CN102199313A - 一种低水溶性耐热膨胀型阻燃剂的制备方法 - Google Patents
一种低水溶性耐热膨胀型阻燃剂的制备方法 Download PDFInfo
- Publication number
- CN102199313A CN102199313A CN201110060855XA CN201110060855A CN102199313A CN 102199313 A CN102199313 A CN 102199313A CN 201110060855X A CN201110060855X A CN 201110060855XA CN 201110060855 A CN201110060855 A CN 201110060855A CN 102199313 A CN102199313 A CN 102199313A
- Authority
- CN
- China
- Prior art keywords
- flame retardant
- hydroxyethyl
- water
- hours
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Fireproofing Substances (AREA)
Abstract
本发明公开了低水溶性耐热膨胀型阻燃剂制备方法,属于阻燃剂制备技术领域。按照下述步骤进行:将三(2-羟乙基)异氰尿酸酯加入到溶剂中,加热至其溶解,冷却到室温;再加入聚磷酸铵粉末和二异氰酸酯化合物;最后加入二月桂酸二丁基锡作为催化剂,搅拌下升温到溶剂的沸点进行溶液聚合2~6小时,停止反应后,将所得产物抽滤,用聚合时所用溶剂洗涤3~5次;先在室温下晾置1~3小时,再置于100~150℃鼓风烘箱中干燥6~8小时,磨碎后得低水溶性耐热膨胀型阻燃剂。本发明所得到的膨胀型阻燃剂热稳定性高,水溶性低,其初始热分解温度高于265oC,在水中溶解度低于0.15克/100mL。明显具有更好的热稳定性和耐水性。
Description
技术领域
本发明属于阻燃剂制备技术领域,特别涉及一种低水溶性耐热膨胀型阻燃剂的制备方法。
背景技术
膨胀阻燃剂(IFR)是近二十年来发展起来的适合聚烯烃材料阻燃的低烟无卤环保型阻燃剂。IFR一般为酸源、气源和碳源三部分组成。聚磷酸铵是最常用的酸源,也有具有气源的作用,季戊四醇类多羟基化合物是最常用的碳源,也称为成炭剂。IFR的阻燃机理是当被加热到200oC以上时,酸源分解产生酸性物质与多羟基化合物成酯最后脱磷成炭,同时催化聚合物脱氢与IFR相互作用而成炭。气源分解后产生的气体使产生的炭层发泡,形成的膨胀炭层起到隔热隔氧和抑制聚合物分解后产生的可燃性气液物流动到聚合物表面的作用,从而实现物理阻燃的作用。膨胀型阻燃剂(IFR)具有无毒、低烟、与聚合物相容性较好、添加量比金属氢氧化物类无卤阻燃剂少、对基体材料的使用和加工性能影响小的优点。
但一般的IFR也有一些缺点,表现为耐水性较差、易吸潮、耐热性较低,限制了阻燃材料的加工温度等。主要原因是所采用的酸源聚磷酸铵(APP)属于无机盐类,当分子量较低时,水溶性较大。APP的水溶性随其聚合度上升而下降,因此适合用于塑料阻燃的APP聚合度一般都要求700以上。还有一个降低APP水溶性并提高其热稳定性的方法是通过聚合的方法在APP表面形成微胶囊包覆。如中国专利ZL03116283.5公开了以密胺-甲醛树脂微胶囊包覆聚磷酸铵的方法。另一方面,IFR最常用的碳源季戊四醇多羟基化合物也具有一定的水溶性。用其它的低水溶性物质,尤其是高分子类物质作为阻燃成炭剂取代季戊四醇多羟基化合物一直是改进IFR性能的努力方向。其中含三氮杂环的三嗪类聚合物是较好的成炭剂,美国专利US450461,中国专利CN1715272A和CN101362819都公开了以三聚氰氯为起始物合成的三嗪环上有不同取代基的三嗪类高分子成炭剂。三(2-羟乙基)异氰尿酸酯(THEIC)是一种含有羟基的三嗪类化合物,三嗪环使之具有良好的热稳定性和一定的阻燃性,三个羟基的存在,又使得它易与聚磷酸铵反应形成磷酸酯而最终成炭。文献(Lewin M. Synergistic and catalytic effects in flame retardancy of polymeric materials - An overview. J Fire Sci. 1999;17(1):3-19)表明THEIC可以与APP复配得到阻燃效果比季戊四醇和APP复配阻燃效果更好的IFR。但THEIC也具有一定的水溶性,这就使得THEIC不能在聚烯烃阻燃中得到工业化应用。聚氨酯是另外一种可以用做IFR成炭剂的聚合物材料(Bugajny M, Le Bras M, Bourbigot S, Poutch F, Marc LJ. Thermoplastic polyurethanes as carbonization agents in intumescent blends. Part 1: fire retardancy of polypropylene/thermoplastic polyurethane/ammonium polyphosphate blends. J Fire Sci. 1999;17:494-513.)。中国专利CN101376811A采用聚醚二元醇和二异氰酸酯为主单体,以季戊四醇为交联单体,制备了聚氨酸包覆聚磷酸铵微胶囊阻燃剂。但可燃聚醚二元醇结构的引入不利于IFR阻燃效率的保持。综合分析国内外相关专利和文献,尚未见采用以THEIC为聚氨酯合成的多元醇成分,合成交联的聚(异氰尿酸酯-氨酯)成炭剂包覆在聚磷酸铵表面以制备低水溶性耐热膨胀型阻燃剂的方法报道。
发明内容
本发明的目的是为了克服上述现有技术中的不足,采用三(2-羟乙基)异氰尿酸酯与二异氰酸酯类化合物在聚磷酸铵存在的溶液中聚合交联合成聚(异氰尿酸酯-氨酯),包覆在聚磷酸铵表面以制备具有低水溶性的耐热膨胀型阻燃剂。
本发明一种低水溶性耐热膨胀型阻燃剂制备方法,按照下述步骤进行:
(1)将三(2-羟乙基)异氰尿酸酯加入到溶剂中,加热至60 oC使三(2-羟乙基)异氰尿酸酯溶解,冷却到室温。
(2)加入聚磷酸铵粉末分散在上述溶液中,再按三(2-羟乙基)异氰尿酸酯的羟基和二异氰酸酯的异氰酸酯基摩尔比为1.7:1~1:1加入二异氰酸酯化合物;其中聚磷酸铵粉末与三(2-羟乙基)异氰尿酸酯和二异氰酸酯两种化合物的混合物的质量比为3.5:1~2:1。
(3)再加入三(2-羟乙基)异氰尿酸酯和二异氰酸酯混合物质量计0.1~0.5%的二月桂酸二丁基锡作为催化剂,搅拌下升温到溶剂的沸点进行溶液聚合2~6小时,停止反应后,将所得产物抽滤,用聚合时所用溶剂洗涤3~5次;先在室温下晾置1~3小时,再置于100~150 oC鼓风烘箱中干燥6~8小时,磨碎后,即得低水溶性耐热膨胀型阻燃剂。
本发明所使用的溶剂为丁酮、丙酮或二甲基甲酰胺,以质量比计其与三(2-羟乙基)异氰尿酸酯、二异氰酸酯化合物和聚磷酸铵总质量的比为2:1~10:1。
本发明所使用的二异氰酸酯化合物为甲苯二异氰酸酯、4,4`-二苯基甲烷二异氰酸酯、异佛尔酮二异氰酸酯。
本发明所得到的膨胀型阻燃剂热稳定性高,水溶性低,其初始热分解温度高于265 oC,在水中溶解度低于0.15克/100 mL。中国专利ZL03116283.5所公开的包覆良好的聚磷酸铵的初始热分解温度为235~241 oC之间,水中溶解量为0.3~0.1克/100 mL。本发明得到的膨胀型阻燃剂明显具有更好的热稳定性和耐水性。本发明得到的膨胀型阻燃剂阻燃聚丙烯材料经过70 oC热水168小时浸泡实验后仍能保持UL 94 V-0级阻燃要求。
具体实施方式
下面的实施实例是对本发明的进一步说明,而不是限制本发明的范围。
实施例1:
将 6.30克三(2-羟乙基)异氰尿酸酯(THEIC)加入到装有 300 克丁酮的1000 mL四口烧瓶中,加热至60 oC使THEIC溶解。加入20克聚磷酸铵粉末分散在上述溶液中,再加入甲苯二异氰酸酯(TDI)3.70克(THEIC上的羟基与TDI上的异氰酸酯基比为1.7:1)。再加入0.04克二月桂酸二丁基锡催化剂,升温到丁酮的沸点80 oC进行溶液聚合5小时,停止反应后,将所得产物抽滤,用丁酮洗涤3次。先在室温下晾置2小时,再置于100 oC鼓风烘箱中干燥6小时,磨碎后,即得低水溶性耐热膨胀型阻燃剂。
实施例2:
将6 克THEIC加入到装有 200克丁酮的500 mL四口烧瓶中,加热至60 oC使THEIC溶解。加入30克聚磷酸铵粉末分散在上述溶液中,再加入甲苯二异氰酸酯(TDI) 4克(THEIC上的羟基与TDI上的异氰酸酯基比为1.5:1)。再加入0.04克二月桂酸二丁基锡催化剂,升温到丁酮的沸点80 oC进行溶液聚合6小时,停止反应后,将所得产物抽滤,用丁酮洗涤3次。先在室温下晾置2小时,再置于100 oC鼓风烘箱中干燥8小时,磨碎后,即得低水溶性耐热膨胀型阻燃剂。
实施例3:
将 5克三(2-羟乙基)异氰尿酸酯(THEIC)加入到装有 90克丁酮的500 mL四口烧瓶中,加热至60 oC使THEIC溶解。加入35克聚磷酸铵粉末分散在上述溶液中,再加入甲苯二异氰酸酯(TDI) 5克(THEIC上的羟基与TDI上的异氰酸酯基比为1:1)。再加入0.01克二月桂酸二丁基锡催化剂,升温到丁酮的沸点80 oC进行溶液聚合6小时,停止反应后,将所得产物抽滤,用丁酮洗涤3次。先在室温下晾置2小时,再置于100 oC鼓风烘箱中干燥8小时,磨碎后,即得低水溶性耐热膨胀型阻燃剂。
实施例4:
将4.75 克三(2-羟乙基)异氰尿酸酯(THEIC)加入到装有200克丙酮的500 mL四口烧瓶中,加热至56 oC使THEIC溶解。加入30克聚磷酸铵粉末分散在上述溶液中,再加入二苯甲烷二异氰酸酯(MDI)5.25克(THEIC上的羟基与MDI上的异氰酸酯基比为1.3:1)。再加入0.05克二月桂酸二丁基锡催化剂,升温到丙酮的沸点56oC进行溶液聚合6小时,停止反应后,将所得产物抽滤,用丙酮洗涤3次。先在室温下晾置1小时,再置于100 oC鼓风烘箱中干燥6小时,磨碎后,即得低水溶性耐热膨胀型阻燃剂。
实施例5:
将 5.11克三(2-羟乙基)异氰尿酸酯(THEIC)加入到装有200克丙酮的500 mL四口烧瓶中,加热至56oC使THEIC溶解。加入30克聚磷酸铵粉末分散在上述溶液中,再加入4,4`-二苯基甲烷二异氰酸酯(MDI) 4.89克(THEIC上的羟基与MDI上的异氰酸酯基比为1.5~1)。再加入0.05克二月桂酸二丁基锡催化剂,升温到丙酮的沸点57oC进行溶液聚合6小时,停止反应后,将所得产物抽滤,用丙酮洗涤3次。先在室温下晾置1小时,再置于100 oC鼓风烘箱中干燥6小时,磨碎后,即得低水溶性耐热膨胀型阻燃剂。
实施例6:
将 5.4克三(2-羟乙基)异氰尿酸酯(THEIC)加入到装有 200克二甲基甲酰胺的500 mL四口烧瓶中,加热至60 oC使THEIC溶解。加入30克聚磷酸铵粉末分散在上述溶液中,再加入异佛尔酮二异氰酸酯(IPDI)4.6克(THEIC上的羟基与IPDI上的异氰酸酯基比为1.5:1)。再加入0.05克 二月桂酸二丁基锡催化剂,升温到二甲基甲酰胺的沸点153oC进行溶液聚合2小时,停止反应后,将所得产物抽滤,用二甲基甲酰胺洗涤3次。先在室温下晾置3小时,再置于150 oC鼓风烘箱中干燥8小时,磨碎后,即得低水溶性耐热膨胀型阻燃剂。
实验一
将上述实施例得到的膨胀型阻燃剂在在美国TA仪器公司的SDTQ-600热分析系统上进行热失重分析(TGA),空气气氛,测试范围为50-800 oC ,升温速率10 oC/min。
实验二
粒径测定在丹东市百特仪器有限公司产BT-9300S型激光粒度分布仪上进行,以乙醇为分散介质。
实验三
将上述得到的膨胀型阻燃剂与聚丙烯(T30S,镇海炼化公司)按如下方法进行共混制备阻燃聚丙烯材料,测试其阻燃和力学性能。将占物料总重量质量计30%的膨胀型阻燃剂,60 %(质量计)的聚丙烯和10%(质量计)作为相容剂的聚丙烯接枝马来酸酐共计50克加入容积为70 mL密炼机中在190 oC,转速100 rpm下混合10 分钟,即得阻燃聚丙烯 (FRPP)。混合结束后,将物料取下,在平板硫化机上190 oC,压力10 MPa下压制成120×100 ×3 mm3和100×100×1 mm3样板供制备燃烧性能和力学性能测试样条。氧指数(LOI值)测定按照美国材料测试学会标准ASTM D2863(Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index)在南京江宁区分析仪器厂的HC-2型氧指数仪上进行,样条尺寸为120×6.5×3 mm3。
UL94 垂直燃烧测试按美国材料测试学会标准ASTM D3801 (Measuring the Comparative Burning Characteristics of Solid Plastics in a Vertical Position)在南京江宁区分析仪器厂的HC-2型氧指数仪上进行,样条尺寸为 120×13×3 mm3。
按照UL746C ( Standard for Polymeric Materials – Use in Electrical Equipment Evaluations)标准要求,将LOI值及垂直燃烧测试样条浸泡于70 oC热水中168小时后取出80 oC烘干3小时后再进行LOI值及垂直燃烧测试,以阻燃性能的保持程度来考察阻燃材料的耐水性能。
拉伸性能测试按照美国材料测试学会标准ASTM D638 (Standard Test Method for
Tensile Properties of Plastics)标准在深圳凯强利机械有限公司的WDT-5型电子万能试验机上测试,哑铃型样条尺寸为75×4×1 mm3,拉伸速率为50 mm/min。测试温度为23 oC。冲击性能按照ASTM D256 ( Determining the Izod Pendulum Impact Resistance of Plastics)在承德市试验机厂XJU-22型冲击试验机上测试,样条尺寸为12.7×64×3 mm3,缺口深度为2.5mm。测试温度为23 oC。所有测试结果如表1所示。其中APP+THEIC是指APP和THEIC直接混合作为膨胀型阻燃剂。
表 1 不同实施例得到的膨胀型阻燃剂和对应阻燃PP的性能
从上表可见,直接使用APP和THEIC作为阻燃剂,其水溶性达到2.3 g/100 mL,初始热分解温度为250 oC,用其制备的阻燃聚丙烯材料,经过70 oC热水168小时浸泡实验后,氧指数从34下降到23,达不到UL94垂直燃烧级别。而本发明所得到的膨胀型阻燃剂热稳定性高,水溶性低,其初始热分解温度高于265 oC,在水中溶解度低于0.15克/100 mL,用其制备的阻燃聚丙烯材料经过70 oC热水168小时浸泡实验后仍能保持UL 94 V-0级阻燃要求。而中国专利ZL03116283.5所公开的包覆良好的聚磷酸铵的初始热分解温度为235~241 oC之间,水中溶解量为0.3~0.1克/100 mL。本发明所得到的膨胀型阻燃剂具有更低的水溶性,更好的耐热性。相对于直接使用APP和THEIC作为阻燃剂得到的阻燃聚丙烯材料,本发明所得到的阻燃聚丙烯材料的拉伸强度有所提高,冲击强度有一定下降,具体应用时,可以通过加入少量增韧剂进行调整。
Claims (3)
1.一种低水溶性耐热膨胀型阻燃剂制备方法,其特征在于按照下述步骤进行:
(1)将三(2-羟乙基)异氰尿酸酯加入到溶剂中,加热至60 oC使三(2-羟乙基)异氰尿酸酯溶解,冷却到室温;
(2)再加入聚磷酸铵粉末分散在上述溶液中,再按三(2-羟乙基)异氰尿酸酯的羟基和二异氰酸酯的异氰酸酯基摩尔比为1.7:1~1:1加入二异氰酸酯化合物;其中聚磷酸铵粉末与三(2-羟乙基)异氰尿酸酯和二异氰酸酯两种化合物的混合物的质量比为3.5:1~2:1;
(3)再加入三(2-羟乙基)异氰尿酸酯和二异氰酸酯混合物质量计0.1~0.5%的二月桂酸二丁基锡作为催化剂,搅拌下升温到溶剂的沸点进行溶液聚合2~6小时,停止反应后,将所得产物抽滤,用聚合时所用溶剂洗涤3~5次;先在室温下晾置1~3小时,再置于100~150 ℃鼓风烘箱中干燥6~8小时,磨碎后,即得低水溶性耐热膨胀型阻燃剂。
2.根据权利要求1所述的一种低水溶性耐热膨胀型阻燃剂制备方法,其特征在于所使用的溶剂为丁酮、丙酮或二甲基甲酰胺,以质量比计其与三(2-羟乙基)异氰尿酸酯、二异氰酸酯化合物和聚磷酸铵总质量的比为2:1~10:1。
3.根据权利要求1所述的一种低水溶性耐热膨胀型阻燃剂制备方法,其特征在于所使用的二异氰酸酯化合物为甲苯二异氰酸酯、4,4`-二苯基甲烷二异氰酸酯或异佛尔酮二异氰酸酯。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110060855XA CN102199313B (zh) | 2011-03-15 | 2011-03-15 | 一种低水溶性耐热膨胀型阻燃剂的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110060855XA CN102199313B (zh) | 2011-03-15 | 2011-03-15 | 一种低水溶性耐热膨胀型阻燃剂的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102199313A true CN102199313A (zh) | 2011-09-28 |
CN102199313B CN102199313B (zh) | 2012-12-26 |
Family
ID=44660322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110060855XA Expired - Fee Related CN102199313B (zh) | 2011-03-15 | 2011-03-15 | 一种低水溶性耐热膨胀型阻燃剂的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102199313B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105175780A (zh) * | 2015-07-23 | 2015-12-23 | 莆田学院 | 一种含氮磷硅的丙烯酸酯阻燃剂及其阻燃环氧丙烯酸酯涂层制备方法 |
CN105585737A (zh) * | 2016-03-04 | 2016-05-18 | 广东工业大学 | 一种磷酸盐微胶囊阻燃剂及其制备方法与应用 |
CN106117992A (zh) * | 2016-07-12 | 2016-11-16 | 北京服装学院 | 一种阻燃聚对苯二甲酸乙二醇酯体系及其制备方法 |
CN115368570A (zh) * | 2022-09-26 | 2022-11-22 | 山东天一化学股份有限公司 | 一种赛克大分子衍生物成炭剂及其制备方法 |
CN116397438A (zh) * | 2023-03-14 | 2023-07-07 | 苏州大学 | 一种耐久阻燃涤/棉混纺织物及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101376811A (zh) * | 2008-09-28 | 2009-03-04 | 中国科学技术大学 | 一种聚氨酯微胶囊化无机含磷阻燃剂及其制备方法 |
-
2011
- 2011-03-15 CN CN201110060855XA patent/CN102199313B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101376811A (zh) * | 2008-09-28 | 2009-03-04 | 中国科学技术大学 | 一种聚氨酯微胶囊化无机含磷阻燃剂及其制备方法 |
Non-Patent Citations (1)
Title |
---|
《弹性体》 20090815 陈由亮,辛浩波,杨锋,冯杰,潘光君 三(2-羟乙基)异氰酸酯改性TDI-80对PUE性能的影响 第33-37页 1-3 第19卷, 第4期 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105175780A (zh) * | 2015-07-23 | 2015-12-23 | 莆田学院 | 一种含氮磷硅的丙烯酸酯阻燃剂及其阻燃环氧丙烯酸酯涂层制备方法 |
CN105175780B (zh) * | 2015-07-23 | 2017-12-29 | 莆田学院 | 一种含氮磷硅的丙烯酸酯阻燃剂及其阻燃环氧丙烯酸酯涂层制备方法 |
CN105585737A (zh) * | 2016-03-04 | 2016-05-18 | 广东工业大学 | 一种磷酸盐微胶囊阻燃剂及其制备方法与应用 |
CN105585737B (zh) * | 2016-03-04 | 2017-12-15 | 广东工业大学 | 一种磷酸盐微胶囊阻燃剂及其制备方法与应用 |
CN106117992A (zh) * | 2016-07-12 | 2016-11-16 | 北京服装学院 | 一种阻燃聚对苯二甲酸乙二醇酯体系及其制备方法 |
CN106117992B (zh) * | 2016-07-12 | 2018-08-31 | 北京服装学院 | 一种阻燃聚对苯二甲酸乙二醇酯体系及其制备方法 |
CN115368570A (zh) * | 2022-09-26 | 2022-11-22 | 山东天一化学股份有限公司 | 一种赛克大分子衍生物成炭剂及其制备方法 |
CN116397438A (zh) * | 2023-03-14 | 2023-07-07 | 苏州大学 | 一种耐久阻燃涤/棉混纺织物及其制备方法 |
CN116397438B (zh) * | 2023-03-14 | 2024-03-15 | 苏州大学 | 一种耐久阻燃涤/棉混纺织物及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102199313B (zh) | 2012-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Cyclodextrin microencapsulated ammonium polyphosphate: Preparation and its performance on the thermal, flame retardancy and mechanical properties of ethylene vinyl acetate copolymer | |
Yuan et al. | Highly-efficient reinforcement and flame retardancy of rigid polyurethane foam with phosphorus-containing additive and nitrogen-containing compound | |
Luo et al. | Enhanced thermal stability and flame retardancy of polyurethane foam composites with polybenzoxazine modified ammonium polyphosphates | |
Yang et al. | Synthesis, mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate | |
Meng et al. | Effects of expandable graphite and ammonium polyphosphate on the flame‐retardant and mechanical properties of rigid polyurethane foams | |
Wang et al. | Synthesis of a phosphorus‐and nitrogen‐containing flame retardant and evaluation of its application in waterborne polyurethane | |
Liu et al. | Melamine amino trimethylene phosphate as a novel flame retardant for rigid polyurethane foams with improved flame retardant, mechanical and thermal properties | |
Luo et al. | Reactive flame retardant with core‐shell structure and its flame retardancy in rigid polyurethane foam | |
Ma et al. | Effects of novel phosphorus-nitrogen-containing DOPO derivative salts on mechanical properties, thermal stability and flame retardancy of flexible polyurethane foam | |
CN102199313B (zh) | 一种低水溶性耐热膨胀型阻燃剂的制备方法 | |
Liu et al. | The preparation of a bisphenol A epoxy resin based ammonium polyphosphate ester and its effect on the char formation of fire resistant transparent coating | |
Yue et al. | Liquefaction of waste pine wood and its application in the synthesis of a flame retardant polyurethane foam | |
CN105542160A (zh) | 单组份磷-氮双环笼状大分子膨胀型阻燃剂及其制备方法和应用 | |
Zhang et al. | Flame retardancy, mechanical, and thermal properties of waterborne polyurethane conjugated with a novel phosphorous‐nitrogen intumescent flame retardant | |
JP2014528396A (ja) | 新規なホスホンアミデート、並びにその合成、及びその難燃化剤への応用 | |
CN110527053B (zh) | 一种低烟阻燃硬质聚氨酯泡沫材料及其制备方法 | |
CN108912336B (zh) | 一种活性氨基交联型磷腈衍生物、其制备方法与应用及阻燃环氧树脂 | |
Xu et al. | Preparation of boron-coated expandable graphite and its application in flame retardant rigid polyurethane foam | |
Xing et al. | Synthesis and characterization of bio‐based intumescent flame retardant and its application in polyurethane | |
Negrell et al. | Self-extinguishing bio-based polyamides | |
Wang et al. | Highly effective flame‐retarded polyester diol with synergistic effects for waterborne polyurethane application | |
Yang et al. | Flame retarded rigid polyurethane foam composites based on gel-silica microencapsulated ammonium polyphosphate | |
Qu et al. | Preparation and performance of a P–N containing intumescent flame retardant based on hydrolyzed starch | |
Yang et al. | Fire performance of piperazine phytate modified rigid polyurethane foam composites | |
Luo et al. | Preparation and performance of waterborne polyurethane coatings based on the synergistic flame retardant of ferrocene, phosphorus and nitrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121226 Termination date: 20160315 |