CN101593779A - 串联薄膜硅太阳能电池及其制造方法 - Google Patents

串联薄膜硅太阳能电池及其制造方法 Download PDF

Info

Publication number
CN101593779A
CN101593779A CNA2009101365492A CN200910136549A CN101593779A CN 101593779 A CN101593779 A CN 101593779A CN A2009101365492 A CNA2009101365492 A CN A2009101365492A CN 200910136549 A CN200910136549 A CN 200910136549A CN 101593779 A CN101593779 A CN 101593779A
Authority
CN
China
Prior art keywords
mentioned
reflectance coating
solar cell
type
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2009101365492A
Other languages
English (en)
Other versions
CN101593779B (zh
Inventor
明承烨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEO LAB CONVERGENCE Inc
Original Assignee
KISCO Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KISCO Co filed Critical KISCO Co
Publication of CN101593779A publication Critical patent/CN101593779A/zh
Application granted granted Critical
Publication of CN101593779B publication Critical patent/CN101593779B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/047PV cell arrays including PV cells having multiple vertical junctions or multiple V-groove junctions formed in a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System
    • H01L31/03687Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System including microcrystalline AIVBIV alloys, e.g. uc-SiGe, uc-SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及串联薄膜硅太阳能电池及其制造方法,该串联薄膜硅太阳能电池包括:透明基板;第一单元电池,位于上述透明基板上,且包括p型窗层、i型光电转换层以及n型层;中间反射膜,位于上述第一单元电池上,且包括氧浓度逐渐增大的方式剖面分布的氢化n型微晶氧化硅;第二单元电池,位于上述中间反射膜上,且包括p型窗层、i型光电转换层以及n型层。

Description

串联薄膜硅太阳能电池及其制造方法
技术领域
本发明涉及串联薄膜硅太阳能电池及其制造方法。
背景技术
近年来,由于CO2的过度排放所导致的地球变暖以及油价的持续上涨,使得能源左右人类未来五十年的生存,这一问题越来越成为最重要的问题。虽然存在风力发电、生物能源、氢燃料电池等很多新的可再生能源技术,但是作为所有能源基础的太阳能是无限绿色能源,因此利用太阳光的太阳能电池(Solarcell)备受瞩目。
入射到地球表面的太阳光相当于120,000TW,因此,在理论上由光电转换效率(conversion efficiency)为10%的太阳能电池只要覆盖地球陆地面积的0.16%,可以产生两倍于一年全球能源消耗量的20TW电力。
实际上,在过去的十年,全球太阳能电池市场每年以40%的速度高速成长。目前,太阳能电池市场的90%由单晶硅(Single-crystalline)或者多晶硅(poly-crystalline)等块型(bulk)太阳能电池占有。但是,由于太阳能级硅片(Solar-grade silicon wafer)的生产满足不了爆发性的需求,因此在全球范围内发生缺货现象,这成为降低生产成本的一大障碍。
与此相反,使用氢化非晶硅(a-Si:H)吸光层的薄膜(thin-film)硅太阳能电池,相对于块型太阳能电池,其厚度可以减少至百分之一以下,因此可以大面积低价生产。
但是,光辐射引致性能衰退效应(Staebler-Wronski effect)阻碍薄膜硅太阳能电池的商用化。光辐射引致性能衰退效应(Staebler-Wronski effect)是指,光照射时,由于伴随着在非晶硅吸光层上生成的电子(electron)-空穴(hole)对非辐射结合(non-radiative recombination)的悬空键的光生成(photocreation)而产生的劣化(degradation)。
在过去的三十多年,为了减少由光照射引起的纯非晶硅吸光层的劣化进行了广泛深入的研究。结果表明,存在于非晶硅-微晶硅相界(phase boundary)的两种物质为对光照射的劣化程度小的纯吸光层。其中一个物质是,存在于从非晶硅向微晶硅相变(phase transition)之前的氢化纯原晶(protocrystalline)硅(i-pc-Si:H)。另外一个物质是,具有30%-50%结晶体体积分数(crystal volumefraction)的氢化纯微晶(microcrystalline)硅(i-μc-Si:H)。
另一方面,即使最大限度地减少由光照射引起的劣化,但是由于单一接合(Single-junction)薄膜硅太阳能电池具有性能极限,因此开发将非晶硅上层电池(top cell)和微晶硅下层电池(bottom cell)层压的双重接合(double junction)薄膜硅太阳能电池或者把上述双重接合太阳能电池进一步发展成为三重接合(triple junction)薄膜硅太阳能电池,以达到高稳定效率(Stabilized efficiency)。
双重接合或者三重接合薄膜硅太阳能电池被称之为串联太阳能电池。上述串联太阳能电池的开路电压为各单元电池的电压之和,短路电流为各单元电池短路电流中的最小值。
制造串联太阳能电池时,利用各单元电池之间的双重接合,从光入射的上层电池到下层电池纯吸光层的光学能隙(optical band gap)逐渐减少,同时进行光分离。各种各样光谱光被各单元电池吸收,因此提高量子效率(quantumefficiency)。
另外,可以将光照射劣化程度相对严重的非晶硅上层电池的纯吸光层厚度变薄,由此可以降低劣化率(degradation ratio),以获得高稳定效率。
这种串联太阳能电池对于光照射的稳定性(Stability),不仅取决于各单元电池纯吸光层对于光照射的稳定性,还取决于对于光照射敏感的上层电池的纯吸光层厚度。
因此,如果双重接合薄膜硅太阳能电池的上层电池和下层电池之间,或者三重接合薄膜硅太阳能电池的上层电池和中间层电池(middle cell)之间插入能强化内反射(internal reflection)的中间反射膜,则能够使对于光照射敏感的上层电池的氢化纯非晶硅吸光层厚度变小,同时也能够提高或者维持所需的短路电流。因此可以减少对于光照射的劣化,获得高稳定效率。
在此,作为串联太阳能电池的中间反射膜,需要一种吸收光少并且具有高垂直(vertical)导电率以及与硅薄膜之间的折射率(reflective index)相差大的透明材料。
硅薄膜的折射率为3.5-4.0,因此作为中间反射膜,开发折射率为大约1.9的氧化锌(ZnO)薄膜(S.Y.Myong et al.,Applied Physics Letters,2007,Vol.90,p.3026-3028,Y.Akano et al.,EP 1 650 814 A1,Y.Akano et al.,EP 1 650 813 A1)或者折射率为大约2.0的氢化n型混合相(mixed-phase)氧化硅薄膜(n-SiOx:H)(C.Das et al.,Applied Physics Letters,2008,Vol.92,p.053509,P.Buehlmann etal.,Applied Physics Letters,2007,Vol.91,p.143505)。
这里的混合相是指,在氢化非晶氧化硅(a-SiOx:H)组织(tissue)内嵌入晶硅晶粒(grain)的结构,通常称之为纳米结晶(nanocrystalline)或者微结晶(microcrystalline)。
在薄膜拉曼(Raman)光谱上的520nm附近存在TO(Transverse Optic)模式的晶硅峰(peak)。
由于氧化锌中间反射膜的透射率和垂直导电率很出色,这对于提高串联太阳能电池效率方面起很大作用,但是在批量生产大面积太阳能电池模块时,通过激光划线(laser scribing)法刻槽时氧化锌发生很多分流(Shunt)等问题,因此具有产量(yield)大幅下降的缺点。
另外,氢化n型混合相氧化硅薄膜属于硅薄膜系列,可以用相同波长的激光同时对上层电池和下层电池进行刻槽,因此具有太阳能电池的批量生产效率高以及大规模生产线的设计(layout)简单的优点。但是,虽然氧气含量越高折射率越低因而增加内反射,但是由于结晶体体积分数和导电率下降导致串联电阻(Series resistance)增大,因此具有填充因子减少的缺点。
发明内容
本发明的串联薄膜硅太阳能电池,包括:透明基板;第一单元电池,位于上述透明基板上,且包括p型窗层、i型光电转换层以及n型层;中间反射膜,位于上述第一单元电池上,且包括氧浓度逐渐增大的方式剖面分布的氢化n型微晶氧化硅;第二单元电池,位于上述中间反射膜上,且包括p型窗层、i型光电转换层以及n型层。
上述中间反射膜的厚度可以为10nm至100nm。
上述中间反射膜的折射率可以为2.0。
上述中间反射膜的电阻率可以为102Ω·cm至105Ω·cm。
上述第一单元电池的n型层可以包括氢化n型微晶硅。
上述第一单元电池可以包括氢化非晶硅。
上述第二单元电池可以包括氢化非晶硅或者氢化微晶硅。
本发明的串联薄膜硅太阳能电池可以包括两个或者三个单元电池。
本发明的串联薄膜硅太阳能电池的制造方法,包括:将透明正面电极层被覆在透明基板上的阶段;通过第一刻槽工序去除上述透明正面电极层的一部分,并形成分离槽,以形成多个正面透明电极的阶段;在上述多个正面透明电极上以及上述分离槽内,形成包括p型窗层、i型光电转换层以及n型层的第一单元电池层的阶段;包括氧浓度逐渐增大的方式剖面分布的氢化n型微晶氧化硅的中间反射膜形成在上述第一单元电池层上或者将上述第一单元电池层氧化而形成中间反射膜的阶段;在上述中间反射膜上形成第二单元电池层的阶段;通过第二刻槽工序去除上述第一单元电池层和上述第二单元电池层的一部分,并形成分离槽的阶段;在通过上述第二刻槽工序形成的分离槽内和上述第二单元电池层上层压金属内电极层的阶段;通过第三刻槽工序去除上述金属内电极层的一部分,并形成分离槽的阶段。
上述中间反射膜通过将上述第一单元电池层氧化而形成时,形成上述中间反射膜所需的氧原料气体可以包括二氧化碳或者氧气。
上述中间反射膜的折射率可以为2.0。
上述中间反射膜的厚度可以为10nm至100nm。
上述中间反射膜的电阻率可以为102Ω·cm至105Ω·cm。
本发明的串联薄膜硅太阳能电池的制造方法可以形成两个或者三个单元电池层。
上述中间反射膜形成在上述第一单元电池层上时,上述第一单元电池层的n型层厚度为30nm至50nm,可以包括氢化n型微晶硅。
上述中间反射膜通过将述第一单元电池层的n型层氧化而形成时,上述第一单元电池层的n型层厚度为40nm至150nm,可以包括氢化n型微晶硅。
上述中间反射膜形成在上述第一单元电池层上时,可以在形成上述中间反射膜时维持用于层压上述第一单元电池层的n型层的沉积温度和沉积压力。
上述第一单元电池层的n型层和上述中间反射膜可以在同一个反应腔室内形成。
上述中间反射膜形成在上述第一单元电池层上时,为了形成上述中间反射膜的氧原料气体的分压可以先增加后再维持在特定值,或者上述氧原料气体的流量可以分多个阶段增加。
上述中间反射膜通过将上述第一单元电池层氧化而形成时,在关闭用于形成上述第一单元电池层的n型层的等离子体后,流入用于形成上述中间反射膜所需的氧原料气体,然后再将等离子体开启。
附图说明
图1为根据本发明一实施例的串联薄膜硅太阳能电池结构的剖面图;
图2a和图2b为根据本发明一实施例的串联薄膜硅太阳能电池的制造方法流程图;
图3a和图3b为根据本发明另一实施例的串联薄膜硅太阳能电池的制造方法流程图。
具体实施方式
下面结合附图详细说明本实施例。
串联薄膜硅太阳能电池具有双重接合或者三重接合结构,图1中以双重接合串联薄膜硅太阳能电池为举例说明。
如图1所示,根据本发明一实施例的串联薄膜硅太阳能电池包括,透明绝缘基板10、透明正面电极20、第一单元电池30、中间反射膜40、第二单元电池50以及金属内电极70。
透明正面电极20形成在透明绝缘基板10上,并包括透明导电氧化物(TCO;Transparent Conducting Oxide)。
第一单元电池30位于透明绝缘基板10和透明正面电极20上,并包括通过等离子体增强化学气相沉积(PECVD,Plasma Enhanced Chemical VaporDeposition)法形成的p型窗层30p、i型光电转换层30i以及n型层30n。
中间反射膜40位于第一单元电池30上,并包括氢化n型微晶氧化硅。这时,中间反射膜40的氧浓度以逐渐增大的方式剖面分布(profiled)。
第二单元电池50位于中间反射膜40上,并包括通过PECVD法形成的p型窗层50p、i型光电转换层50i以及n型层50n。这时,第二单元电池50可以包括氢化非晶硅或者氢化微晶硅。
金属内电极70层压在第二单元电池50上。
如图1所示,根据本发明实施例的薄膜硅太阳能电池还可以包括通过化学气相沉积(CVD)法成膜的背面反射膜60,以使第二单元电池50的n型层50n和金属内电极70之间的光捕捉效果(light trapping effect)达到最好。
以薄膜硅太阳能电池的情况下,透明绝缘基板10作为光入射的部分,可以包括光透射率高并且能防止薄膜硅太阳能电池内部产生短路的透明绝缘性材料。
透明正面电极20应将入射的光向不同的方向散射(light scattering),并对用于形成微晶硅薄膜的氢等离子体具有耐久性。因此,透明正面电极20可以包含氧化锌(ZnO)。
另外,在本发明的实施例中,通过使用频率为13.56MHz的射频等离子体增强化学气相沉积(RF PECVD;Radio Frequency Plasma Enhanced ChemicalVapor Deposition)法或者使用频率大于13.56MHz的甚高频(VHF;Very HighFrequency)PECVD法形成包括p型窗层30p、i型光电转换层30i以及n型层30n的第一单元电池30。RF或者VHF由于频率高,因此沉积速度快且提高膜质。这时,第一单元电池30可以包括氢化非晶硅。
中间反射膜40包括氧剖面分布(profiled)的氢化n型微晶氧化硅或者通过后续氧化工序形成的氢化n型微晶氧化硅。中间反射膜40形成在氢化n型微晶硅(n-μc-Si:H)薄膜30n上。
第二单元电池50可以通过RF PECVD法或者VHF PECVD法在中间反射膜40上形成,并包括p型窗层50p、i型光电转换层50i以及n型层50n。这时,第二单元电池50由微晶硅或者非晶硅构成。
背面反射膜60通过CVD法在第二单元电池50上成膜,并包含氧化锌(ZnO),以使光捕捉效果(light trapping effect)达到最好。
金属内电极70将透过第二单元电池的光反射出去,并用作内电极。金属内电极70可以包括氧化锌(ZnO)或者银(Ag),可以通过CVD法或者溅射(Sputtering)法成膜。
在硅薄膜太阳能电池的批量生产过程中,为了使其串联,通过激光划线(Scribing)法等刻槽方法完成刻槽工序。这种刻槽在透明正面电极20、第二单元电池50和金属内电极70上进行。
下面结合图2a、图2b、图3a和图3b详细说明中间反射膜的形成。图2a和图2b为根据本发明一实施例的串联薄膜硅太阳能电池的制造方法流程图。
如图2a所示,在透明绝缘基板10上被覆透明正面电极层(S210)。
通过第一刻槽工序去除被覆在透明绝缘基板10上的透明正面电极层的一部分,并形成分离槽,由此形成相互分离的多个透明正面电极20(S220)。
在多个透明正面电极20和透明正面电极20之间的分离槽内以及透明正面电极20上形成包括p型窗层30p、i型光电转换层30i以及n型层30n的第一单元电池层(S230)。
在第一单元电池层上形成包括氢化n型微晶氧化硅(n-μc-SiOx:H)的中间反射膜40(S240)。中间反射膜40的氧浓度通过调节向腔室内流入的二氧化碳的流量以其浓度逐渐增大的方式剖面分布。
在中间反射膜40上形成包括p型窗层50p、i型光电转换层50i以及n型层50n的第二单元电池层(S250)。
通过第二刻槽工序去除第一单元电池层和第二单元电池层的一部分,并形成分离槽,由此形成第一单元电池30和第二单元电池50(S260)。
在第二单元电池50上和通过第二刻槽工序形成的分离槽内层压金属内电极层(S280)。因此金属内电极层与透明正面电极20相连接。
通过第三刻槽工序去除金属内电极层的一部分,并形成分离槽,进而形成多个金属内电极70(S290)。
第二刻槽工序后为了使光捕捉效果(light trapping effect)达到最好,可以通过CVD法在第二单元电池层的n型层50n上形成背面反射膜60(S270)。
为了提高初始效率,在形成第一单元电池层的阶段(S230),p型窗层30p和i型光电转换层30i之间可以插入缓冲层(buffer layer)。初始效率是指,根据本发明刚制造出的太阳能电池效率。
在形成第一单元电池层的阶段(S230),包含p-i-n型薄膜硅的第一单元电池层通过RF PECVD法或者VHF PECVD法形成。第一单元电池层的n型层30n厚度为30nm至50nm,并包括氢化n型微晶硅(n-μc-Si:H)薄膜。如果第一单元电池层的n型层30n厚度为30nm以上时,n型层30n具有高导电率。如果厚度为50nm以下时,可防止由于n型层30n厚度增加而造成的过度光吸收。
这时为了形成n型微晶硅(n-μc-Si:H)薄膜所需的原料气体可以包含硅烷(SiH4)、氢(H2)和膦烷(PH3)。
在形成包括氢化n型微晶硅(n-μc-Si:H)薄膜的n型层30n后,如图2b所示,维持原料气体的流量、沉积温度以及沉积压力等,并将二氧化碳(CO2)等氧原料气体流入到反应腔室(S241a)。由于维持原料气体的流量、沉积温度以及沉积压力等,并将包含原料气体和氧原料气体的混合气体流入到反应腔室,因此第一单元电池层的n型层30n和中间反射膜40可以在同一个反应腔室内形成。
这时,氧原料气体的流量被流量控制器(MFC;Mass Flow Controller)控制。即,将反应腔室内的混合气体设定为一定的流量时,流量控制器通过调节使混合气体中的氧原料气体的分压(pressure fraction)先上升后再维持在特定值。因此,中间反射膜40在第一单元电池层上形成。
这时,中间反射膜40包括n型微晶氧化硅(n-μc-SiOx:H),并n型微晶氧化硅(n-μc-SiOx:H)的氧浓度以逐渐增大的方式剖面分布。例如,如果n型微晶氧化硅(n-μc-SiOx:H)内的第一位置和透明绝缘基板10之间的距离大于n型微晶氧化硅(n-μc-SiOx:H)内的第二位置和透明绝缘基板10之间的距离,则第一位置上的氧浓度大于第二位置上的氧浓度。
流量控制器将氧原料气体的流量分阶段增加(S242a),因此可以形成包括氢化n型微晶氧化硅(n-μc-SiOx:H)的中间反射膜40(S243a)。因此,n型微晶氧化硅(n-μc-SiOx:H)的氧浓度以逐渐增大的方式剖面分布。
中间反射膜40的厚度可以为10nm至100nm。如果中间反射膜40的厚度为10nm以上,可以充分进行光的内反射。如果中间反射膜40的厚度为100nm以下,可以从第一单元电池30向第二单元电池提供充分的光,并防止中间反射膜40的光吸收以及第一单元电池30和第二单元电池50之间的串联电阻不必要地增大。
另外,根据本发明实施例的中间反射膜40的电阻率可以为102Ω·cm至105Ω·cm,折射率可以为2.0。因此,中间反射膜40具有高垂直导电率。
因此,可防止结晶体体积分数急剧下降,进而防止垂直导电率的下降,并且在n型层30n和中间反射膜40之间的界面上折射率或者光学能隙的变化是连贯的。
因此,可防止第一单元电池的n型层30n和中间反射膜40之间双重接合的界面上缺陷密度(defect density)急剧增加,使中间反射膜40的光吸收变得最小。
图3a和图3b为根据本发明另一实施例的串联薄膜硅太阳能电池制造方法的流程图。
如图3a和图3b所示,透明绝缘基板10上被覆正面透明电极层(S310)。
通过第一刻槽工序,去除正面透明电极层的一部分,并形成分离槽,由此形成多个正面透明电极20(S320)。
第一单元电池层形成在透明正面电极20上,并在通过第一刻槽工序形成的分离槽内形成(S330)。第一单元电池层包括p型窗层30p、i型光电转换层30i以及n型层30n。
氧原子被等离子体从氧气或者二氧化碳等氧原料气体分解出来,且氧原子向n型层30n的微晶硅(n-μc-Si:H)扩散。由此,形成包括氢化n型微晶氧化硅(n-μc-SiOx:H)的中间反射膜40(S340)。即,在本发明的另一实施例中,中间反射膜40是通过将第一单元电池层的n型层30n氧化而形成。
在中间反射膜40上形成包括p型窗层50p、i型光电转换层50i以及n型层50n的第二单元电池层(S350)。
通过第二刻槽工序,去除第一单元电池层、中间反射膜40和第二单元电池层的一部分,并形成分离槽,由此形成第一单元电池30和第二单元电池50(S360)。
在第二单元电池50上和通过第二刻槽工序形成的分离槽内层压金属内电极层(S380)。由此,金属内电极层和透明正面电极20相连接。
通过第三刻槽工序,去除金属内电极层的一部分,并形成分离槽,由此形成相互分离的多个金属内电极70(S390)。
在第二刻槽工序后,为了使光捕捉效果(light trapping effect)达到最好,在第二单元电池层的n型层50n上,可以通过CVD法形成背面反射膜60(S370)。
为了提高初始效率,在形成最初的多个单元电池层的阶段(S330),在p型窗层和i型光电转换层之间可以插入缓冲层(buffer layer)。
第一单元电池层通过RF PECVD法或者VHF PECVD法形成时(S330),第一单元电池层的n型层30n厚度可以为40nm至150nm,并包括氢化n型微晶硅(n-μc-Si:H)。形成第一单元电池层的n型层30n所需的原料气体可以包含硅烷(SiH4)、氢气(H2)和膦烷(PH3)。
另一方面,如图3b所示,氢化n型微晶硅(n-μc-Si:H)薄膜的沉积随等离子体的关闭(S341b),即随等离子体的生成终止而结束。在氢化n型微晶硅(n-μc-Si:H)薄膜的沉积结束后,在维持沉积温度的情况下将上述三种原料气体从反应腔室排出(S342b)。
在排出原料气体后,沉积腔室内后续工序的基准压力可以为10-5Torr至10-7Torr。沉积腔室内的压力达到后续工序基准压力后,将氧气(O2)或者二氧化碳(CO2)等氧原料气体流入到反应腔室(S343b)。通过与反应腔室连接的压力控制器(pressure controller)和角阀(angle valve)使反应腔室的后续工序压力维持在特定值。
这时,流入到反应腔室的氧原料气体流量可以为10sccm至500sccm,反应腔室的压力可以为0.5Torr。如果氧原料气体流量为10sccm以上,氧气扩散速度会增加。如果氧原料气体流量为500sccm以下,可防止气体费用不必要地增加。另外,反应腔室的压力为0.5Torr时,确保氧气扩散速度的同时可防止气体费用的增加。
之后,开启等离子体(S344b),即,通过等离子体的生成,氧原料气体被分解,并产生氧原子。如果n型层30n的氢化n型微晶硅(n-μc-Si:H)薄膜表面被氧原子氧化(S345b),在n型层30n的n型微晶硅(n-μc-Si:H)薄膜上形成包括氢化n型微晶氧化硅(n-μc-SiOx:H)薄膜的中间反射膜40(S346b)。
另外,通过调节氧化工序时间,在氧化工序结束后,氢化n型微晶硅(n-μc-Si:H)薄膜的厚度减少至30nm至50nm。氢化n型微晶硅(n-μc-Si:H)薄膜越厚,结晶体体积分数也越大,因此垂直导电率也增大。在本发明的实施例中,以结晶体体积分数大的氢化n型微晶硅(n-μc-Si:H)薄膜的情况下,利用氧气向晶粒间渗透,容易后氧化(post-oxidation)的特性。
通过后氧化工序,氢化n型微晶硅(n-μc-Si:H)薄膜表面转换成包括氢化n型微晶氧化硅(n-μc-SiOx:H)薄膜的中间反射膜40。因此,可防止垂直导电率的急剧下降,进而减少折射率。
另一方面,根据图2a至图3b所示的串联薄膜硅太阳能电池的制造方法,为了使其串联,通过激光划线(Scribing)法等方法完成第一至第三刻槽工序。
因此,为了形成大面积太阳能电池模块,用相同波长的激光束同时对各单元电池和中间反射膜进行刻槽,因此提高串联薄膜硅太阳能电池的生产效率(yield),并且可以简化大规模生产线的设计(layout)。
在本发明中,p型窗层30p、50p是掺杂诸如三族物质的杂质的层,i型光电转换层30i、50i是纯硅层,n型层30n、50n是掺杂诸如五族物质的杂质的层。
另一方面,根据本发明实施例的串联薄膜硅太阳能电池及其制造方法,主要考虑多个单元电池p-i-n-p-i-n型双重接合薄膜硅太阳能电池和p-i-n-p-i-n-p-i-n型三重接合薄膜硅太阳能电池的情况。
如上所述,以双重接合薄膜硅太阳能电池的情况下,在第一单元电池和第二单元电池之间形成包括折射率为2.0的氢化n型微晶氧化硅(n-μc-SiOx:H)的中间反射膜。
另外,以双重接合薄膜硅太阳能电池的情况下,第一单元电池30的i型光电转换层30i可以包括,氢化纯非晶硅(i-a-Si:H)、氢化纯原晶硅(i-pc-Si:H)、氢化纯原晶硅多层膜(i-pc-Si:H multilayer)、氢化纯非晶硅碳化物(i-pc-SiC:H)、氢化纯原晶硅碳化物(i-pc-SiC:H)、氢化纯原晶硅碳化物多层膜(i-pc-SiC:Hmultilayer)、氢化纯非晶氧化硅(i-a-SiO:H)、氢化纯原晶氧化硅(i-pc-SiO:H)、氢化纯原晶氧化硅多层膜(i-pc-SiO:H multilayer)之一。
另外,以双重接合薄膜硅太阳能电池的情况下,第二单元电池50的i型光电转换层50i可以包括,氢化纯非晶硅(i-a-Si:H)、氢化纯非晶硅锗(i-a-SiGe:H)、氢化纯原晶硅锗(i-pc-SiGe:H)、氢化纯纳米晶硅(i-nc-Si:H)、氢化纯微晶硅(i-μc-Si:H)、氢化纯微晶硅锗(i-μc-SiGe:H)之一。
另一方面,以p-i-n-p-i-n-p-i-n型三重接合薄膜硅太阳能电池的情况下,三个单元电池中位于中间的单元电池相当于在本发明实施例中说明的第一单元电池或者第二单元电池。
即,如果位于中间的单元电池是第一单元电池,第二单元电池与三重接合薄膜硅太阳能电池的金属内电极相接触或者相邻。另外,如果位于中间的单元电池是第二单元电池,第一单元电池与三重接合薄膜硅太阳能电池的透明正面电极相接触或者相邻。
另外,如果位于中间的单元电池是第二单元电池,在第一单元电池和第二单元电池之间形成包括氢化n型微晶氧化硅(n-μc-SiOx:H)的中间反射膜。
另外,三个单元电池中各相邻的两个单元电池之间可以形成折射率为2.0、且包括氢化n型微晶氧化硅(n-μc-SiOx:H)的中间反射膜。
另外,以三重接合薄膜硅太阳能电池的情况下,与透明正面电极接触或者相邻的单元电池的i型光电转换层可以包括,氢化纯非晶硅(i-a-Si:H)、氢化纯原晶硅(i-pc-Si:H)、氢化纯原晶硅多层膜(i-pc-Si:H multilayer)、氢化纯非晶硅碳化物(i-pc-SiC:H)、氢化纯原晶硅碳化物(i-pc-SiC:H)、氢化纯原晶硅碳化物多层膜(i-pc-SiC:H multilayer)、氢化纯非晶氧化硅(i-a-SiO:H)、氢化纯原晶氧化硅(i-pc-SiO:H)、氢化纯原晶氧化硅多层膜(i-pc-SiC:H multilayer)之一。
另外,位于三重接合薄膜硅太阳能电池中间的单元电池的i型光电转换层可以包括氢化纯非晶硅锗(i-a-SiGe:H)、氢化纯原晶硅锗(i-pc-SiGe:H)、氢化纯纳米晶硅(i-nc-Si:H)、氢化纯微晶硅(i-μc-Si:H)、氢化纯微晶硅锗碳(i-μc-SiGeC:H)等,下层电池的纯吸光层可以包括,氢化非晶硅锗(i-a-SiGe:H)、氢化纯原晶硅锗(i-pc-SiGe:H)、氢化纯纳米晶硅(i-nc-Si:H)、氢化纯微晶硅(i-μc-Si:H)、氢化纯微晶硅锗(i-μc-SiGe:H)之一。

Claims (20)

1、一种串联薄膜硅太阳能电池,包括:
透明基板;
第一单元电池,位于上述透明基板上,且包括p型窗层、i型光电转换层以及n型层;
中间反射膜,位于上述第一单元电池上,且包括氧浓度以逐渐增大方式剖面分布的氢化n型微晶氧化硅;
第二单元电池,位于上述中间反射膜上,且包括p型窗层、i型光电转换层以及n型层。
2、根据权利要求1所述的串联薄膜硅太阳能电池,其特征在于:上述中间反射膜的厚度为10nm至100nm。
3、根据权利要求1所述的串联薄膜硅太阳能电池,其特征在于:上述中间反射膜的折射率为2.0。
4、根据权利要求1所述的串联薄膜硅太阳能电池,其特征在于:上述中间反射膜的电阻率为102Ω·cm至105Ω·cm。
5、根据权利要求1所述的串联薄膜硅太阳能电池,其特征在于:上述第一单元电池的n型层包含氢化n型微晶硅。
6、根据权利要求1所述的串联薄膜硅太阳能电池,其特征在于:上述第一单元电池包含氢化非晶硅。
7、根据权利要求1所述的串联薄膜硅太阳能电池,其特征在于:上述第二单元电池包含氢化非晶硅或者氢化微晶硅。
8、根据权利要求1所述的串联薄膜硅太阳能电池,其特征在于:包含两个或者三个单元电池。
9、一种串联薄膜硅太阳能电池的制造方法,包括:
将透明正面电极层被覆在透明基板上的阶段;
通过第一刻槽工序去除上述透明正面电极层的一部分,并形成分离槽,以形成多个正面透明电极的阶段;
在上述多个正面透明电极上以及上述分离槽内,形成包括p型窗层、i型光电转换层以及n型层的第一单元电池层的阶段;
将包括氧浓度以逐渐增大的方式剖面分布的氢化n型微晶氧化硅的中间反射膜形成在上述第一单元电池层上或者将上述第一单元电池层氧化而形成中间反射膜的阶段;
在上述中间反射膜上形成第二单元电池层的阶段;
通过第二刻槽工序去除上述第一单元电池层和第二单元电池层的一部分,并形成分离槽的阶段;
在通过上述第二刻槽工序形成的分离槽内和上述第二单元电池层上层压金属内电极层的阶段;
通过第三刻槽工序去除上述金属内电极层的一部分,并形成分离槽的阶段。
10、根据权利要求9所述的串联薄膜硅太阳能电池的制造方法,其特征在于:上述中间反射膜通过上述第一单元电池层氧化而形成时,形成上述中间反射膜所需的氧原料气体包含二氧化碳或者氧气。
11、根据权利要求9所述的串联薄膜硅太阳能电池的制造方法,其特征在于:上述中间反射膜的折射率为2.0。
12、根据权利要求9所述的串联薄膜硅太阳能电池的制造方法,其特征在于:上述中间反射膜的厚度为10nm至100nm。
13、根据权利要求9所述的串联薄膜硅太阳能电池的制造方法,其特征在于:上述中间反射膜的电阻率为102Ω·cm至105Ω·cm。
14、根据权利要求9所述的串联薄膜硅太阳能电池的制造方法,其特征在于:形成两个或者三个单元电池层。
15、根据权利要求9所述的串联薄膜硅太阳能电池的制造方法,其特征在于:上述中间反射膜形成在上述第一单元电池层上时,上述第一单元电池层的n型层厚度为30nm至50nm,并包括氢化n型微晶硅。
16、根据权利要求9所述的串联薄膜硅太阳能电池的制造方法,其特征在于:上述中间反射膜通过将上述第一单元电池层的n型层氧化而形成时,上述第一单元电池层的n型层厚度为40nm至150nm,并包括氢化n型微晶硅。
17、根据权利要求9所述的串联薄膜硅太阳能电池的制造方法,其特征在于:上述中间反射膜形成在上述第一单元电池层上时,在形成上述中间反射膜时维持用于层压上述第一单元电池层的n型层的沉积温度和沉积压力。
18、根据权利要求17所述的串联薄膜硅太阳能电池的制造方法,其特征在于:上述第一单元电池层的n型层和上述中间反射膜在同一个反应腔室内形成。
19、根据权利要求9所述的串联薄膜硅太阳能电池的制造方法,其特征在于:上述中间反射膜形成在上述第一单元电池层上时,为了形成上述中间反射膜的氧原料气体的分压先增加后再维持在特定值,或者上述氧原料气体的流量分多个阶段增加。
20、根据权利要求9所述的串联薄膜硅太阳能电池的制造方法,其特征在于:上述中间反射膜通过将上述第一单元电池层氧化而形成时,在关闭用于形成上述第一单元电池层的n型层的等离子体后,流入用于形成上述中间反射膜所需的氧原料气体,然后再将等离子体开启。
CN2009101365492A 2008-05-27 2009-05-07 串联薄膜硅太阳能电池及其制造方法 Expired - Fee Related CN101593779B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2008-0049000 2008-05-27
KR1020080049000A KR100876613B1 (ko) 2008-05-27 2008-05-27 탄뎀 박막 실리콘 태양전지 및 그 제조방법
KR1020080049000 2008-05-27

Publications (2)

Publication Number Publication Date
CN101593779A true CN101593779A (zh) 2009-12-02
CN101593779B CN101593779B (zh) 2011-07-20

Family

ID=40373385

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101365492A Expired - Fee Related CN101593779B (zh) 2008-05-27 2009-05-07 串联薄膜硅太阳能电池及其制造方法

Country Status (5)

Country Link
US (2) US8648251B2 (zh)
EP (1) EP2128904A3 (zh)
KR (1) KR100876613B1 (zh)
CN (1) CN101593779B (zh)
TW (1) TW200950114A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097540A (zh) * 2009-12-11 2011-06-15 英属开曼群岛商精曜有限公司 一种堆栈型太阳能薄膜电池及其制作方法
CN102148232A (zh) * 2010-12-24 2011-08-10 友达光电股份有限公司 太阳能电池模块
CN102201489A (zh) * 2010-03-22 2011-09-28 韩国铁钢株式会社 包括硬性或柔性基板的光电装置及其制造方法
CN102201464A (zh) * 2010-03-26 2011-09-28 韩国铁钢株式会社 包括柔性或硬性基板的光电装置及其制造方法
CN102201462A (zh) * 2010-03-26 2011-09-28 韩国铁钢株式会社 包括柔性基板或硬性基板的光电装置及其制造方法
CN102237417A (zh) * 2010-04-20 2011-11-09 韩国铁钢株式会社 串联型光电装置及其制造方法
CN102255005A (zh) * 2011-06-30 2011-11-23 浙江正泰太阳能科技有限公司 薄膜太阳电池及其制造方法
CN102255004A (zh) * 2011-08-11 2011-11-23 北京泰富新能源科技有限公司 一种薄膜太阳能电池的制造方法
CN102782878A (zh) * 2010-02-26 2012-11-14 三洋电机株式会社 太阳能电池及其制造方法
CN103022208A (zh) * 2011-09-26 2013-04-03 吉富新能源科技(上海)有限公司 利用二氧化硅中间层制作高效率双结硅薄膜太阳能电池
CN103066153A (zh) * 2012-12-28 2013-04-24 福建铂阳精工设备有限公司 硅基薄膜叠层太阳能电池及其制造方法
US8753914B2 (en) 2010-03-26 2014-06-17 Intellectual Discovery Co., Ltd. Photovoltaic device including flexible or inflexible substrate and method for manufacturing the same

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101573930B1 (ko) 2009-01-09 2015-12-02 엘지전자 주식회사 태양 전지 및 그 제조 방법
EP2219230A3 (en) 2009-02-17 2014-12-31 Korean Institute of Industrial Technology Method for fabricating solar cell using inductively coupled plasma chemical vapor deposition
KR101083402B1 (ko) 2009-04-24 2011-11-14 성균관대학교산학협력단 박막형 태양전지 및 그 제조방법
US20100326520A1 (en) * 2009-06-29 2010-12-30 Auria Solar Co., Ltd. Thin film solar cell and manufacturing method thereof
KR101066394B1 (ko) * 2009-09-02 2011-09-23 한국철강 주식회사 광기전력 장치 및 광기전력 장치의 제조 방법
KR101074290B1 (ko) * 2009-09-04 2011-10-18 한국철강 주식회사 광기전력 장치 및 광기전력 장치의 제조 방법
KR101072473B1 (ko) * 2009-09-11 2011-10-11 한국철강 주식회사 광기전력 장치 및 광기전력의 제조 방법
KR101074291B1 (ko) * 2009-09-11 2011-10-18 한국철강 주식회사 광기전력 장치 및 광기전력의 제조 방법
TWI408820B (zh) * 2009-12-09 2013-09-11 Metal Ind Res Anddevelopment Ct Solar battery
TWI401812B (zh) * 2009-12-31 2013-07-11 Metal Ind Res Anddevelopment Ct Solar battery
KR101584376B1 (ko) 2010-02-10 2016-01-12 엘지전자 주식회사 실리콘 박막 태양전지
KR101032270B1 (ko) 2010-03-17 2011-05-06 한국철강 주식회사 플렉서블 또는 인플렉서블 기판을 포함하는 광기전력 장치 및 광기전력 장치의 제조 방법
KR101669953B1 (ko) 2010-03-26 2016-11-09 삼성전자 주식회사 산화물 박막, 산화물 박막의 형성 방법 및 산화물 박막을 포함하는 전자 소자
KR101089587B1 (ko) 2010-03-26 2011-12-05 광주과학기술원 적층형 태양 전지 및 이의 제조 방법
KR101043219B1 (ko) 2010-04-05 2011-06-22 한국철강 주식회사 플렉서블 기판 또는 인플렉서블 기판을 포함하는 광기전력 장치의 제조 방법
WO2011161901A1 (ja) * 2010-06-25 2011-12-29 パナソニック株式会社 多結晶シリコン薄膜の形成方法、多結晶シリコン薄膜基板、シリコン薄膜太陽電池及びシリコン薄膜トランジスタ装置
TWI419343B (zh) * 2010-07-20 2013-12-11 Nexpower Technology Corp 串疊型太陽能電池
WO2012026894A1 (en) * 2010-08-26 2012-03-01 National Science And Technology Development Agency Tandem type thin film silicon solar cell with double layer cell structure
DE102010053382A1 (de) * 2010-12-03 2012-06-06 Forschungszentrum Jülich GmbH Verfahren zur Herstellung einer Solarzelle und eine Solarzelle
KR101292061B1 (ko) * 2010-12-21 2013-08-01 엘지전자 주식회사 박막 태양전지
TWI451578B (zh) * 2010-12-23 2014-09-01 Metal Ind Res & Dev Ct 具有異質接面之矽基太陽能電池及其製造方法
KR101221722B1 (ko) * 2011-03-04 2013-01-11 주식회사 엘지화학 전도성 구조체 및 이의 제조방법
CN103000767A (zh) * 2011-09-14 2013-03-27 吉富新能源科技(上海)有限公司 联机生成硅薄膜双结太阳能电池介反射层技术
KR20130042785A (ko) * 2011-10-19 2013-04-29 한국전자통신연구원 태양전지
TW201334211A (zh) * 2012-01-04 2013-08-16 Tel Solar Ag 薄膜太陽能電池的中間反射結構
KR101784439B1 (ko) * 2012-02-14 2017-10-11 엘지전자 주식회사 박막 태양전지
TWI462314B (zh) * 2012-05-17 2014-11-21 Univ Minghsin Sci & Tech 薄膜太陽能電池及其製造方法
US20140004648A1 (en) * 2012-06-28 2014-01-02 International Business Machines Corporation Transparent conductive electrode for three dimensional photovoltaic device
CN102842635A (zh) * 2012-08-16 2012-12-26 常州天合光能有限公司 一种非晶硅薄膜-p型晶体硅叠层太阳电池及制造工艺
CN102856419A (zh) * 2012-08-16 2013-01-02 常州天合光能有限公司 叠层硅基异质结太阳能电池
KR102052507B1 (ko) * 2012-10-12 2019-12-05 엘지전자 주식회사 박막 태양전지 모듈
JP6055270B2 (ja) * 2012-10-26 2016-12-27 キヤノン株式会社 固体撮像装置、その製造方法、およびカメラ
US9581742B2 (en) * 2012-11-20 2017-02-28 Corning Incorporated Monolithic, linear glass polarizer and attenuator
CN102938430B (zh) * 2012-12-07 2016-12-21 上海空间电源研究所 包含中间层的柔性衬底硅基多结叠层太阳电池及其制造方法
KR20140082012A (ko) * 2012-12-21 2014-07-02 엘지전자 주식회사 태양 전지 및 이의 제조 방법
CN103066147B (zh) * 2012-12-28 2016-08-03 浙江金贝能源科技有限公司 一种p型硅衬底的双pin结双面太阳能电池
CN103077984B (zh) * 2012-12-28 2016-01-20 浙江金贝能源科技有限公司 一种n型硅衬底的双pin结双面太阳能电池
CN106229361B (zh) * 2016-08-03 2017-12-29 河北大学 一种p‑i‑n发电层结构及其制备方法以及透光太阳能电池及其制备方法
KR102564282B1 (ko) * 2018-05-10 2023-08-11 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 텐덤 태양전지 및 이의 제조방법
JP2022543358A (ja) 2019-08-09 2022-10-12 リーディング エッジ イクウィップメント テクノロジーズ インコーポレイテッド 酸素濃度の低い領域を有するリボンまたはウェハの製造

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824566A (en) * 1995-09-26 1998-10-20 Canon Kabushiki Kaisha Method of producing a photovoltaic device
US6632993B2 (en) * 2000-10-05 2003-10-14 Kaneka Corporation Photovoltaic module
JP2004014812A (ja) 2002-06-07 2004-01-15 Canon Inc 光起電力素子
US7189917B2 (en) * 2003-03-26 2007-03-13 Canon Kabushiki Kaisha Stacked photovoltaic device
JP4063735B2 (ja) * 2003-07-24 2008-03-19 株式会社カネカ 積層型光電変換装置を含む薄膜光電変換モジュール
US7847186B2 (en) 2003-07-24 2010-12-07 Kaneka Corporation Silicon based thin film solar cell
AU2004259485B2 (en) * 2003-07-24 2009-04-23 Kaneka Corporation Stacked photoelectric converter
DE102005013537A1 (de) * 2004-03-24 2005-10-20 Sharp Kk Fotoelektrischer Wandler und Herstellverfahren für einen solchen
JP4410654B2 (ja) 2004-10-20 2010-02-03 三菱重工業株式会社 薄膜シリコン積層型太陽電池及びその製造方法
JP2006120745A (ja) 2004-10-20 2006-05-11 Mitsubishi Heavy Ind Ltd 薄膜シリコン積層型太陽電池
JP5156379B2 (ja) * 2005-08-30 2013-03-06 株式会社カネカ シリコン系薄膜光電変換装置、及びその製造方法
US20070068571A1 (en) * 2005-09-29 2007-03-29 Terra Solar Global Shunt Passivation Method for Amorphous Silicon Thin Film Photovoltaic Modules

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097540A (zh) * 2009-12-11 2011-06-15 英属开曼群岛商精曜有限公司 一种堆栈型太阳能薄膜电池及其制作方法
CN102782878A (zh) * 2010-02-26 2012-11-14 三洋电机株式会社 太阳能电池及其制造方法
US8642373B2 (en) 2010-03-22 2014-02-04 Intellectual Discovery Co., Ltd. Photovoltaic device including an inflexible or a flexible substrate and method for manufacturing the same
CN102201489B (zh) * 2010-03-22 2014-05-07 英迪股份有限公司 包括硬性或柔性基板的光电装置及其制造方法
CN102201489A (zh) * 2010-03-22 2011-09-28 韩国铁钢株式会社 包括硬性或柔性基板的光电装置及其制造方法
CN102201462A (zh) * 2010-03-26 2011-09-28 韩国铁钢株式会社 包括柔性基板或硬性基板的光电装置及其制造方法
US8753914B2 (en) 2010-03-26 2014-06-17 Intellectual Discovery Co., Ltd. Photovoltaic device including flexible or inflexible substrate and method for manufacturing the same
CN102201464A (zh) * 2010-03-26 2011-09-28 韩国铁钢株式会社 包括柔性或硬性基板的光电装置及其制造方法
US9040812B2 (en) 2010-03-26 2015-05-26 Intellectual Discovery Co., Ltd. Photovoltaic device including flexible substrate or inflexible substrate and method for manufacturing the same
US9029688B2 (en) 2010-03-26 2015-05-12 Intellectual Discovery Co., Ltd. Photovoltaic device including flexible substrate or inflexible substrate and method for manufacturing the same
CN102237417A (zh) * 2010-04-20 2011-11-09 韩国铁钢株式会社 串联型光电装置及其制造方法
US8735715B2 (en) 2010-04-20 2014-05-27 Intellectual Discovery Co., Ltd. Tandem photovoltaic device and method for manufacturing the same
CN102237417B (zh) * 2010-04-20 2014-02-19 英迪股份有限公司 串联型光电装置及其制造方法
CN102148232A (zh) * 2010-12-24 2011-08-10 友达光电股份有限公司 太阳能电池模块
CN102255005A (zh) * 2011-06-30 2011-11-23 浙江正泰太阳能科技有限公司 薄膜太阳电池及其制造方法
CN102255005B (zh) * 2011-06-30 2013-01-02 浙江正泰太阳能科技有限公司 薄膜太阳电池及其制造方法
CN102255004A (zh) * 2011-08-11 2011-11-23 北京泰富新能源科技有限公司 一种薄膜太阳能电池的制造方法
CN103022208A (zh) * 2011-09-26 2013-04-03 吉富新能源科技(上海)有限公司 利用二氧化硅中间层制作高效率双结硅薄膜太阳能电池
CN103066153A (zh) * 2012-12-28 2013-04-24 福建铂阳精工设备有限公司 硅基薄膜叠层太阳能电池及其制造方法

Also Published As

Publication number Publication date
KR100876613B1 (ko) 2008-12-31
CN101593779B (zh) 2011-07-20
US8648251B2 (en) 2014-02-11
EP2128904A2 (en) 2009-12-02
US20090293936A1 (en) 2009-12-03
US20120070935A1 (en) 2012-03-22
EP2128904A3 (en) 2014-09-03
TW200950114A (en) 2009-12-01
US8628995B2 (en) 2014-01-14

Similar Documents

Publication Publication Date Title
CN101593779B (zh) 串联薄膜硅太阳能电池及其制造方法
KR101066394B1 (ko) 광기전력 장치 및 광기전력 장치의 제조 방법
CN101567400A (zh) 薄膜硅太阳能电池及其制造方法
CN101964368B (zh) 一种叠层太阳能电池及其制造方法
KR101072473B1 (ko) 광기전력 장치 및 광기전력의 제조 방법
CN101944542A (zh) 光电装置及其制造方法
CN102255005B (zh) 薄膜太阳电池及其制造方法
CN201440422U (zh) 一种叠层太阳能电池
CN204668317U (zh) 具有梯度结构的硅基薄膜太阳能电池
KR101074291B1 (ko) 광기전력 장치 및 광기전력의 제조 방법
KR101032270B1 (ko) 플렉서블 또는 인플렉서블 기판을 포함하는 광기전력 장치 및 광기전력 장치의 제조 방법
Moulin et al. Amorphous and Nanocrystalline Silicon Solar Cells
Schropp Amorphous and microcrystalline silicon solar cells
CN204424272U (zh) 具有量子阱结构的硅基薄膜太阳能电池
CN104393120B (zh) 非晶硅锗薄膜太阳电池顶电池p型层的制备方法及用途
CN203325950U (zh) 一种多带隙双面透光太阳能电池
KR20110070539A (ko) 박막 태양전지 및 그 제조방법
WO2005093856A1 (ja) 薄膜光電変換装置の製造方法
KR101644056B1 (ko) 박막형 태양전지 및 그 제조방법
JP2004146735A (ja) シリコン光起電力素子及びその製造方法
Veneri et al. Thin film Silicon Solar Cells
AU2004201303A1 (en) Stacked Photovoltaic Element and Current Balance Adjustment Method
JP2000068533A (ja) 微結晶シリコン薄膜太陽電池及びその製造方法
KR101039719B1 (ko) 플렉서블 기판 또는 인플렉서블 기판을 포함하는 광기전력 장치 및 이의 제조 방법
CN102437253A (zh) 非晶硅太阳能电池的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: YINGDI CO., LTD.

Free format text: FORMER OWNER: KISCO

Effective date: 20130911

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130911

Address after: Seoul, South Kerean

Patentee after: Neo Lab Convergence Inc.

Address before: South Korea celebrates Chang

Patentee before: Kisco

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110720

Termination date: 20180507

CF01 Termination of patent right due to non-payment of annual fee