CN102203636A - 用于检测高能光子的器件 - Google Patents

用于检测高能光子的器件 Download PDF

Info

Publication number
CN102203636A
CN102203636A CN2009801425754A CN200980142575A CN102203636A CN 102203636 A CN102203636 A CN 102203636A CN 2009801425754 A CN2009801425754 A CN 2009801425754A CN 200980142575 A CN200980142575 A CN 200980142575A CN 102203636 A CN102203636 A CN 102203636A
Authority
CN
China
Prior art keywords
solid
module
state detector
detecting device
pixelation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801425754A
Other languages
English (en)
Other versions
CN102203636B (zh
Inventor
M·彻梅桑尼拉都
J·M·阿尔瓦瑞兹帕斯特
C·桑彻兹桑彻兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inst Fisica D. Altes En
Original Assignee
INST FISICA D ALTES EN
Consejo Superior de Investigaciones Cientificas CSIC
X RAY IMATEK SL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INST FISICA D ALTES EN, Consejo Superior de Investigaciones Cientificas CSIC, X RAY IMATEK SL filed Critical INST FISICA D ALTES EN
Publication of CN102203636A publication Critical patent/CN102203636A/zh
Application granted granted Critical
Publication of CN102203636B publication Critical patent/CN102203636B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/249Measuring radiation intensity with semiconductor detectors specially adapted for use in SPECT or PET
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/242Stacked detectors, e.g. for depth information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/243Modular detectors, e.g. arrays formed from self contained units

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种用于检测高能光子的器件(10),包括:用于检测高能光子的像素化的一个或多个固态检测器(11);用于提供高电压使所述固态检测器极化的装置;一个或多个像素化读出单元(30)、读出单元被连接到所述一个或多个像素化固态检测器(11)中的每一个;连接到所述读出单元(30)的用于数据输入和输出的输入/输出单元(12);和用于安装像素化固态检测器(11)、读出单元(30)及输入输出单元(12)的基座层(13)。

Description

用于检测高能光子的器件
技术领域
本发明涉及用于检测高能光子的器件。尤其是,本发明涉及的器件包括像素化室温固态检测器,它检测由病人体内放射性材料产生的γ射线光子。
本发明在医学诊断成像设备中找到特殊的用途。
背景技术
PET(正电子放射层析射线摄影法)是一种诊断技术,它获得展示组织和器官(例如,中央神经系统)的代谢和机能的图像。
与核医学中其他诊断技术相似,PET是基于放射性同位素在体内分布的检测和分析,这些放射性同位素已经预先向病人给药。这些放射性同位素可以口服,可以作为气体吸入,或可以通过注射给药。
已知用于医疗用途的若干种放射正电子的放射性同位素。最常使用的是氟-18,它能与葡萄糖示踪剂结合,获得18F-FDG(18氟脱氧葡萄糖)。这样,通过放射性信号的放射可检测的葡萄糖被获得。
在放射性同位素给药之后,这些放射性同位素分散遍及待检查的身体区域并往往会被例如癌细胞吸收。当放射性同位素衰变时,它发射正电子,数毫米后该正电子与电子湮灭。这产生一对沿相反方向运动的γ射线光子,每一光子有511keV的能量。这一对γ射线光子能够用所谓PET扫描器检测。使用这两个γ射线光子的检测位置,响应线(LOR)(这是连接γ(射线)光子的两个检测位置的直线)能够被重构。这一过程在图14中示意画出。
图14画出常用PET扫描器1,其中提供床3。在该床上,人或动物的身体2被示意表示。围绕PET扫描器周围,提供多个检测器4。沿相反方向运动的γ射线光子分别被检测器4a和4b检测。利用该检测,该LOR能够被重构。
在收集若干这类事件后,多条LOR相交的点能够被确定。这些点表示放射性同位素的浓度因而癌细胞的可能存在。PET扫描器被耦联到计算机,该计算机负责测量被身体吸收的放射性同位素的量,并确定这些LOR。这样,获得给出身体内部器官及其他部分的结构及机能两者细节的图像,是可能的。
在典型的PET治疗方案中,病人被注射300到500MBq之间的18F-FDG。在允许一个至一个半小时吸收之后,病人被放置在扫描器中用于扫描。在常用PET扫描器上的典型PET扫描需要约30分钟的扫描器时间。
在肿瘤诊断中,PET起重要作用。人们能够从下面的表中看到,它的准确性超过常用的诊断成像系统(取自Journal of Nuclear Medicine Supplement,Volume 42,Number 5,May 2001和UCLA):
诊断准确度
Figure BDA0000057678880000021
PET扫描器包括多个检测器。现今,目前最好的用于PET的检测器是基于LSO(含氧原硅酸镥(Lutetium Oxyorthosilicate))晶体,典型大小是4mm×4mm×10mm。该种晶体当被γ(射线)光子撞击时发射闪光。这些闪光能够用与该晶体耦联的光电倍增管(PMT)检测。这也已经在图14中示意表示。检测器4c包括分段的晶体5和多个PMT 6。本领域熟练技术人员应当清楚,该多个PMT 6也能够用单个位置敏感光电倍增管(PSPMT)代替。
LSO晶体对511keV的γ(射线)产生的光约4000phe。用LSO晶体在511keV上能够获得的半极大全宽度(FWHM)是约10%。该受限能量分辨率将降低消除被散射事件的能力,该被散射事件是在重构的图像中的一类噪声。LSO晶体的典型长度(当在PET扫描器中使用时,是沿径向方向)是约10mm,而这一点意味着,检测器的撞击点的固有不确定性沿径向方向约为3mm,它将导致响应线的投影中的误差。当考察图14时,这一点能够容易理解。记录事件的PMT实质上给出两维的坐标。γ(射线)光子撞击晶体的地方的径向位置被丢失。该信息的丢失引起的视差效应,能够导致LOR的投影中的误差。该误差自然损害重构的图像的质量。
另一个缺点是检测器晶体的形状,它是直角平行六面体,且当由这种部件形成圆柱形形状时(例如用于PET扫描器),它不可避免地在晶体的接触点上有裂纹。
医学诊断成像设备的另一个例子,是γ射线照相机。γ射线照相机也广泛被用于核医学。它包含由多个闪烁晶体形成的单个检测器平面和在它前面的准直器。只有在小角度范围中通过准直器中的孔的光子到达检测器;其他的光子被准直器吸收。由此,源分布的两维投影被检测器平面记录。
SPECT(单光子放射计算层析射线摄影法)是使用γ射线照相机的核医学层析射线摄影成像技术。SPECT成像是使用γ射线照相机进行的,用于以不同角度采集多个两维图像。然后,用计算机对该多个投影应用层析射线摄影重构算法,产生三维图像。
康普顿(Compton)照相机是医学诊断成像设备的另一个例子。康普顿照相机被用于重构发射γ射线的放射性同位素的分布。应用范围是广大的:除了核医学中的诊断外,它们还可以被用于核发电厂退役的监控并且还找到在国家安全中的应用(例如,用于扫描海运集装箱,检查放射性材料的存在)。
康普顿照相机有两个检测平面。从源发射的光子在第一平面中被散射(康普顿散射)而在第二平面中被吸收(光电效应)。在两个平面中,相互作用和被沉淀的能量的位置被测量。第一平面通常由半导体材料制成而第二平面由闪烁晶体制成。这些检测器是同时被操作的,所以只有与两个检测器相互作用并在给定窗口内沉淀全部能量的光子才被记录。使用该检测的位置和光子的能量,光子的始发点能够使用所谓康普顿公式计算。
总而言之,在核医学成像中,有诸多技术和设备是已知的(PET、SPECT、γ照相机、康普顿照相机),这些技术和设备常常使用基于闪烁晶体的检测器。
基于闪烁晶体的检测器遭受各种不利因素:在PET扫描器中,裂纹固有地存在于相邻平行六面体晶体的接触点处。如之前对PET扫描器已经描述,视差效应可能出现。PET扫描器、γ照相机或康普顿照相机中使用的晶体,有尺寸4mm×4mm×10mm,所以这确定了它们具有的固有误差(和固有空间分辨率)。在PET扫描的情形中,不可能看清比4-5mm更小的任何东西。对SPECT,这是在15-20mm的数量级。因为检测器不会以100%的效率工作,空间分辨率甚至要坏得多。
伴随闪烁晶体的另一个问题是,闪烁晶体的DQE(检测量子效率)颇低。为了改进该DQE,需要增加晶体的长度以增加俘获γ光子的概率。然而,添加更多的材料不一定改进信号的质量,因为晶体中在相对地远离光电倍增管的位置上产生的一部分光,在到达PMT之前已被衰减。被靠近PMT的晶体俘获的γ光子将比离PMT更远所俘获的γ光子产生更多光子。由此,能量分辨率以检测更多γ光子为代价而变坏。因此,γ检测器中使用的闪烁晶体的标准长度(10mm),是为获得合理的DQE又同时有可接受的能量分辨率的妥协。
为克服上述闪烁晶体的不方便,已经建议在PET检测器中使用像素化室温固态检测器。用像素化固态检测器,由于该检测器能够被分段成亚毫米像素(或体元(voxel))的事实,能够获得高的空间分辨率。
在PET扫描器中使用固态检测器的问题之一是,要获得高的γ射线吸收,必需厚的检测器。尤其是,人们需要4cm的厚度(当使用CdTe时),以俘获能量为511keV的光子的90%。
在文献中,已经建议使用非常大(如10mm×10mm×10mm)的Cd(Zn)Te传感器,在该传感器中,像素读出芯片被耦联到晶体后侧。这一方案理论上看似容易,但实现起来却不容易。首先,如此大的有良好质量的CdTe检测器,成本非常高。其次,信号的收集时间将非常长从而不可能在PET中把它用作触发器。第三,用如此厚(10mm)的检测器,由于电子空穴的陷入和寿命,能量谱显著降质。
US 2007/0057191公开一种放射学成像系统,它包括第一和第二成像设备。所述第一成像设备包括半导体放射检测器阵列(非像素化的)。该检测器阵列通过配线被连接到ASIC。因为该系统中使用的检测器不是像素化的,可以达到的准确度受本性上的限制。使用的检测器是至少2mm×2mm。准确度因而受这些尺寸的限制。此外,实践中,使用这些尺寸的检测器会是非常复杂和昂贵的,所以更大的检测器将是需要的。还有,在所有检测器之间都有间隙。这些间隙代表没有事件能够被检测的死区,且检测器阵列的封装和布置方式,导致受限制的检测效率。用于把个别检测器连接到前置放大器的配线导致寄生电容、电感和电阻,由此增加整个噪声对信号的比。
发明内容
本发明的一个目的,是提供一种用于检测高能光子的器件,它克服现有技术检测器至少一部分的缺点。
本发明的再一个目的,是提供一种以高空间分辨率和高检测效率检测高能光子的器件。高空间分辨率提供γ光子的撞击点的准确位置(x、y、z);高检测效率有助于降低放射剂量。
本发明的另一个目的,是提供一种以改进的能量分辨率,以消除大部分散射事件和增加信噪比(SNR)的检测高能光子的器件。
为达到上面的目的,本发明提供一种用于检测高能光子的器件,包括:用于检测高能光子的至少一个像素化的固态检测器;用于提供高电压使所述固态检测器极化的装置;连接到所述像素化固态检测器的至少一个读出单元;连接到所述读出单元的用于数据输入和输出的输入/输出单元;和用于安装像素化固态检测器、读出单元及输入/输出单元的基座层。
代替使用闪烁晶体(连同它的已指出的不方便),本发明提供用于检测高能光子的像素化固态检测器。典型的像素大小可以是1mm×1mm,但制造例如有10μm×10μm像素大小的像素化固态检测器是可能的。本发明因此给出空间精确度的巨大潜力。该空间精确度是使用闪烁晶体从来未能达到的。器件因此可以被修改以适应不同应用的特殊需要。甚至可能在单个固态检测器内改变像素大小。再有,检测器的像素之间没有死区。即使出现在两个像素之间的事件也仍然能够被两个像素共同检测。
另外,因为它的模块式和简单的组装,多个器件能够容易地按三维被组合成合适的大小。
在第二方面中,本发明提供一种包括按照本发明的多个器件的用于检测高能光子的模块,这些器件按这样的方式被布置,使器件的组合像素化固态检测器形成三维的检测器。
按照本发明的每一器件,实质上形成两维的检测器。通过把至少一个器件放置在另一个之上,创建三维的检测器。因为该检测器是三维的,视差效应(如在PET扫描器中所讨论)能够被避免。因为器件的模块式组装,如人们希望一样多的器件都可以被组合,以构建增加厚度从而增加DQE的检测器,却不必牺牲能量分辨率和空间分辨率。
器件中使用的固态检测器的典型厚度可以是2mm(但其他厚度当然是可能的)。组合多个这些器件达到适当的厚度,而不会遇到涉及例如厚的常用固态检测器的收集时间的问题,是可能的。
而且,本发明提供的检测器能够被用于强的磁场。基于本发明的检测器因此能够与例如MRI扫描器组合成单个扫描器,它允许PET扫描和MRI扫描同时进行。
在一些实施例中,器件的基座层有等腰梯形形状。使器件的基座层具有等腰梯形形状,并使读出单元与安装在其上的像素化固态检测器的大小及形状适应该梯形形状,于是获得特别适合于装配在圆环中的器件。这对PET扫描器中的应用特别有用。
可供选择地,像素化固态检测器和基座两者都有等腰梯形形状。检测器也可以有不同的形状,只要它们适合于基座层的形状。例如,用两个有适当的四面形状的独立的检测器形成梯形形状,将是可能的。然而,一个特别感兴趣的选项是,给予固态检测器对应的等腰梯形形状,以便它们能够被准确地装配在基座层上。但是读出单元正常地保持它们的矩形形状。在按照本发明的一些实施例中,器件因而还包括安装在固态检测器和读出单元之间的中间层,以适应检测器的像素衬垫(pixel pad)与读出单元上对应的像素通道之间的任何偏移。
在像素化固态检测器有等腰梯形形状的情形中,检测器的像素大小沿梯形的高度变化,以适应宽度的改变(沿梯形的整个高度有恒定数量的像素)。
在一些实施例中,器件的基座层有矩形形状。该形状对诸如γ照相机和康普顿照相机的应用特别有用。
最好是,在按照本发明的模块中,多个器件的输入/输出单元被连接到单个接口。构建模块的特别有利的方式,是把多个器件的信号输入/输出单元连接到单个接口单元,它例如可以是印刷电路板(PCB)。被多个器件收集的数据能够由此用该单个接口收集和传送。
可供选择地,在按照本发明的模块中,该器件的至少部分固态检测器相对于彼此按交错的方式被布置。借助按交错方式布置这些固态检测器,更为坚固的结构被获得,因为一个器件的检测器向其它器件提供某些支承。
可供选择地,模块包括器件,其中像素化固态检测器、读出单元和输入/输出信号单元被装载在基座层的顶侧上,且其中该基座层的底侧,包括用于提供高电压使相邻器件上的所述固态检测器极化的装置。在本领域中,提供高电压使固态检测器极化的几种方式是已知的,例如通过适当的配线。利用模块是由多个基本器件组装的事实,通过把这些用于使像素化固态检测器极化的装置布置在器件的底侧,一个器件能够为相邻器件提供用于使像素化固态检测器极化的装置。只有在模块“边缘”的器件(很可能是第一个器件)可能需要另外的装置,例如另外的聚酰亚胺薄膜(kapton)层。
可供选择地,模块包括器件,其中固态检测器被安装在读出单元上的。固态检测器的每一像素衬垫,能够被连接到读出单元上的输入像素通道(无需配线)。在其他实施例中,读出单元和固态检测器可以被布置成相互埃着(代替在彼此之上)。
在一些实施例中,器件还包括被安装在固态检测器和读出单元之间的中间层,以适应固态检测器的像素衬垫和读出单元上的像素通道之间的任何偏移。在其中固态检测器的大小沿确定方向变化(例如,在其中基座层有等腰梯形形状的器件中,这种器件特别适合被用于形成圆环,此时固态检测器的形状沿径向方向改变)的实施例中,像素大小也沿该方向改变。为此,中间层可以充当接口,以调节检测器上的衬垫和读出单元上的输入通道之间的任何偏移。该中间层可以是聚酰亚胺薄膜层。
在第三方面中,本发明提供一种用于检测高能光子的系统,包括多个模块,其中模块的多个接口通过适当的连接器被连接到单个接口总线。该单个接口总线能够凭借被读出单元收集的数据,从固体检测器中发生的所有事件中收集数据。它还能够提供必需的操作电压。
可供选择地,系统只包括由具有梯形形状基座层(和适当形状的其他单元)的器件组装的模块。这样,用于PET扫描器的环形的检测器能够被构建。
可供选择地,系统只包括由具有矩形形状基座层(和适当形状的其他工作单元)的器件组装的模块。这样,有矩形棱镜形状的检测器的γ照相机或康普顿照相机能够被构建。
附图说明
本发明的实施例只作为非限制性例子,将在下面参考附图描述,附图中:
图1a是按照本发明用于检测高能光子的器件的优选实施例的示意表示;
图1b是按照本发明用于检测高能光子的器件的另一个优选实施例的示意表示;
图2到图5是图1a器件的逐步构造的示意表示;
图6a是按照本发明用于检测高能光子的模块的示意表示;
图6b是有交错配置的图6a用于检测高能光子的模块的示意表示;
图7是按照本发明被安装在支承中以获得一种用于检测高能光子系统的模块的示意表示;
图8是按照本发明用于检测高能光子系统的示意表示,该系统包括多个图6a的模块;
图9a和9b是按照本发明的器件的再一个实施例的顶视图,该器件有等腰梯形形状;
图10是有环形状的γ射线检测器局部视图的示意表示,该检测器包括多个图8的系统;
图11是图10γ射线检测器完整视图的示意表示;
图12是有平行六面体形状的γ射线检测器的示意表示,该检测器包括多个图8的系统;和
图13是康普顿照相机的示意表示,该康普顿照相机包括图12的检测器。
图14画出常用的PET扫描器的示意表示。
具体实施方式
下面,按照本发明用于检测高能光子的器件的优选实施例将被描述。接着,是按照本发明的模块(包括多个这些器件)、系统(包括多个模块)、PET扫描器、γ照相机和康普顿照相机的优选实施例将被描述。
图1a中,按照本发明的器件的优选实施例被示出。用于检测高能光子的器件10包括:按瓦叠/层叠方案(tiled/stacked scheme)的四个模块式像素化室温固态检测器11;每一检测器11一块的四块ASIC(专用集成电路),用作它们的读出单元;被连接到ASIC用于数据输入及输出的输入/输出单元连接器12(就是说,主要用于获得由ASIC从固态检测器俘获的参数产生的值);以及起基座层作用的聚酰亚胺薄膜层13,其上被安装固态检测器11、ASIC和输入/输出单元12。还有,连接器20(图1a中看不见)被提供,用于连接每一个别ASIC 30到输入/输出单元12。更具体地说,聚酰亚胺薄膜层13的前平面被用于安装ASIC 30、连接器20、固态检测器11和输入/输出单元12;在后平面中,聚酰亚胺薄膜层13包括与电源的连接,该电源能够提供高电压,以使相邻第二个器件的固态检测器极化,该第二个器件被紧邻图示器件布置(这种布置将稍后在例如图6a中画出)。
在本发明的范围内,器件中还能够提供不同数量的固态检测器。
在该实施例中,室温固态检测器被使用。室温固态检测器例如可以由Si、Ge、GaAs、CdTe、CdZnTe或Hgl2制成。最好使用有高Z(原子核中高的质子数)和良好电子-空穴迁移率的固态半导体。然而,在本发明的范围内,任何像素化固态检测器都可以被使用。
在当前的优选实施例中,像素化固态检测器11是大小约2cm×1cm×0.2cm的CdTe检测器;像素大小约为1mm×1mm。检测器的大小还可以有不同的选择。使用厚度为0.2cm的器件,能够通过组合多个这些器件组装出厚的固态检测器。无论如何,该检测器将不会遭受诸如厚的常用固态检测器中收集时间的问题。
再有,每一固态检测器11被安装在对应的ASIC上,这样每一像素衬垫独立地被连接到它自己的通道。
图1b中,按照本发明的器件的另一实施例被示意示出。在该情形中的单个器件10,是通过提供单个器件的两行固态检测器11形成的。这些固态检测器被安装在基座层13上。对每一行固态检测器,提供输入/输出单元12。器件的这种设计的优点是,它能够被制成比当按照图1a两个器件被组合时略薄。
下面,图1a中出示的器件10的逐步构造(示于图2-5)将被描述。
图2画出聚酰亚胺薄膜层13,它在顶侧上提供输入/输出单元12和用于把输入/输出单元12连接到每一个别ASIC的连接器20。
图3画出有一块ASIC 30安装于其上的相同层聚酰亚胺薄膜层13。该ASIC已经被减薄到厚50μm且该ASIC的输入/输出连接器是由金属化通路(vias)制成,因此能够借助球焊(bump-bond)或导电胶把ASIC连接到聚酰亚胺薄膜层。此外,连接的其他方式也可以使用,例如,可从3MTM购得的各向异性导电膜。同样能够使用引线接合。图示的层13被设计成支持四块ASIC,但显然,要连接的ASIC数量能够按照器件10的需要而不同。
图4画出有四块ASIC 30安装于其上的相同层13。在该优选实施例中,在安装四块ASIC 30之后,中间层(聚酰亚胺薄膜层)被提供在ASIC之上。所述中间层的目的,是把对应的固态检测器11的每一像素衬垫,连接到ASIC 30上的输入像素通道。因为固态检测器11的大小能够沿确定方向变化,如在下面将要对一些实施例(如图9a)所描述,该中间聚酰亚胺薄膜层的作用是充当接口,以调节固态检测器上的衬垫和ASIC 30的输入通道之间的任何偏移。中间层不一定在所有情形中被提供,特别是当固态检测器的大小是恒定时。
图5画出被安装在中间聚酰亚胺薄膜层上的固态检测器11。在其他实施例中,固态检测器可以被直接安装在读出单元(例如ASIC)上。在该优选实施例中的像素大小被选定为约1mm×1mm。利用该大小的像素衬垫,能够用导电胶把固态检测器与中间聚酰亚胺薄膜层连接,或把ASIC与中间聚酰亚胺薄膜层连接,避免使用焊球(solder bump)而因此加热固态检测器。
在图示优选实施例中的获得的器件10,有长度为4cm、宽度为2cm和厚度为0.2cm的固态检测器。器件的有效厚度是约2.2mm(它包含检测器、聚酰亚胺薄膜层和减薄的ASIC)。
由此获得的并示于图1a的器件10,包括有两个平行的大表面(前平面和后平面)的主体和基本上薄的侧边缘。按照本发明的器件10操作如下。
γ射线(高能光子)撞击被安装在器件10的薄的一侧上的像素化检测器11(如图1a中示意所示)。在使用固态检测器的现有技术的器件中,这些检测器通常的取向使之俘获撞击在检测器的较大表面上的γ射线(即沿施加于固态检测器的电场方向)。然而,按照本发明,器件按这样的方式取向,使它能够俘获撞击在检测器薄的一侧上的γ射线(即沿垂直于施加于检测器的电场的方向)。
在按照本发明的器件中,γ射线也可以撞击在另一侧上,但如稍后将被指出,撞击的主要方向将基本上在薄的一侧。光子在检测器11中被俘获的概率,随粒子在检测器材料内传播的距离增加。在被俘获光子的撞击点,它将经历不同的过程,而起决定作用的一个过程是光电效应。在全部能量被沉淀到检测器11中之后,等量的电子-空穴(e-h)作为响应被释放。高电压(HV)被施加于检测器,以便允许e-h漂移,在像素电极上感生信号,该信号随后被ASIC放大和处理。该ASIC(30)将指出撞击点的位置并由此指出撞击出现处的像素坐标。另外,该信号脉冲将给出关于光子能量的信息。而且,相对于全球时钟的撞击时间,能够从所产生信号的上升时间确定。
下面,一种用于检测高能光子的模块将被描述。
在图6a中能够看到,模块60包括多个用于检测高能光子的器件10(上面已描述),这些器件通过它们的输入/输出单元12被连接到接口,该接口在本情形中是印刷电路板(PCB)61。这些器件被布置成行,以它们的大的表面彼此相邻。不过,无论他们是否全都被布置成以基座层的前侧对准同一方向,是无关要紧的。显然,由于器件10的模块性,模块60能够被做成设计者想要的任何大小。在图6a的情形中,模块包括30个器件。使用前面被使用的器件的大小,该模块因此获得的厚度约6.6cm。
PCB 61包括例如有低矮的外形用于接入ASIC 30的连接器62,就是说,PCB的连接器62与输入/输出信号连接器12连接,该连接器12有通向ASIC(通过连接器20)的接入。这样,ASIC 30中被处理的数据能够在连接器62中被获得并从它们读取。可供选择地,这样的模块包括器件,其中像素化固态检测器、读出单元和输入/输出信号单元被装载在聚酰亚胺薄膜层的顶侧上,且其中聚酰亚胺薄膜层的底侧,包括用于提供高电压使相邻器件上的像素化固态检测器极化的装置。
每一像素化固态检测器,如前面所描述,实质上能够给出有关何处出现与γ射线撞击的两维信息。在模块中,多个器件按这样的方式布置,使获得三维的固态检测器。每个器件都是两维的检测器,但通过提供许多器件在彼此之上,获得三维的检测器。模块60的尺寸使用以前对图5说明的尺寸,约为5cm×2cm×6.6cm,且它包含48000个体元。每一体元有1mm×1mm×2mm的尺寸并被连接到ASIC 30上它自己的独立的像素通道。这等价于有大约725通道/cm3
模块的工作原理仍然相同。γ射线撞击像素化检测器。在被俘获光子的撞击点上,电子-空穴(e-h)被产生。由于施加的高电压,e-h的漂移在像素电极上感生信号,该信号随后被ASIC放大和处理。该ASIC将指出撞击点的位置并由此指出撞击出现处的像素坐标。另外,接口或PCB 61有关于哪一块ASIC上该事件被记录的数据。因此该PCB有关于何处出现撞击的体元坐标的数据。
在一些实施例中,例如如图6b所示的实施例中,为了获得更结实的模块,包括在模块中的器件10的检测器11,有不同的大小并按交错的配置被提供。按此方式,器件的像素化检测器11之间的间隙用相邻器件的像素化检测器补充。总之,该配置对模块60给出支持自身的更强的机械强度。显然,这样做对模块的功能没有更多的影响。
应当指出,图1b中所示器件特别适合被用于这种交错的配置。就是说,单个器件能够在器件一侧上的固态检测器和另一侧上的固态检测器之间被提供交错的配置。
下一步,一种用于检测高能光子的系统将被描述。
图7画出与模块60连接的接口总线70。在本实施例中的接口总线是PCB。PCB 70包括多个连接器71,而接口61的连接器62被插入PCB 70的连接器71。这样,用于检测高能光子的系统被获得。所述系统能够包括一个或多个模块,取决于需要(就是说,取决于将被扫描的大小)。接口总线70能够为固态检测器供应高电压,并提供功率以便从ASIC读并向ASIC写。
图8画出包括多个模块60的系统80。所述模块60被布置成一行,使模块的端部器件的大的表面与下一个模块的端部器件的大的表面相邻(该模块沿像素化固态检测器内施加的电场的相同方向对准)。
本领域熟练技术人员应当清楚,使模块形成系统的许多另外的可能布置也可以使用。
从被描述的用于检测高能光子的系统80,能够获得不同的医学诊断成像设备。
图9a示出按照本发明的器件的不同实施例。器件10包括有两个平行的大表面的主体和基本上薄的侧边缘,该大的表面有等腰梯形形状。该形状已经通过把等腰梯形的形状给予器件的基座层而获得(并使器件的其他单元适当地适应)。在该实施例中使用的固态检测器11有等腰梯形的形状。然而,ASIC 30是矩形。前面说明的中间聚酰亚胺薄膜层在这些实施例中可能是必需的,以适应检测器11上的像素和ASIC 30上对应的像素通道之间的任何偏移。ASIC 30部分地以虚线表示,因为它们被布置在检测器下面,所以不是全部可见的。
所选择的器件形状允许检测器的构造特别适合于PET扫描器,因为它能够被装配在环中,模块之间没有明显间隙。在PET扫描器中,要能形成响应线(LOR),两个光子必需在相同的时间窗口中(重合)被记录。在现有技术的器件中,楔形间隙存在于检测器(或模块)之间(例如见图14)。因为这些间隙存在于LOR的两端,导致平方律的PET扫描器检测效率的下降。这样意味着,如果单个511keV光子的检测效率是25%,那么背对背地检测两个光子的概率是(0.25)2=0.0625,于是大致为6%。利用检测器的等腰梯形形状,PET扫描器的模块能够被装配进基本上均匀的环中,相邻模块之间没有楔形间隙,从而保持良好的检测效率。
图9b画出与图9a相同的器件。在按照本发明的优选实施例中,120个梯形器件一起形成是PET扫描器的一部分的环。虚线箭头指示PET扫描器的径向方向。能够清楚看到,像素化固态检测器的大小沿该径向方向变化。在该实施例中,为了补偿检测器的像素衬垫与读出单元的像素通道之间的任何偏移,提供了中间聚酰亚胺薄膜层。
在该实施例中,固态检测器的高度H等于1cm。第一检测器的短基座(SB)的长度是19.95mm而第一检测器的长基座(LB)的长度是20.47mm。这些测量是基于有40cm半径、沿它的圆周有120个器件和相邻器件之间有100μm空隙的PET扫描器。
图10画出PET扫描器的检测器100的部分视图。所述PET扫描器的检测器100有环的形状且它如上面所描述,包括用于检测高能光子的多个系统80。系统的至少一些器件包括具有等腰梯形形状的基座层,它允许获得环的形状。
基本上,系统80是被堆叠以形成环,就是说,多个系统以器件10的侧边缘彼此相邻被布置形成环。这样,系统的形状形成密封的几何形状。
图11画出用于PET扫描器的整个环100(就是γ射线检测器)。在该例子中,检测器100有66cm的视场(FoV)与80cm的标准尺寸台架。它沿径向方向有4cm的CdTe检测器11,能够有效地阻挡511keV的γ射线的90%。这意味着用这种器件的PET事件的检测效率是81%。
因此,PET扫描器包括围绕病人躺卧其上的床的系统80的环100。每一系统(它能够被理解为环的扇区)包括至少一个模块60,而每一模块包括多个器件10。
包括本发明的器件10的PET扫描器的操作如下。PET检测器100由许多器件10构成。在母核素衰变之后,具有能量约1MeV的正电子被释放。这些正电子在与人身体中的电子湮灭之前传播的平均距离约1mm。该湮灭过程产生2个沿相反方向运动各有能量为511keV(电子-正电子对的静质量)的γ光子。该两束γ射线被固态检测器记录,从而能够构造响应线(LOR)。由于按照本发明的检测器是三维的这一事实,能够避免所谓的视差效应。放射性核素特别大积累的汇聚点,从而特别大的正电子发射体能够被定位,因为许多LOR将在该“同一点”相交。多亏改进的检测器,LOR的重构能够被改进,且放射性核素的浓度(这可以指示癌细胞的存在)的检测质量也能够被改进。
从上面的解释和从图9-11应当清楚,γ射线将主要地在固态检测器的薄的一侧,即,沿垂直于施加到检测器的电场的方向撞击固态检测器。
在检测器10的大的表面有平行四边形(举例说,正方形或矩形)形状的情形中,能够获得用于γ照相机的γ射线检测器。
因此,图12示出用于γ照相机的γ射线检测器120。所述检测器120如上面所描述,包括多个系统80。该多个系统以器件的侧边缘彼此相邻被布置形成矩形棱镜。在图12的情形中,γ射线检测器120包括30个系统,而这一点将导致检测器的尺寸接近66cm×66cm。检测器的尺寸能够做得更大是没有问题的。由于器件10、模块60和系统80的模块性,所以这是可能的。
包括本发明的器件10的γ照相机的操作如下。
γ照相机被预期用于检测能量从140keV(99Tcm)到777keV(82Rb)范围内的光子,取决于所使用的放射性核素的类型。合适的准直器可以被放置在检测器的前面,以选择入射到照相机上的光子的方向。高能光子与器件10相互作用,而只有关于被沉淀的能量和体元坐标的信息被使用。该模态中的时基信息是没有用的。
在SPECT成像中,γ射线照相机和发射正电子的放射性核素以及只有一种511keV光子被使用。SPECT的图像,通常是用γ照相机在不同角度上拍摄的多个图像获得的。
图13画出康普顿照相机130的例子。康普顿散射发生在第一平面,而第二平面是如上面所描述的γ射线检测器120,X射线被散射后在那里被俘获。
用于康普顿照相机的检测器的这种设计的优点是:
-用于γ射线的检测器120能够被制成如需要的那样厚,以改进它对高能γ(射线)的吸收效率;
-γ射线检测器120的尺寸能够被制成如需要的那样大;
-检测器120对宽能量范围有良好的响应;
-检测器120中的视差效应能够被避免,因为检测器有小的体元体积。在示出的例子中,它是1mm×1mm×2mm。如有必要,它还可以小得多,因为这与实际上有1μm空间分辨率的像素电极的构图(patterning)有关。
按照本发明的器件、模块、系统和检测器的另一个有优势的应用,可以是在CT扫描中。在CT扫描中,X射线源被放置在病人身体的一侧,而检测器被放置在另一侧。然后,X射线源和检测器相对于病人移动。被检测器俘获的光子,给出被病人身体部分的组织(器官、骨头等等)衰减的X射线的指示。使用不同组织的不同衰减率,能够获得病人的图像。
CT扫描中使用的传感器,通常必须在80keV-140keV能量范围内检测光子。在按照本发明的器件中使用像素化固态检测器的一个优点是,像素的大小能够在同一检测器内变化(对基于闪烁晶体的现有技术检测器,这是不可能的)。在本发明的优选实施例中,用于CT扫描的检测器,是由多个器件(或模块,或系统)构成的,其中像素的大小在单个检测器内变化。最好是,在器件“前面”的像素大小(光子在那里进入检测器),该像素大小被缩减,例如100μm×100μm。然后像素大小逐渐向检测器的“后面”增加。例如,下一行像素可以是100μm×200μm,接着的行是100μm×300μm。
这种配置的优点是,利用降低数量的像素通道,有较低能量的光子仍然能够以增加的精确度和降低的视差被俘获,而有较高能量的光子可能走向器件后面时被俘获。
因为CT扫描中光子的能量范围(80keV-140keV),与例如PET扫描(511keV)相比是小的,所以检测器的高度(图9b中被定义为H)还能够更小(当使用相同检测器材料时)。如前面所描述,用于组装被应用于PET扫描器中的模块的所有器件,各设置4个像素化固态检测器(在图1a所示配置中;对图1b的配置是8个固态检测器)。每一固态检测器有1cm×2cm×0.2cm的大小。在该情形中检测器总高度因而是4cm。在CT扫描器的情形中,例如,有0.5cm×2cm×0.2cm大小的唯一一个CdTe检测器(使用图1a所示配置)必须被提供,以接近100%地俘获由CT扫描器的X射线源发射的光子。显然,在图1b所示配置中,这样大小的两个检测器应当被提供。
虽然本发明为了说明的目的已经详细地被描述,但应当理解,这种细节仅仅为了该目的,本领域熟练的技术人员在不偏离本发明的范围下,能够对其中作出改变。

Claims (16)

1.一种用于检测高能光子的模块,包括:
多个器件(10),用于检测高能光子,所述器件的每一个包括:用于检测高能光子的一个或多个像素化固态检测器(11);用于提供高电压使所述固态检测器极化的装置;连接到所述像素化固态检测器(11)的至少一个读出单元(30);连接到所述读出单元(30)的用于数据输入和输出的输入/输出单元(12);和用于安装像素化固态检测器(11)、读出单元(30)、及输入/输出单元(12)的基座层(13),其中
所述器件按这样的方式被布置并相互连接,使器件(10)的组合像素化固态检测器(11)能够给出高能光子撞击点的三维坐标。
2.按照权利要求1的模块(60),其中器件的基座层(13)有等腰梯形形状。
3.按照权利要求2的模块(60),其中至少一个像素化固态检测器(11)有等腰梯形形状。
4.按照权利要求1的模块(60),其中器件的基座层(13)有矩形形状。
5.按照权利要求1-4任一项的用于检测高能光子的模块(60),其中多个器件(10)的输/入输出单元(12)被连接到单个接口(61)。
6.按照权利要求5的用于检测高能光子的模块(60),其中至器件(10)的固态检测器(11)的少一部分相对于彼此以交错的方式被布置。
7.按照权利要求1-6任一项的模块(60),包括器件(10),其中像素化固态检测器(11)、该读出单元(30)和输入/输出信号单元(12)被装载在基座层(13)的顶侧上,且其中该基座层(13)的底侧,包括用于提供高电压使被安装在相邻器件(10)上的像素化固态检测器(11)极化的装置。
8.按照权利要求1-7任一项的模块(60),包括器件(10),其中固态检测器(11)被安装在读出单元(30)上。
9.按照权利要求8的模块(60),其中该器件(10)还包括被安装在固态检测器(11)和读出单元(30)之间的中间层,以适用于固态检测器(11)的像素衬垫和读出单元(30)上对应的像素通道之间的任何偏移。
10.按照权利要求1-9任一项的模块,其特征在于,它包括至少一个器件(10),该器件(10)包括至少一个像素化固态检测器(11),其中像素的大小是变化的。
11.一种用于检测高能光子的系统(80),包括按照权利要求1-10任一项的多个模块(60),其中该模块的多个接口(61)通过适当的连接器(62、71)被连接到单个的接口总线(70)。
12.按照权利要求11的系统(80),只包括按照权利要求2或3的模块(60)。
13.按照权利要求11的系统(80),只包括按照权利要求4的模块(60)。
14.一种用于PET扫描器的环形检测器(100),包括按照权利要求12的多个系统(80)的。
15.一种γ照相机,包括检测器(120),该检测器(120)包括按照权利要求13的多个系统(80)。
16.一种康普顿照相机,包括检测器(120),该检测器(120)包括按照权利要求13的多个系统(80)。
CN2009801425754A 2008-09-23 2009-09-09 用于检测高能光子的器件 Active CN102203636B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US9927108P 2008-09-23 2008-09-23
EP08164936 2008-09-23
US61/099,271 2008-09-23
EP08164936.0 2008-09-23
PCT/EP2009/061663 WO2010034619A1 (en) 2008-09-23 2009-09-09 Device for detecting highly energetic photons

Publications (2)

Publication Number Publication Date
CN102203636A true CN102203636A (zh) 2011-09-28
CN102203636B CN102203636B (zh) 2013-07-31

Family

ID=40589706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801425754A Active CN102203636B (zh) 2008-09-23 2009-09-09 用于检测高能光子的器件

Country Status (5)

Country Link
US (1) US8497484B2 (zh)
EP (1) EP2347285B1 (zh)
JP (1) JP5738188B2 (zh)
CN (1) CN102203636B (zh)
WO (1) WO2010034619A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837881A (zh) * 2012-11-20 2014-06-04 李洪弟 正电子发射断层成像的检测器模组及其制造方法
CN105229491A (zh) * 2013-03-25 2016-01-06 法国原子能及替代能源委员会 检测电离粒子的轨迹的检测器
CN107771058A (zh) * 2015-01-26 2018-03-06 伊利诺斯工具制品有限公司 线性检测器阵列的间隙分辨率
CN111227858A (zh) * 2020-01-22 2020-06-05 东软医疗系统股份有限公司 检测器模块、检测器及ct设备
CN111227857A (zh) * 2020-01-22 2020-06-05 东软医疗系统股份有限公司 检测器模块、检测器及ct设备
CN111227859A (zh) * 2020-01-22 2020-06-05 东软医疗系统股份有限公司 检测器模块、检测器及ct设备

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012103550A2 (en) * 2011-01-28 2012-08-02 Jun Seung Ik Radiation detecting panel
US9515118B2 (en) 2012-01-30 2016-12-06 Rayence Co., Ltd. Radiation detecting panel
US9561019B2 (en) 2012-03-07 2017-02-07 Ziteo, Inc. Methods and systems for tracking and guiding sensors and instruments
WO2014020471A2 (en) 2012-07-30 2014-02-06 Koninklijke Philips N.V. High spatial resolution mode solid state positron emission tomography (pet) scanner
DE102013210082B3 (de) * 2013-05-29 2014-05-15 Helmholtz-Zentrum Dresden - Rossendorf E.V. Anordnung zur Kontaktierung eines CZT-Kristalls zur Detektion von Gammastrahlung in einer Compton-Kamera und dessen Verwendung in Detektormodulen
RU2665125C2 (ru) 2013-10-22 2018-08-28 Конинклейке Филипс Н.В. Рентгеновская система, в частности система томосинтеза, и способ получения изображения объекта
US10617401B2 (en) 2014-11-14 2020-04-14 Ziteo, Inc. Systems for localization of targets inside a body
US9606245B1 (en) 2015-03-24 2017-03-28 The Research Foundation For The State University Of New York Autonomous gamma, X-ray, and particle detector
US9696439B2 (en) 2015-08-10 2017-07-04 Shanghai United Imaging Healthcare Co., Ltd. Apparatus and method for PET detector
CZ29250U1 (cs) * 2016-01-29 2016-03-08 Advacam S.R.O. Vrstvený pixelový detektor ionizujícího záření
CN109475339B (zh) 2016-07-28 2023-12-29 阿尔特斯物理能源研究所 用于监测代谢活动的系统和方法及用于检测光子的检测器
DE102016221481B4 (de) * 2016-11-02 2021-09-16 Siemens Healthcare Gmbh Strahlungsdetektor mit einer Zwischenschicht
EP3355355B1 (en) 2017-01-27 2019-03-13 Detection Technology Oy Asymmetrically positioned guard ring contacts
US10481284B2 (en) * 2017-10-19 2019-11-19 Kromek Group, PLC Modular gamma imaging device
US10598801B2 (en) * 2017-10-19 2020-03-24 Kromek Group, PLC Modular gamma imaging device
WO2020032924A1 (en) * 2018-08-07 2020-02-13 Siemens Medical Solutions Usa, Inc. Adaptive compton camera for medical imaging
WO2020032921A1 (en) * 2018-08-07 2020-02-13 Siemens Medical Solutions Usa, Inc. Compton camera with segmented detection modules
WO2020210532A1 (en) 2019-04-09 2020-10-15 Ziteo, Inc. Methods and systems for high performance and versatile molecular imaging
EP3964872B1 (en) 2020-09-07 2024-07-03 Institut de Fisica d'Altes Energies (IFAE) Devices and methods for medical imaging
US11647973B2 (en) * 2021-05-04 2023-05-16 Siemens Medical Solutions Usa, Inc. Three-dimensional tileable gamma ray detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362482B1 (en) * 1997-09-16 2002-03-26 Advanced Scientific Concepts, Inc. High data rate smart sensor technology
US20050061984A1 (en) * 2003-09-23 2005-03-24 Ge Medical Systems Global Technology Company, Llc Method and apparatus for improving slice to slice resolution by staggering cells in the Z-axis
US20070057191A1 (en) * 2003-09-30 2007-03-15 Yuuichirou Ueno Radiological imaging system
US20080042070A1 (en) * 2004-09-30 2008-02-21 Levin Craig S Semiconductor Crystal High Resolution Imager

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236050B1 (en) * 1996-02-02 2001-05-22 TüMER TüMAY O. Method and apparatus for radiation detection
JP2000019254A (ja) * 1998-07-03 2000-01-21 Toshiba Corp 放射線診断装置
FR2793954B1 (fr) 1999-05-19 2003-06-13 Commissariat Energie Atomique Dispositif de detection de rayonnement a forte dynamique
US6586744B1 (en) 2000-11-24 2003-07-01 Marconi Medical Systems, Inc. Method of cooling high density electronics
JP4582022B2 (ja) * 2002-10-07 2010-11-17 株式会社日立製作所 放射線検出器,放射線検出素子及び放射線撮像装置
JP3863872B2 (ja) * 2003-09-30 2006-12-27 株式会社日立製作所 陽電子放出型断層撮影装置
US7634061B1 (en) * 2004-03-26 2009-12-15 Nova R & D, Inc. High resolution imaging system
JP3863890B2 (ja) * 2004-07-02 2006-12-27 株式会社日立製作所 陽電子放出型断層撮影装置
DE102005037902A1 (de) 2005-08-10 2007-02-15 Siemens Ag Detektormodul, Detektor und Computertomographiegerät
JP2007155563A (ja) * 2005-12-07 2007-06-21 Acrorad Co Ltd 放射線画像検出装置
US8581200B2 (en) * 2006-11-17 2013-11-12 Koninklijke Philips N.V. Radiation detector with multiple electrodes on a sensitive layer
US7532703B2 (en) * 2007-03-28 2009-05-12 General Electric Company Energy discriminating detector with direct conversion layer and indirect conversion layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362482B1 (en) * 1997-09-16 2002-03-26 Advanced Scientific Concepts, Inc. High data rate smart sensor technology
US20050061984A1 (en) * 2003-09-23 2005-03-24 Ge Medical Systems Global Technology Company, Llc Method and apparatus for improving slice to slice resolution by staggering cells in the Z-axis
US20070057191A1 (en) * 2003-09-30 2007-03-15 Yuuichirou Ueno Radiological imaging system
US20080042070A1 (en) * 2004-09-30 2008-02-21 Levin Craig S Semiconductor Crystal High Resolution Imager

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837881A (zh) * 2012-11-20 2014-06-04 李洪弟 正电子发射断层成像的检测器模组及其制造方法
CN103837881B (zh) * 2012-11-20 2016-06-29 李洪弟 正电子发射断层成像的检测器模组及其制造方法
CN105229491A (zh) * 2013-03-25 2016-01-06 法国原子能及替代能源委员会 检测电离粒子的轨迹的检测器
CN107771058A (zh) * 2015-01-26 2018-03-06 伊利诺斯工具制品有限公司 线性检测器阵列的间隙分辨率
CN107771058B (zh) * 2015-01-26 2020-11-24 伊利诺斯工具制品有限公司 线性检测器阵列的间隙分辨率
CN111227858A (zh) * 2020-01-22 2020-06-05 东软医疗系统股份有限公司 检测器模块、检测器及ct设备
CN111227857A (zh) * 2020-01-22 2020-06-05 东软医疗系统股份有限公司 检测器模块、检测器及ct设备
CN111227859A (zh) * 2020-01-22 2020-06-05 东软医疗系统股份有限公司 检测器模块、检测器及ct设备

Also Published As

Publication number Publication date
WO2010034619A1 (en) 2010-04-01
JP2012503190A (ja) 2012-02-02
EP2347285B1 (en) 2019-01-23
US8497484B2 (en) 2013-07-30
US20110253901A1 (en) 2011-10-20
CN102203636B (zh) 2013-07-31
EP2347285A1 (en) 2011-07-27
JP5738188B2 (ja) 2015-06-17

Similar Documents

Publication Publication Date Title
CN102203636B (zh) 用于检测高能光子的器件
US9784850B2 (en) Multimodal imaging apparatus
US6448559B1 (en) Detector assembly for multi-modality scanners
JP6854805B2 (ja) ハイブリッドpet/ctイメージング検出器
RU2381525C2 (ru) Система позитрон-эмиссионной томографии
US5773829A (en) Radiation imaging detector
US6399951B1 (en) Simultaneous CT and SPECT tomography using CZT detectors
US9575192B1 (en) Optical channel reduction method and apparatus for photodetector arrays
US7385201B1 (en) Strip photon counting detector for nuclear medicine
US6303935B1 (en) Combination PET/SPECT nuclear imaging system
US8481947B2 (en) Method and system for nuclear imaging using multi-zone detector architecture
CN109475339B (zh) 用于监测代谢活动的系统和方法及用于检测光子的检测器
CN109690353A (zh) 用于x射线和核成像的组合成像探测器
US8809790B2 (en) Method and system for nuclear imaging using multi-zone detector architecture
Sajedi et al. Limited-angle TOF-PET for intraoperative surgical applications: proof of concept and first experimental data
Fiorini et al. The DRAGO gamma camera
US20200100741A1 (en) Dual image system suitable for oncological diagnoses and real time guided biopsies
Cates et al. Direct conversion semiconductor detectors in positron emission tomography
Saoudi et al. A Novel APD-based detector module for multi-modality PET/SPECT/CT scanners
ES2717179T3 (es) Dispositivo para detectar fotones de alta energía
Álvarez Pastor et al. Device for Detecting highly energetic photons
Hsu Investigation of Advanced Clinical PET System Designs
Shen Experimental image of pinhole using CdZnTe detector
Celler Single photon imaging and instrumentation
Mannheim et al. Small Animal PET Cameras—Development, Technology, PET/CT, PET/MRI

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20141202

Address after: Spain Bellaterra

Patentee after: Inst Fisica D. Altes En

Patentee after: X Ray Imatek S. L.

Address before: Spain Bellaterra

Patentee before: Inst Fisica D. Altes En

Patentee before: Consejo Superior de Investigaciones Cientificas

Patentee before: X Ray Imatek S. L.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20170309

Address after: Spain Bellaterra

Patentee after: Inst Fisica D. Altes En

Address before: Spain Bellaterra

Patentee before: Inst Fisica D. Altes En

Patentee before: X Ray Imatek S. L.