CN102201462A - 包括柔性基板或硬性基板的光电装置及其制造方法 - Google Patents

包括柔性基板或硬性基板的光电装置及其制造方法 Download PDF

Info

Publication number
CN102201462A
CN102201462A CN2011100673718A CN201110067371A CN102201462A CN 102201462 A CN102201462 A CN 102201462A CN 2011100673718 A CN2011100673718 A CN 2011100673718A CN 201110067371 A CN201110067371 A CN 201110067371A CN 102201462 A CN102201462 A CN 102201462A
Authority
CN
China
Prior art keywords
resilient coating
window layer
type window
electrooptical device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011100673718A
Other languages
English (en)
Inventor
明承烨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEO LAB CONVERGENCE Inc
Original Assignee
KISCO Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KISCO Co filed Critical KISCO Co
Publication of CN102201462A publication Critical patent/CN102201462A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • H01L31/03765Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table including AIVBIV compounds or alloys, e.g. SiGe, SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • H01L31/03767Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table presenting light-induced characteristic variations, e.g. Staebler-Wronski effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • H01L31/204Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table including AIVBIV alloys, e.g. SiGe, SiC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明的光电装置包括:第一电极;第二电极;第一电极和第二电极之间依次层压的p型窗层、缓冲层、吸光层以及n型层。当所述p型窗层由氢化非晶氧化硅构成时,所述缓冲层则由氢化非晶碳化硅或氢化非晶氧化硅构成;当所述p型窗层由氢化非晶碳化硅构成时,所述缓冲层则由氢化非晶氧化硅构成。

Description

包括柔性基板或硬性基板的光电装置及其制造方法
技术领域
本发明涉及一种包括柔性基板或硬性基板的光电装置及其制造方法。
背景技术
非晶硅(a-Si)光电装置自1976年首次面世以来,由于氢化非晶硅(a-Si:H)在可视光区域的高光感应度(photosensitivity)、光学能隙(optical band gap)的调节容易性、低价、低温、大面积施工可能性等特点,在各领域广泛地应用。
但是,后来发现氢化非晶硅(a-Si:H)具有在光照下劣化(degradation)非常严重的光辐射引致性能衰退效应(Stabler-Wronski effect)这一非常致命的弱点。
因此,为了减少非晶硅系物质的光辐射引致性能衰退效应(Stabler-Wronskieffect)尝试了各种努力,其结果发现了将硅烷(SiH4)氢稀释(H2 dilution)的方法。
另一方面,为了开发具有高效率的薄膜光电装置,需要劣化较小的吸光层以及使吸光层形成强电场(electric field),且可视光区域的光吸收最少的p型窗层(window layer)。因此,对p型窗层和缓冲层进行广泛的研究。
发明内容
本发明的目的在于,提供一种可提高p型窗层和吸光层之间的界面特性的光电装置及其制造方法。
本发明要解决的技术课题并不限于所述记载的内容,本发明所属技术领域的普通技术人员,都可以通过下面的说明,理解以上未涉及到的其他技术课题。
本发明的光电装置包括:第一电极;第二电极;所述第一电极和所述第二电极之间依次层压的p型窗层、缓冲层、吸光层以及n型层。其中,当所述p型窗层由氢化非晶氧化硅构成时,所述缓冲层由氢化非晶碳化硅或氢化非晶氧化硅构成,当所述p型窗层由氢化非晶碳化硅构成时,所述缓冲层由氢化非晶氧化硅构成。
本发明的光电装置的制造方法包括:形成第一电极的步骤;在所述第一电极上按照从光入射一侧依次层压p型窗层、缓冲层、吸光层以及n型层的方式形成所述p型窗层、缓冲层、吸光层以及n型窗层的步骤;在所述光入射一侧依次层压的P型窗层、缓冲层、吸光层以及n型层上形成第二电极的步骤。其中,当所述p型窗层由氢化非晶氧化硅构成时,所述缓冲层由氢化非晶碳化硅或氢化非晶氧化硅构成,当所述p型窗层由氢化非晶碳化硅构成时,所述缓冲层由氢化非晶氧化硅构成。
本发明利用p型缓冲层可以有效减少p型窗层和吸光层之间的界面上的再结合,因此可以提高光电装置的光转换效率。
附图说明
图1a和图1b为根据本发明实施例的p-i-n型以及n-i-p型薄膜光电装置的截面图;
图2表示根据本发明实施例的光电装置p型窗层的制造方法;
图3表示根据本发明实施例的光电装置p型缓冲层的制造方法。
附图标号说明
10:基板
20:第一电极
30a:p型窗层
30b:缓冲层
40:吸光层
50:n型层
60:第二电极
具体实施方式
下面结合附图详细说明根据本发明实施例的硅薄膜光电装置及其制造方法。
图1a和图1b为根据本发明实施例的p-i-n型以及n-i-p型薄膜光电装置的截面图。
如图1a和图1b所示,根据本发明实施例的光电装置包括,基板10、第一电极20、p型窗层30a、缓冲层30b、吸光层40、n型层50以及第二电极60。
根据本发明实施例的光电装置包括,第一电极20和第二电极60中从光先入射一侧依次层压的p型窗层30a、缓冲层30b、吸光层40以及n型层50。
即,p-i-n型光电装置为例,光通过基板10和第一电极20入射。因此,p-i-n型光电装置包括,从第一电极20开始依次层压的p型窗层30a、缓冲层30b、吸光层40以及n型层50。
另外,n-i-p型光电装置为例,光通过第二电极60入射。因此,n-i-p型光电装置包括,从第二电极60开始依次层压的p型窗层30a、缓冲层30b、吸光层40以及n型层50。
根据本发明实施例的光电装置的基板10可以是金属箔(foil)或聚合物等柔性(flexible)基板,也可以是像玻璃一样的硬性(inflexible)基板。
p-i-n型光电装置的第一电极20和n-i-p型光电装置的第二电极60具有透光性。具有透光性的第一电极20或第二电极60,可以由ZnO等透明导电性氧化物构成。透明导电性氧化物通过化学气相沉积法形成时,透明导电性氧化物的表面上有可能形成凹凸。透明导电性氧化物表面的凹凸提高光捕捉效果(light trapping effect)。
另一方面,p-i-n型光电装置的第二电极60和n-i-p型光电装置的第一电极20可以由通过溅射法沉积的金属构成。
p型窗层30a可以由轻微氢稀释的非晶碳化硅(p-a-SiC:H)或轻微氢稀释的非晶氧化硅(p-a-SiO:H)构成。
此时,为了使光电装置具有高效率,缓冲层30b的氢稀释相对强于p型窗层30a的氢稀释。因此,缓冲层30b的氢浓度高于p型窗层30a的氢浓度。另外,缓冲层30b的杂质浓度低于p型窗层30a的杂质浓度。此时,p型窗层30a和缓冲层30b的氢含量可以为10atomic%~25atomic%。另外,p型窗层30a的杂质浓度可以为1x1019cm-3~1x1021cm-3,缓冲层30b的杂质浓度可以为1x1016cm-3~5x1019cm-3
例如,当p型窗层30a由氢化非晶氧化硅构成时,缓冲层30b由氢化非晶碳化硅或氢化非晶氧化硅构成。另外,p型窗层30a由氢化非晶碳化硅构成时,缓冲层30b由氢化非晶氧化硅构成。此时,缓冲层30b的氢稀释强于p型窗层30a的氢稀释,其杂质浓度低于p型窗层30a的杂质浓度以及氧或碳浓度。
下面参照附图详细说明包括p型窗层30a和缓冲层30b的光电装置的制造方法。
图2表示根据本发明实施例的光电装置的p型窗层30a的制造方法,图3表示根据本发明实施例的光电装置的p型缓冲层30b的制造方法。
p-i-n型光电装置为例,基板10上形成第一电极20,第一电极20上形成p型窗层30a。缓冲层30b形成在p型窗层30a上。之后,吸光层40、n型层50以及第二电极60可以依次形成。
n-i-p型光电装置为例,基板10上形成第一电极20,第一电极20上n型层50比p型窗层30a先形成。吸光层40在n型层50上形成,之后依次形成缓冲层30b、p型窗层30a以及第二电极60。
这种p型窗层30a、缓冲层30b、吸光层40以及n型层50可以作为多重接合光电装置的上层电池使用。此时,上层电池是包括在多重接合光电装置的多个单元电池中光最先入射的单元电池。
根据本发明实施例的p型窗层30a包括氧或碳,因此光学能隙大,而且缓冲层30b防止p型窗层30a和吸光层40之间的急剧的双重接合。
由此,p型窗层30a在吸光层40上形成强电场(electric field),而且其本身的可视光吸收变得最少。另外,由于能够防止急剧的双重接合,因此降低p型窗层30a和吸光层40的界面之间的再结合损失。
如图2所示,为了沉积p型窗层30a,基板10被移送到p层(p型窗层)沉积腔室(S11)。
此时,p层沉积腔室基板支架(holder)的温度应该设定为沉积温度并要保持(S12)。沉积温度为轻微氢稀释的p型窗层30a沉积时的基板10的实际温度,沉积温度可以为100℃~200℃。如果温度低于100℃,p型窗层30a的沉积率下降,沉积缺陷(defect)密度高的劣质薄膜。如果温度高于200℃,由高能量氢等离子造成的透明电极的蚀刻严重,因此位于p型窗层30a下面的薄膜的原子在光电装置的制作过程中,可能会扩散到以后形成的其它薄膜。这些要素起到杂质的作用,降低光电装置的量子效率(quantum efficiency),因此降低光电转换效率(conversion efficiency)。
例如,p-i-n型光电装置为例,当第一电极20由氧化锌构成时,起到氧化锌的浅施主(shallow donor)作用的氢在温度高于200℃的条件下,从氧化锌的表面或晶粒间(grain boundary)脱离,可能会成为增加第一电极20的电阻率的原因。
温度低于200℃的条件下,第一电极20的折射率可能降到3.0以下,因此可能造成第一电极20和吸光层40之间通过折射率匹配形成的防反射效果,增加光电装置的短路电流。
基板10被移送到p层沉积腔室后,通过涡轮分子泵(turbo molecular pump)等高真空泵的运行,p层沉积腔室的压力达到接近于真空的基准压力(base pressure)(S13)。此时,基准压力可以为10-7~10-5Torr。基准压力低于10-7Torr时,虽然可以沉积少受异物污染(contamination)的优质薄膜,但是由于沉积时间较长,因此降低生产效率。另外,基准压力高于10-5Torr时,由于受异物污染无法沉积优质的薄膜。
达到基准压力后,反应气体流入沉积腔室内,随着反应气体的流入沉积腔室的压力达到沉积压力(S14)。反应气体包括,硅烷(SiH4)、氢(H2)、三族杂质气体、碳或氧原料气体。三族杂质气体可以使用,乙硼烷(B2H6)、三甲硼烷(TMB,TriMethylBoron)、三乙硼烷(TEB,TriEthylBoron)等。碳原料气体可以使用,甲烷(CH4)、乙烯(C2H4)、乙炔(C2H2)等,氧原料气体可以使用,O2或CO2。各原料气体的流量通过各自的流量控制器(MFC;Mass Flow Controller)控制。
达到设定的沉积压力后,通过与沉积腔室连接的压力控制器和角阀将沉积腔室的压力维持在恒定的的水平。沉积压力被设定为能够获得均匀的薄膜厚度(uniformity)、优质的质量以及适合沉积率的值,沉积压力可以为0.4~2.5Torr。如果沉积压力小于0.4Torr,p型窗层30a的厚度均匀度和沉积率会下降。另外,如果沉积压力大于2.5Torr,由于沉积腔室内的等离子电极上产生粉末或气体使用量增加,因此提高制造成本。
并且,如果沉积腔室内的压力稳定在沉积压力,采用频率为13.56MHz的射频等离子体增强化学气相沉积(RF PECVD,Radio Frequency Plasma Enhanced Chemical Vapor Deposition)法或频率大于13.56MHz的甚高频等离子体增强化学气相沉积(VHF PECVD,Very High Frequency Plasma Enhanced Chemical Vapor Deposition)法,分解沉积腔室内的反应气体(S15)。由此,轻微氢稀释的p型窗层30a会被沉积(S16)。
p型窗层30a的厚度可以为12nm~17nm。如果p型窗层30a的厚度小于12nm,导电率低,因此无法在纯吸光层上形成强电场,导致光电装置的开路电压下降。另外,如果p型窗层30a的厚度大于17nm,p型窗层30a中的光吸收增加,因此降低短路电流,导致转换效率下降。在沉积过程中,反应气体的组成保持恒定,因此形成光学能隙恒定的被氢稀释的p型窗层30a。
根据本发明实施例的p型窗层30a的导电率约为1x10-6S/cm,光学能隙约为2.0eV。形成p型窗层30a时,作为氢稀释比指标的硅烷浓度可以为4%~10%。此时,硅烷浓度是相对于硅烷流量的硅烷和氢流量之和的比。
硅烷浓度低于4%时,沉积初期活性氢离子对位于p型窗层30a下面的薄膜的损伤会增加。以p-i-n型光电装置的情况,位于p型窗层30a下面的薄膜可以是第一电极20,以n-i-p型光电装置的情况,位于p型窗层30a下面的薄膜可以是缓冲层30b。硅烷浓度大于10%时,p型窗层30a的沉积速度过快,因此难以控制其厚度,而且窗层组织内无秩序度增加,会增加悬空键(dangling bond)等缺陷密度。
另外,三族杂质气体和碳或氧原料气体的流量被设定为可同时满足p型窗层30a的电子特性以及光学特性的值。
三族杂质气体的浓度增加时,导电率会增加,但光学能隙会减少。相反,碳或氧原料气体的浓度增加时,导电率会降低,但光学能隙会增加。
关闭等离子,p型窗层30a的沉积就会结束(S17)。
如图3所示,制造缓冲层30b的方法如下。
形成缓冲层30b所需的反应气体包括,硅烷(SiH4)、氢(H2)、三族杂质气体、碳或氧原料气体。关于三族杂质气体、碳原料气体和氧原料气体,前面已经提及过,这里就不再进行说明。
在本发明的实施例中,当p型窗层30a由氢化非晶氧化硅构成时,缓冲层30b由氢化非晶碳化硅或氢化非晶氧化硅构成。因此,如果形成p型窗层30a时使用氧原料气体,则碳原料气体或氧原料气体将会用于缓冲层30b的形成。
另外,在本发明的实施例中,当p型窗层30a由氢化非晶碳化硅构成时,缓冲层30b由氢化非晶氧化硅构成。因此,如果形成p型窗层30a时使用碳原料气体,则氧原料气体被用于缓冲层30b的形成。与此同时,p型窗层30a的氢稀释弱于缓冲层30b的氢稀释,而且掺杂的杂质浓度会更高。另外,缓冲层30b的氧含量可能小于p型窗层30a的碳含量。
由于形成这样的p型窗层30a和缓冲层30b,因此形成p型窗层30a和缓冲层30b时,反应气体所含的气体的设定流量和沉积压力会不同。
形成p型窗层30a后再形成缓冲层30b,或形成缓冲层30b后再形成p型窗层30a时,由于反应气体所含的气体的设定流量和沉积压力会不同,因此完全开启与沉积腔室的压力控制器连接的角阀,并将各个流量控制器的设定改为缓冲层沉积流量或p型窗层30a的沉积流量。
由此,将压力控制器的设定压力改为缓冲层沉积压力,再通过调节角阀控制沉积压力(S21)。考虑到薄膜厚度的均匀度、特性以及适合沉积率等,缓冲层30b的沉积压力可以设定为0.4Torr~2.5Torr。缓冲层30b的沉积压力小于0.4Torr时,薄膜的均匀度和沉积率会降低。另外,缓冲层30b的沉积压力大于2.5Torr时,沉积腔室的等离子电极上会产生粉末,或气体使用量增加,因此提高制造成本(production cost)。
如果沉积腔室内的压力达到沉积压力并保持稳定,通过RF PECVD或VHFPECVD方法分解沉积腔室内的反应气体(S22)。因此,会沉积氢稀释强于p型窗层30a的缓冲层30b(S23)。
缓冲层30b的厚度可以为3nm~8nm。缓冲层30b的厚度小于3nm时,缓冲层3b无法稳定地发挥降低在p型窗层30a和吸光层40之间的界面上的再结合的作用。缓冲层30b的厚度大于8nm时,由于缓冲层30b的光吸收增加,导致短路电流降低,串联(series)电阻增加,因此降低转换效率。
在沉积缓冲层30b的过程中,反应气体所含的气体流量维持在恒定的水平,因此可以形成具有一定的光学能隙的缓冲层30b。形成缓冲层30b时,作为氢稀释比指标的硅烷浓度值可以为0.5%~5%。硅烷浓度值低于0.5%时,高能量氢离子会损伤位于缓冲层30b下面的薄膜。硅烷浓度值高于5%时,沉积速度加快,因此难以控制缓冲层30b的厚度,且氢稀释低,导致导电率下降,因此可能无法在纯吸光层上形成强电场。另外,由于缓冲层30b组织的无秩序度增加,因此悬空键(dangling bond)的密度可能会提高。
另一方面,为了防止p型窗层30a所含的杂质扩散到纯吸光层40,导致短波长区域的量子效率降低,缓冲层30b的杂质浓度可以低于p型窗层30a的杂质浓度。
如上所述,既能防止杂质扩散到吸光层40,又能确保缓冲层30b导电率所需的相对于硅烷流量的杂质原料气体的流量比可以为100ppm~2000ppm。形成缓冲层30b时,如果相对于硅烷流量的杂质原料气体的流量比为100ppm以上,可以防止内置电位(built-in potential)的降低。另外,形成缓冲层30b时,如果相对于硅烷流量的杂质原料气体的流量比为2000ppm以下,可以防止杂质从p型窗层30a和吸光层40的界面过度扩散到吸光层40。
形成p型窗层30a时,相对于硅烷流量的杂质原料气体的流量比可以为5000ppm~50000ppm。形成p型窗层30a时,如果相对于硅烷流量的杂质原料气体的流量比为5000ppm以上,则可以防止由于导电率下降引起的开路电压和填充因子(fill factor)的恶化。另外,如果相对于硅烷流量的杂质原料气体的流量比为50000ppm以下,则可以防止由于悬空键再结合以及吸收系数过度增加。
另外,为了防止氢稀释较弱的p型窗层30a和吸光层40的光学能隙或碳或氧浓度的急剧变化,缓冲层30b的碳或氧浓度可以为0.5atomic%~3atomic%。
缓冲层30b的碳或氧浓度低于0.5atomic%时,p型窗层30a和缓冲层30b之间的浓度差距拉大,在p型窗层30a和缓冲层30b之间界面的缺陷(defect)密度提高,导致再结合增加。缓冲层30b的碳或氧浓度大于3atomic%时,缓冲层30b的导电率减少,难以在吸光层40上形成强电场。
如前面所述,p型窗层30a的导电率约为1x10-6S/cm,光学能隙约为2.0eV。为了达到这样的p型窗层30a的导电率以及光学能隙,p型窗层30a的氧或碳含量可以为5atomic%~40atomic%。
关闭等离子,结束缓冲层30b的沉积(S24)。通过所有流量控制器的气体被切断,完全打开与压力控制器连接的角阀,因此残存于沉积腔室内的气体通过排气管排出。
另一方面,在本发明的实施例中,当p型窗层30a和缓冲层30b由氢化非晶氧化硅构成时,无需排气工序,在一个沉积腔室内可以形成p型窗层30a和缓冲层30b。即,形成p型窗层30a和缓冲层30b时,使用同类气体。因此,形成p型窗层30a或缓冲层30b后,另一个薄膜可以在不排放沉积腔室内气体的情况下,可以通过气体的流量控制和压力控制形成。
在本发明的实施例中,如果p型窗层30a由氢化非晶氧化硅构成,缓冲层30b由氢化非晶碳化硅或氢化非晶氧化硅构成,如果p型窗层30a由氢化非晶碳化硅构成,缓冲层30b由氢化非晶氧化硅构成。此时,缓冲层30b的氢稀释强于p型窗层30a的氢稀释,因此即使氧或碳含量少,也可以获得高的导电率和宽的光学能隙。由于缓冲层30b的氧或碳含量减少,因此扩散到吸光层40的氧或碳会减少,而且由光照射造成的劣化率也会减少。
上面,结合附图对本发明的实施例进行了说明。本发明所属的技术领域的技术人员,可以理解在不变更本发明的技术思想或者必要特征的情况下,可以由另外具体方式实施。因此,上述的实施例只是举例而已,本发明并不只局限于上述实施例。本发明的范围通过权利要求来体现。权利要求的意义及范围还有从等同概念出发的所有变更或者变更的方式应解释为包含在本发明的范围。

Claims (18)

1.一种光电装置,其特征在于,包括:
第一电极;
第二电极;
所述第一电极和所述第二电极之间依次层压的p型窗层、缓冲层、吸光层以及n型层;其中,
当所述p型窗层由氢化非晶氧化硅构成时,所述缓冲层由氢化非晶碳化硅或氢化非晶氧化硅构成;
当所述p型窗层由氢化非晶碳化硅构成时,所述缓冲层由氢化非晶氧化硅构成。
2.根据权利要求1所述的光电装置,其特征在于:所述缓冲层的氢浓度大于所述p型窗层的氢浓度。
3.根据权利要求2所述的光电装置,其特征在于:所述p型窗层和所述缓冲层的氢含量为10atomic%~25atomic%。
4.根据权利要求1所述的光电装置,其特征在于:所述缓冲层的杂质浓度低于所述p型窗层的杂质浓度。
5.根据权利要求4所述的光电装置,其特征在于:所述p型窗层的杂质浓度为1x1019cm-3~1x1021cm-3,所述缓冲层的杂质浓度为1x1016cm-3~5x1019cm-3
6.根据权利要求1所述的光电装置,其特征在于:所述p型窗层的厚度为12nm~17nm。
7.根据权利要求1所述的光电装置,其特征在于:所述缓冲层的厚度为3nm~8nm。
8.根据权利要求1所述的光电装置,其特征在于:所述p型窗层的氧或碳含量为5atomic%~40atomic%;所述缓冲层的碳或氧浓度为0.5atomic%~3atomic%。
9.一种光电装置的制造方法,其特征在于,包括:
形成第一电极的步骤;
在所述第一电极上按照从光入射一侧依次层压p型窗层、缓冲层、吸光层以及n型层的方式形成p型窗层、缓冲层、吸光层和n型层的步骤;
在所述光入射一侧依次层压的P型窗层、缓冲层、吸光层以及n型层上形成第二电极的步骤;其中,
当所述p型窗层由氢化非晶氧化硅构成时,所述缓冲层由氢化非晶碳化硅或氢化非晶氧化硅构成;
当所述p型窗层由氢化非晶碳化硅构成时,所述缓冲层由氢化非晶氧化硅构成。
10.根据权利要求9所述的光电装置的制造方法,其特征在于:所述缓冲层的氢浓度大于所述p型窗层的氢浓度。
11.根据权利要求9所述的光电装置的制造方法,其特征在于:所述缓冲层的杂质浓度低于所述p型窗层的杂质浓度。
12.根据权利要求9所述的光电装置的制造方法,其特征在于:形成所述缓冲层和p型窗层时,工序腔室内流入硅烷和杂质原料气体;形成所述p型窗层时,相对于硅烷流量的杂质原料气体的流量比为5000ppm~50000ppm;形成所述缓冲层时,相对于硅烷流量的杂质原料气体的流量比为100ppm~2000ppm。
13.根据权利要求9所述的光电装置的制造方法,其特征在于:所述p型窗层的厚度为12nm~17nm。
14.根据权利要求9所述的光电装置的制造方法,其特征在于:所述缓冲层的厚度为3nm~8nm。
15.根据权利要求9所述的光电装置的制造方法,其特征在于:所述p型窗层的氧或碳含量为5atomic%~40atomic%,所述缓冲层的碳或氧浓度为0.5atomic%~3atomic%。
16.根据权利要求9所述的光电装置的制造方法,其特征在于:形成所述p型窗层时,沉积腔室内流入的硅烷浓度为4%~10%。
17.根据权利要求9所述的光电装置的制造方法,其特征在于:形成所述缓冲层时,沉积腔室内流入的硅烷浓度为0.5%~5%。
18.根据权利要求9所述的光电装置的制造方法,其特征在于:无需经过排气工序地在一个沉积腔室内形成p型窗层和缓冲层。
CN2011100673718A 2010-03-26 2011-03-21 包括柔性基板或硬性基板的光电装置及其制造方法 Pending CN102201462A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0027397 2010-03-26
KR1020100027397A KR101262871B1 (ko) 2010-03-26 2010-03-26 플렉서블 기판 또는 인플렉서블 기판을 포함하는 광기전력 장치 및 그의 제조 방법

Publications (1)

Publication Number Publication Date
CN102201462A true CN102201462A (zh) 2011-09-28

Family

ID=44654974

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100673718A Pending CN102201462A (zh) 2010-03-26 2011-03-21 包括柔性基板或硬性基板的光电装置及其制造方法

Country Status (3)

Country Link
US (2) US20110232754A1 (zh)
KR (1) KR101262871B1 (zh)
CN (1) CN102201462A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109698245A (zh) * 2018-11-20 2019-04-30 缪清 一种pi缓冲层的制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012106214A2 (en) * 2011-02-03 2012-08-09 Applied Materials, Inc. Plasma treatment of tco layers for silicon thin film photovoltaic devices
JP2013084721A (ja) * 2011-10-07 2013-05-09 Sharp Corp 光電変換素子および光電変換素子の製造方法
US9214577B2 (en) 2012-02-28 2015-12-15 International Business Machines Corporation Reduced light degradation due to low power deposition of buffer layer
US20130224899A1 (en) 2012-02-28 2013-08-29 International Business Machines Corporation Enhancing efficiency in solar cells by adjusting deposition power
GB2502311A (en) 2012-05-24 2013-11-27 Ibm Photovoltaic device with band-stop filter
US20140217408A1 (en) * 2013-02-06 2014-08-07 International Business Machines Corporaton Buffer layer for high performing and low light degraded solar cells
EP3365920B1 (en) * 2015-10-25 2023-02-22 Solaround Ltd. Method of bifacial cell fabrication
KR102241098B1 (ko) * 2019-01-24 2021-04-19 한국재료연구원 수소화된 p-i-n층을 포함하는 반투명 비정질 실리콘 박막 태양전지 및 이의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1144573A (zh) * 1994-03-25 1997-03-05 阿莫科/恩龙太阳公司 稳定非晶硅及含稳定非晶硅的器件
CN1220484A (zh) * 1997-11-27 1999-06-23 佳能株式会社 形成微晶硅膜的方法、光电元件及其制造方法
US20070209699A1 (en) * 2006-03-08 2007-09-13 National Science And Technology Development Agency Thin film solar cell and its fabrication process
CN101246926A (zh) * 2007-02-14 2008-08-20 北京行者多媒体科技有限公司 非晶硼碳合金及其光伏应用
CN101556971A (zh) * 2009-05-11 2009-10-14 南开大学 硅基薄膜太阳电池用背反射电极及其制备方法
CN101567400A (zh) * 2008-04-10 2009-10-28 韩国铁钢株式会社 薄膜硅太阳能电池及其制造方法
CN101593779A (zh) * 2008-05-27 2009-12-02 韩国铁钢株式会社 串联薄膜硅太阳能电池及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897582B2 (ja) * 2000-12-12 2007-03-28 キヤノン株式会社 真空処理方法、真空処理装置、半導体装置の製造方法および半導体装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1144573A (zh) * 1994-03-25 1997-03-05 阿莫科/恩龙太阳公司 稳定非晶硅及含稳定非晶硅的器件
CN1220484A (zh) * 1997-11-27 1999-06-23 佳能株式会社 形成微晶硅膜的方法、光电元件及其制造方法
US20070209699A1 (en) * 2006-03-08 2007-09-13 National Science And Technology Development Agency Thin film solar cell and its fabrication process
CN101246926A (zh) * 2007-02-14 2008-08-20 北京行者多媒体科技有限公司 非晶硼碳合金及其光伏应用
CN101567400A (zh) * 2008-04-10 2009-10-28 韩国铁钢株式会社 薄膜硅太阳能电池及其制造方法
CN101593779A (zh) * 2008-05-27 2009-12-02 韩国铁钢株式会社 串联薄膜硅太阳能电池及其制造方法
CN101556971A (zh) * 2009-05-11 2009-10-14 南开大学 硅基薄膜太阳电池用背反射电极及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109698245A (zh) * 2018-11-20 2019-04-30 缪清 一种pi缓冲层的制备方法

Also Published As

Publication number Publication date
US20110232754A1 (en) 2011-09-29
US20120325302A1 (en) 2012-12-27
KR101262871B1 (ko) 2013-05-09
KR20110108091A (ko) 2011-10-05

Similar Documents

Publication Publication Date Title
CN101567400B (zh) 薄膜硅太阳能电池及其制造方法
CN102201462A (zh) 包括柔性基板或硬性基板的光电装置及其制造方法
JP5060763B2 (ja) 薄膜太陽電池とその加工処理
CN101593779A (zh) 串联薄膜硅太阳能电池及其制造方法
KR20130028449A (ko) 박막 태양전지 및 그 제조 방법
Shin et al. Optimization of intrinsic hydrogenated amorphous silicon deposited by very high-frequency plasma-enhanced chemical vapor deposition using the relationship between Urbach energy and silane depletion fraction for solar cell application
US20120325284A1 (en) Thin-film silicon tandem solar cell and method for manufacturing the same
JP4939058B2 (ja) 透明導電膜の製造方法、及びタンデム型薄膜光電変換装置の製造方法
CN102255005B (zh) 薄膜太阳电池及其制造方法
US20130167917A1 (en) Thin film type solar cells and manufacturing method thereof
KR100411897B1 (ko) 반도체박막 및 박막 디바이스
CN114843175A (zh) 一种n型掺杂氧化微晶硅、异质结太阳能电池及两者的制备方法
Schropp Hot wire chemical vapor deposition: recent progress, present state of the art and competitive opportunities
US20110011461A1 (en) Transparent electroconductive oxide layer and photoelectric converter using the same
TW201145539A (en) Methods of forming a thin-film solar energy device
Zimmermann et al. Inline deposition of microcrystalline silicon solar cells using a linear plasma source
WO2008010205A2 (en) Thin-film photovoltaic conversion device and method of manufacturing the same
CN101944543B (zh) 光电装置及其制造方法
JP4642126B2 (ja) 積層型光起電力素子および積層型光起電力素子の製造方法
JP2013536991A (ja) a−Si単接合および多接合薄膜シリコン太陽電池のための向上したa−Si:H吸収体層
CN102522448A (zh) 镁镍氧基多波段日盲区紫外探测器及其制备方法
CN101294277B (zh) 薄膜沉积方法
TW201822369A (zh) 矽基異質接面太陽能電池及其製造方法
JP2011165757A (ja) 光電変換装置およびその製造方法
Walder et al. Amorphous silicon oxinitride in silicon thin-film solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: YINGDI CO., LTD.

Free format text: FORMER OWNER: KISCO

Effective date: 20130911

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20130911

Address after: Seoul, South Kerean

Applicant after: Neo Lab Convergence Inc.

Address before: South Korea celebrates Chang

Applicant before: Kisco

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110928