制造方法,所述方法包括:
A.提供半导体衬底;
B.在所述半导体衬底上形成栅堆叠,以及在所在栅堆叠侧壁形成第一侧墙;
C.刻蚀所述栅堆叠两侧的部分半导体衬底,以形成填充区;
D.在所述填充区中形成嵌入有源区;
E.在所述第一侧墙的侧壁形成第二侧墙,以及在第二侧墙的侧壁形成第三侧墙;
F.去除所述第二侧墙,以形成开口;
G.在所述开口内形成提升有源区;
H.硅化所述器件以形成金属硅化物层。
7.根据权利要求6所述的方法,在所述步骤G和步骤H之间还包括以下步骤:平坦化所述器件使所述栅堆叠与所述提升有源区相平。
8.根据权利要求6所述的方法,在所述步骤H之后还包括以下步骤:去除所述第三侧墙以及部分第一侧墙,并覆盖所述器件以形成应力氮化物层。
9.根据权利要求6至8任一项所述的方法,其中所述第一侧墙、第三侧墙和所述栅堆叠中栅电极之上的栅帽由氮化物材料形成。
10.根据权利要求6至8任一项所述的方法,其中第二侧墙由氧化物材料形成。
CN201010142041.6A 2010-04-07 2010-04-07 一种半导体器件的制造方法 Active CN102214574B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201010142041.6A CN102214574B (zh) 2010-04-07 2010-04-07 一种半导体器件的制造方法
US13/061,824 US8460988B2 (en) 2010-04-07 2010-09-26 Method for manufacturing semiconductor device
PCT/CN2010/077311 WO2011124060A1 (zh) 2010-04-07 2010-09-26 一种半导体器件的制造方法
US13/888,930 US8691641B2 (en) 2010-04-07 2013-05-07 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010142041.6A CN102214574B (zh) 2010-04-07 2010-04-07 一种半导体器件的制造方法

Publications (2)

Publication Number Publication Date
CN102214574A CN102214574A (zh) 2011-10-12
CN102214574B true CN102214574B (zh) 2013-06-12

Family

ID=44745833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010142041.6A Active CN102214574B (zh) 2010-04-07 2010-04-07 一种半导体器件的制造方法

Country Status (3)

Country Link
US (2) US8460988B2 (zh)
CN (1) CN102214574B (zh)
WO (1) WO2011124060A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130026492A1 (en) * 2011-07-30 2013-01-31 Akhan Technologies Inc. Diamond Semiconductor System and Method
CN103107077B (zh) * 2011-11-14 2016-09-14 中国科学院微电子研究所 石墨烯器件及其制造方法
CN103633029B (zh) * 2012-08-28 2016-11-23 中国科学院微电子研究所 半导体结构及其制造方法
FR3002079B1 (fr) * 2013-02-11 2016-09-09 Commissariat Energie Atomique Procede de fabrication d'un transistor
US20150097197A1 (en) * 2013-10-04 2015-04-09 Globalfoundries Inc. Finfet with sigma cavity with multiple epitaxial material regions
US9384988B2 (en) * 2013-11-19 2016-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. Gate protection caps and method of forming the same
US9831341B2 (en) * 2014-06-16 2017-11-28 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for integrated circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100346456C (zh) * 2003-11-26 2007-10-31 国际商业机器公司 一种mosfet半导体及其制造方法
CN101521229A (zh) * 2008-03-02 2009-09-02 万国半导体股份有限公司 自对准沟槽累加模式场效应晶体管结构及其制造方法
US7615816B2 (en) * 2003-07-30 2009-11-10 International Business Machines Corporation Buried plate structure for vertical dram devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7259050B2 (en) * 2004-04-29 2007-08-21 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of making the same
KR100642747B1 (ko) * 2004-06-22 2006-11-10 삼성전자주식회사 Cmos 트랜지스터의 제조방법 및 그에 의해 제조된cmos 트랜지스터
US7294890B2 (en) * 2005-03-03 2007-11-13 Agency For Science, Technology And Research Fully salicided (FUSA) MOSFET structure
US7642607B2 (en) * 2005-08-10 2010-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. MOS devices with reduced recess on substrate surface
US8003470B2 (en) * 2005-09-13 2011-08-23 Infineon Technologies Ag Strained semiconductor device and method of making the same
US7538387B2 (en) * 2006-12-29 2009-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Stack SiGe for short channel improvement
CN102244031B (zh) * 2010-05-14 2013-11-06 中国科学院微电子研究所 一种接触孔、半导体器件和二者的形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615816B2 (en) * 2003-07-30 2009-11-10 International Business Machines Corporation Buried plate structure for vertical dram devices
CN100346456C (zh) * 2003-11-26 2007-10-31 国际商业机器公司 一种mosfet半导体及其制造方法
CN101521229A (zh) * 2008-03-02 2009-09-02 万国半导体股份有限公司 自对准沟槽累加模式场效应晶体管结构及其制造方法

Also Published As

Publication number Publication date
WO2011124060A1 (zh) 2011-10-13
US20120220097A1 (en) 2012-08-30
CN102214574A (zh) 2011-10-12
US8691641B2 (en) 2014-04-08
US20130244393A1 (en) 2013-09-19
US8460988B2 (en) 2013-06-11

Similar Documents

Publication Publication Date Title
CN102214574B (zh) 一种半导体器件的制造方法
KR101756536B1 (ko) 반도체 구조물 및 그 형성 방법
CN103311185B (zh) 制造混合高k/金属栅堆叠件的方法
CN105206669B (zh) 组合qwfinfet及其形成方法
CN103972097B (zh) 制造FinFET器件的方法
CN104916542B (zh) 半导体器件的结构及其制造方法
US10192746B1 (en) STI inner spacer to mitigate SDB loading
KR20130089132A (ko) FinFET 및, FinFET를 제조하는 방법
CN109817564A (zh) 用于半导体器件中的噪声隔离的结构和方法
US11695041B2 (en) Method of manufacturing a semiconductor device
CN105280699A (zh) 源极/漏极结构及其形成方法
CN102214657A (zh) 一种半导体器件、半导体器件的隔离结构及其制造方法
US8673724B2 (en) Methods of fabricating semiconductor devices
CN105990440A (zh) 半导体器件结构的结构和形成方法
KR102532814B1 (ko) 종형 전력 디바이스를 위한 방법 및 시스템
US20230197788A1 (en) Methods, devices, and systems related to forming semiconductor power devices with a handle substrate
KR20160078230A (ko) FinFET 디바이스의 구조체 및 형성 방법
KR20190132171A (ko) 비등각성 산화물 라이너 및 그 제조 방법
CN103367394A (zh) 半导体器件及其制造方法
CN103779223A (zh) Mosfet的制造方法
EP3208836A1 (en) A method to improve hci performance for finfet
CN112216741B (zh) 高电子迁移率晶体管的绝缘结构以及其制作方法
JP2006024940A (ja) 層配置および層配置の製造方法
TW201543675A (zh) 半導體配置及其形成方法
CN105720090B (zh) 改进的晶体管沟道

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant