CN102187224A - 用于检测结核分枝杆菌感染的方法 - Google Patents

用于检测结核分枝杆菌感染的方法 Download PDF

Info

Publication number
CN102187224A
CN102187224A CN2009801371735A CN200980137173A CN102187224A CN 102187224 A CN102187224 A CN 102187224A CN 2009801371735 A CN2009801371735 A CN 2009801371735A CN 200980137173 A CN200980137173 A CN 200980137173A CN 102187224 A CN102187224 A CN 102187224A
Authority
CN
China
Prior art keywords
seq
cell
polypeptide
children
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801371735A
Other languages
English (en)
Inventor
德波拉赫·A·乐文索恩
戴维·M·乐文索恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oregon Health Science University
US Department of Veterans Affairs VA
Original Assignee
Oregon Health Science University
US Department of Veterans Affairs VA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oregon Health Science University, US Department of Veterans Affairs VA filed Critical Oregon Health Science University
Publication of CN102187224A publication Critical patent/CN102187224A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/5695Mycobacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5047Cells of the immune system
    • G01N33/505Cells of the immune system involving T-cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Virology (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

公开了用于在对象中检测结核分枝杆菌(Mycobacterium tuberculosis)(Mtb)感染的方法,其中对象是儿童,具有潜伏的结核分枝杆菌感染的对象。还公开了用于在对象中检测肺外结核分枝杆菌感染的方法。方法包括检测特异性识别Mtb多肽的CD8+T细胞的存在。方法包括用于在生物样品中检测CD8+T细胞存在的体外分析。

Description

用于检测结核分枝杆菌感染的方法
优先权声明
本发明要求2008年9月28日提交的美国临时申请No.61/099,162的优先权,所述临时申请在此引为参考。
政府资助的陈述
本发明根据国立卫生研究院(National Institutes of Heath)资助号AI054474和AI070022在美国政府的支持下完成;美国政府在本发明中具有一定权利。本发明还在退伍军人事务部(Department of Veterans Affairs)的支持下完成。
技术领域
本申请涉及诊断领域,具体来说涉及用于在对象特别是儿童中检测结核分枝杆菌(Mycobacterium tuberculsosis)(Mtb)感染的方法和/或用于诊断潜伏感染的方法。
相关主题
本申请涉及2006年3月14日提交的美国临时申请No.60/782,364和2007年3月14日提交的PCT申请No.PCT/US2007/006534的主题,上述二者在此引为参考。
背景技术
分枝杆菌是好氧的细胞内细菌生物类属,其在感染宿主后存活在单核细胞和巨噬细胞的内体区室(endosomal compartments)中。人类分枝杆菌疾病包括结核病(由结核分枝杆菌(M.tuberculosis)引起)、麻疯病(由麻疯分枝杆菌(M.leprae)引起)、Bairnsdale溃疡病(由溃疡分枝杆菌(M.ulcerans)引起)和由海分枝杆菌(M.marinum)、堪萨斯分枝杆菌(M.kansasii)、瘰疠分枝杆菌(M.scrofulaceum)、苏尔加分枝杆菌(M.szulgai)、蟾蜍分枝杆菌(M.xenopi)、偶发分枝杆菌(M.fortuitum)、龟分支杆菌(M.chelonei)、嗜血分枝杆菌(M.haemophilum)和胞内分枝杆菌(M.intracellulare)引起的各种感染(参见Wolinsky,E.的《微生物学:包括免疫学和分子遗传学》(Microbiology:Including Immunology and Molecular Genetics)第三版中的第37章,Harper & Row,Philadelphia,1980)。
世界人口的三分之一带有结核分枝杆菌,并处于发生结核病(TB)的风险中。年幼儿童具有不成比例的结核病(TB)发病负担。一旦感染,儿童不仅比成人对TB更易感,而且更有可能发生严重的疾病形式。具体来说,在感染后,超过90%的有免疫力的成人将建立无症状的、潜伏的TB感染(LTBI),其具有5-10%的在寿命期内重激活疾病的风险。然而,在大多数婴幼儿中,原发Mtb感染将发展成活动性TB,并且在相当比例的患有活动性TB的对象中,疾病将发展到更严重的形式(例如粟粒性TB)。除了对TB易感性增加之外,在儿童中的及时诊断因下述事实而复杂化,即患有进行性原发感染的儿童很少呈现抗酸杆菌痰涂片阳性,而这在成人肺部重激活疾病中是通常能观察到的。早期检测是必需的,因为在诊断延迟期间疾病发生进展。
在免疫受损患者中,结核病以接近对数速率增加,并出现了多药物抗性菌株。此外,以前被认为是非病原性菌株的分枝杆菌菌株(例如鸟分枝杆菌(M.avium))现在已变成免疫抑制的AIDS患者的主要杀手。此外,目前的分枝杆菌疫苗不够好(例如用于结核分枝杆菌的BCG疫苗)或不可获得(例如对于麻疯分枝杆菌)(Kaufmann,S.,Microbiol.Sci.4:324-328,1987;美国国会技术评估办公室的《结核病的持续挑战》(U.S.Congress,Office of Technology Assessment,The Continuing Challenge of Tuberculosis),62-67页,OTA-H-574,美国政府印刷办公室(U.S.Government Printing Office),Washington,D.C.,1993)。
抑制结核病的传播需要有效的免疫接种和疾病的准确早期诊断。目前,使用活细菌的免疫接种是诱导保护性免疫的最有效方法。用于该目的的最常用分枝杆菌是卡介苗(BCG),这是牛分枝杆菌(Mycobacterium bovis)的无致病力菌株。但是,BCG的安全性和功效是争论之源,并且某些国家例如美国不对普通公众预防接种。
结核病的诊断通常使用皮试进行,其涉及真皮内暴露于结核菌素PPD(蛋白纯化衍生物)。在注射后48到72小时,抗原特异性T细胞应答在注射位点处产生可测量的硬结,其表明暴露于分枝杆菌抗原。但是,该测试的灵敏度和特异性不理想;用BCG免疫接种的个体不能与被感染的个体区分开。此外,它在诊断儿童或LTBI中不是特别有效。因此,在本技术领域中,对用于在儿童中检测结核病、特别是用于检测LTBI和用于诊断TB感染的改进的诊断方法,存在需求。
发明概述
本文公开了用于诊断结核分枝杆菌(Mtb)感染的方法。在某些实施方案中,方法用于在儿童中检测潜伏的结核病感染(LTBI)和/或检测Mtb感染。在其他实施方案中,方法用于检测肺外感染。方法包括分离CD8+T细胞并检测对目标Mtb多肽发生特异性响应的CD8+T细胞。方法可以包括检测细胞因子例如但不限于干扰素(IFN)-γ的表达。在某些实施方案中,方法利用了ESAT-6和/或CFP-10多肽,例如但不限于在儿童中检测结核病。
在几个实施方案中,提供了用于在对象中检测结核分枝杆菌的方法。这些方法可用于检测结核病,包括肺结核病和/或肺外结核病。这些方法包括将来自对象的含有T细胞、例如CD8+T细胞的生物样品,与一种或多种分枝杆菌多肽、或呈递一种或多种分枝杆菌多肽的抗原呈递细胞相接触。所述一种或多种分枝杆菌多肽可以包括ESAT9和CFP10或其抗原性表位。所述一种或多种分枝杆菌多肽也可以包括下列所显示的氨基酸序列:(a)SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQID NO:8、SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:39或SEQ ID NO:61所显示的氨基酸序列之一;或(b)SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:7、SEQ ID NO:8、SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:39或SEQ ID NO:61所显示的至少一个氨基酸序列的至少9到20个连续的氨基酸,其中所述9到20个连续的氨基酸特异性结合I类主要组织相容性复合物(MHC);或SEQ ID NO:39-83所显示的氨基酸序列之一。确定T细胞是否特异性识别分枝杆菌多肽。
在其他实施方案中,方法还包括将有效量的分枝杆菌多肽皮下或皮内给药到对象的皮肤中。分枝杆菌多肽可以是ESAT6或CFP10或其抗原性表位。分枝杆菌多肽包括下列所显示的氨基酸序列:(a)SEQ IDNO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8、SEQ ID NO:9、SEQ IDNO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:31或SEQ ID NO:61所显示的氨基酸序列之一;或(b)SEQ ID NO:1、SEQ ID NO:2、SEQID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:7、SEQ ID NO:8、SEQ ID NO:9、SEQ ID NO:10、SEQID NO:11、SEQ ID NO:12、SEQ ID NO:39或SEQ ID NO:61所显示的至少一个氨基酸序列的至少9到20个连续的氨基酸,其中所述9到20个连续的氨基酸特异性结合I类主要组织相容性复合物(MHC),或SEQ ID NO:39-83所显示的氨基酸序列之一。在对象中检测特异性识别分枝杆菌多肽的T细胞的存在。
方法还可以包括在对象中检测迟发型超敏反应和/或可以包括检测特异性Mtb多肽和多核苷酸。所公开的分析可以单独或组合使用。结核分枝杆菌感染可以是潜伏或活动感染。
此外,描述了用于在对象中检测分枝杆菌感染的试剂和试剂盒。
从下面参考附图进行的几个实施方案的详细描述中,上述以及其他特点和优点将变得更加明显。
附图简述
图1是显示了使用IFN-γELISPOT分析离体(ex vivo)测定人类效应细胞频率的两张图。将磁性珠纯化的CD8+T细胞与DC(20,000/孔)在IFN-γELISPOT分析中一起培养,所述DC或被Mtb感染(H37Rv,MOI=50)或用呈递CFP10的肽合并物(每种肽5μg/ml,15个单体,重叠11个氨基酸)脉冲。每个响应性T细胞群体在四种不同的T细胞浓度下测试双份。为了确定抗原特异性T细胞的效应细胞频率,将每个双份平行样的每个孔的平均斑点数对每个孔的响应细胞数进行作图。使用线性回归分析确定线的斜率,其表示抗原特异性T细胞的频率。如果实验和对照分析的斑点数的二项式概率显著不同,分析被认为是阳性的(反映出致敏T细胞应答的存在)。
图2是一组显示了对Mtb抗原的离体CD8+T细胞频率与Mtb感染相关的图。如上所述(参见图1),为了确定离体CD8+T细胞频率,将用Mtb感染或用同源肽合并物脉冲的自体DC与CD8+T细胞在IFN-γELISPOT分析中一起温育。对没有Mtb感染迹象的对象、患有LTBI的对象以及患有活动性TB的对象(培养物证实的肺部结核病)进行评估。“Mtb感染”包括患有LTBI和活动性结核病。当P=<0.05时(Wilcoxon/Kruskal-Wallis),注明了P值。
图3a到3d是一组显示了界定抗原特异性和HLA限制性(T细胞克隆D466D6的表征)的数字图像。对于图3a-3c中显示的结果来说,为了鉴定T细胞克隆D466D6所识别的抗原和最小表位,将T-细胞(5000个细胞/孔)与自体LCL(20,000/孔)和5μg/ml抗原一起温育。在共培养18小时后通过ELISPOT评估IFN-γ。对于图3a中显示的结果来说,抗原由呈递已知CD4+抗原的肽合并物构成,肽合并物由15个氨基酸(aa)长、具有11个重叠氨基酸的肽组成。对于图3b中显示的结果来说,抗原由合在一起组成肽合并物的各个15个氨基酸的CFP10肽构成。对于图3c中显示的结果来说,抗原由各个嵌套的CFP101-15肽(10个氨基酸、9个氨基酸或8个氨基酸)构成,用于表位的进一步作图。对于图3d中显示的结果来说,使用以CFP102-10(5μg/ml)脉冲过的、在一个或两个等位基因处表达与D466匹配的HLA等位基因的LCL(20,000/孔)作为APC,鉴定限制性等位基因。2小时后,清洗细胞并与T-细胞(500个细胞/孔)在IFN-γELISPOT分析中温育。
图4是显示了确认D466D6的最小表位作图的线图。为了确认最小表位,将自体LCL(20,000/孔)用所标明浓度的肽进行脉冲,并与T-细胞(1000个细胞/孔)共培养。在共培养18小时后通过ELISPOT评估IFN-γ。每个点表示两份平行测定的平均值。
图5是一组显示了CFP10的免疫优势模式的分布情况(profiling)的条形图。为了确定效应细胞频率,将自体DC(20,000/孔)用每种各15聚体肽(5μg/ml)、肽合并物(PP;5μg/每种肽)或从源自于每种供体的T细胞克隆确定的最小表位(ME)(D466:CFP102-11;D480:CFP103-11;D481:CFP1075-83;5μg/ml)脉冲,并针对250,000个磁性珠纯化的CD8+T细胞进行测试。在共培养18小时后通过ELISPOT评估IFN-γ的释放。每个点表示两份平行测定的平均值。
图6是一组概括了最小表位作图数据的图。为了确定最小表位,将自体LCL(20,000/孔)用所标明浓度的肽脉冲,并与T-细胞(1000个细胞/孔)共培养。在共培养18小时后通过ELISPOT评估IFN-γ。每个点表示两份平行测定的平均值。
图7是显示了D504克隆的最小表位作图的线图。为了确定最小表位,将自体LCL(20,000/孔)与T-细胞克隆(1000个细胞/孔)和所标明浓度的肽共培养。在共培养18小时后通过ELISPOT评估IFN-γ。每个点表示两份平行测定的平均值。
图8是显示了患有肺外(EP)TB与患有胸内(IT)TB的乌干达儿童相比,Mtb特异性CD8+T细胞应答的图。使用干扰素(IFN)-γ特异性ELISPOT并使用ESAT-6和CFP-10肽作为抗原来源,在年龄为10岁或以下的乌干达儿童中测量Mtb特异性CD8+T细胞应答。儿童患有EP(n=35)或IT TB(n=43)。TB群体主要由淋巴结核(scofula)构成(30/35[86%])。结果显示成每250,000个贫CD4/CD56的外周血单核细胞(PBMC)的斑点形成单位(SFU)。进行两份平行测定,阳性应答被定义为高于培养基对照2个标准偏差的应答。
图9是流程图,描述了征募、受试者排除和ELISPOT的执行与分析。*是指在HE对CP TB分析中包含的年龄组。
图10是显示了直到15岁的健康的暴露儿童接触者各年龄层的CD8和CD4ELISPOT应答的比较的图。显示了每250,000个T细胞中高于背景的斑点形成单位。初始征募数显示在图9a中。进行了Cochran Armitage趋势检验:对于CD8 ELISPOT,p=0.055;对于PBMCELISPOT,p=0.2。
图11a是显示了在通过临床研究组分层的≤10岁的乌干达儿童中阳性ELISPOT分析的比例的图。描绘了HE和确诊的TB(C-TB)亚组的CD8和PBMC T细胞应答。对于CD8分析来说,患有C-TB的儿童明显更可能具有阳性分析(p=0.001)[HE儿童为20%(CI 0.09-0.34),相比于C-TB儿童的58%(CI 0.37-0.77)]。在比较CP-TB与HE时也注意到了这一发现。同样地,对于PBMC分析来说,在C-TB临床亚组中阳性分析的比例较高(p=0.02)[阳性分析的HE儿童为37%(CI0.24-0.50),相比于C-TB儿童的65%(CI 0.42-0.83)]。与CD8分析不同的是,当CP-TB与HE相比时,阳性比例与HE群体没有明显差异。
图11b是在通过临床研究组和通过年龄分层的≤10岁的乌干达儿童中阳性ELISPOT分析的比例的图。对于≤5岁儿童中的CD8分析来说,患有确诊的TB的儿童与HE相比更可能具有阳性CD8ELISPOT(p=0.009)[HE儿童为12%(CI 0.03-0.31),相比于C-TB儿童的47%(CI 0.24-0.71)]。同样地,当CP-TB群体与HE相比时,CP-TB具有明显更高的阳性CD8分析比例。通过在≤5岁儿童中对PBMC分析进行比较,阳性分析与临床研究组不相关[HE儿童为37%(CI 0.21-0.55),而C-TB为56%(CI 0.30-0.78)],无论使用C-TB还是CP-TB进行比较都是如此。对于>5岁的儿童来说,数量少,因此没有进行比较统计。但是,两种分析都鉴定到高比例的患有C-TP的儿童[对于>5岁儿童的CD8分析来说,具有阳性分析的HE为30%(CI 0.11-0.54),相比于C-TB儿童的86%(CI 0.0.42-0.99)]。通过在>5岁儿童中对CD4分析进行比较,具有阳性分析的HE为36%(CI 0.17-0.59),而C-TB儿童为100%(CI 0.47-1.0)。
图12a-12d是一组图,其中CD8ELISPOT结果对于≤5岁的儿童(12A)和>5岁的儿童(12C)被表示成高于预定截止值的斑点形成单位(SFU)。≤5岁和>5岁的儿童的PBMC ELISPOT结果显示在(12B)和(12D)中。通过CD8T细胞ELISPOT分析,患有CP-TB或C-TB的≤5岁的乌干达儿童具有显著且强烈的应答,而健康的暴露儿童没有表现出这种应答(12A)。通过比较,在HE接触者中存在可以通过PBMCELISPOT测量到的应答,并且这种应答在量值上与患有CP-TB或C-TB的儿童(12B)没有差别。当使用预定截止值分类分析时,患有确诊的或可能的TB的≤5岁的儿童更可能具有阳性CD8ELISPOT(p=0.01),然而与PBMC ELISPOT和临床亚组不存在类别关联性。对于>5岁的儿童来说,由于用于CD8(n=7)和PBMC(n=5)的C-TB组中儿童数量少,没有进行量值和分类统计的比较,但是出于说明性目的显示了SFU。对于>5岁的组来说,HE与CP-TB组相比,在SFU量值上或通过分类分析没有发现差异(12C和12D)。量值的统计学分析使用wilxocon双边秩和检验;对于分类分析来说,进行了卡方分析。
序列表
在所附的序列表中列出的核酸和氨基酸序列,使用如37C.F.R.1.822中所定义的核苷酸碱基的标准字母缩写和氨基酸的三字母编码来显示。每个核酸序列只显示了一条链,但是应该理解在提及所显示的链时包含了互补链。在所附的序列表中:
SEQ ID NO:1-12是Mtb多肽的氨基酸序列。
SEQ ID NO:13-14是Mtb肽的氨基酸。
SEQ ID NO:15-25是编码Mtb多肽的多核苷酸的核酸序列。
SEQ ID NO:26-38是特定Mtb表位的氨基酸序列。
SEQ ID NO:39-83是使用的特定CFP10和ESAT6Mtb多肽的氨基酸序列。
SEQ ID NO:84是示例性接头的氨基酸序列。
详细描述
公开了用于在对象中检测结核分枝杆菌感染的方法。对象是儿童或患有LTBI的对象。方法包括检测T细胞、特别是特异性识别结核分枝杆菌(Mtb)多肽的CD8+T细胞的存在。方法包括用于检测生物样品中反应性CD8+T细胞的存在的体外分析方法,并且还包括检测迟发型超敏反应的体内分析方法。这些方法用于在儿童中检测结核病,包括肺结核病和肺外结核病。这些方法也用于在患有潜伏性结核病感染的成人中检测肺外结核病。
术语
除非另外指出,否则技术术语按照常规用法使用。分子生物学常见术语的定义可见于牛津大学出版社(Oxford University Press)1994年出版的Beniamin Lewin的《基因V》(Genes V)(ISBN0-19-854287-9);Blackwell Science Ltd.公司1994年出版的Kendrew等主编的《分子生物学百科全书》(The Encyclopedia of Molecular Biology)(ISBN 0-632-02182-9)和VCH Publishers,Inc.公司1995年出版的Robert A.Meyers主编的《分子生物学和生物技术:综合桌面参考》(Molecular Biology and Biotechnology:a Comprehensive Desk Reference)(ISBN 1-56081-569-8)中。
为了便于审阅本公开的各种实施方案,提供了下列具体术语的解释:
佐剂:用于增加抗原性的介质。佐剂包括在其上吸附抗原的矿物质(明矾、氢氧化铝或磷酸盐)的悬液;或油包水乳液,其中抗原溶液乳化在矿物油(弗氏(Freund)不完全佐剂)中,有时包含有杀死的分枝杆菌(弗氏完全佐剂)以进一步增加抗原性(抑制抗原的降解和/或引起巨噬细胞流入)。免疫刺激性寡核苷酸(例如包含CpG基序的寡核苷酸)也可以用作佐剂(例如参见美国专利No.6,194,388、美国专利No.6,207,646、美国专利No.6,214,806、美国专利No.6,218,371、美国专利No.6,239,116、美国专利No.6,339,068、美国专利No.6,406,705和美国专利No.6,429,199)。佐剂包括生物分子(“生物佐剂”),例如共刺激分子。示例性佐剂包括IL-2、RANTES、GM-CSF、TNF-α、IFN-γ、G-CSF、LFA-3、CD72、B7-1、B7-2、OX-40L和41BBL。
扩增:对于核酸分子(例如DNA或RNA分子)来说是指使用技术增加样本中核酸分子的拷贝数。扩增的实例是聚合酶链反应,其中将从对象收集的生物样品与寡核苷酸引物对在允许引物与样品中的核酸模板杂交的条件下相接触。引物在适合条件下延伸、与模板解离、然后再次退火、延伸和解离,以扩增核酸的拷贝数。扩增产物可以通过电泳、限制性内切酶切割图样、寡核苷酸杂交或连接、和/或使用标准技术进行核酸测序来表征。扩增的其他实例包括例如在美国专利No.5,744,311中公开的链置换扩增、在美国专利No.6,033,881中公开的无转录等温扩增、在WO 90/01069中公开的修复链反应扩增、在EP-A-320308中公开的连接酶链反应扩增、在美国专利No.5,427,930中公开的间隙填补连接酶链反应扩增以及在美国专利No.6,025,134中公开的NASBATM RNA无转录扩增。
抗原:能够在动物中刺激抗体产生或T细胞应答的化合物、组合物或物质,包括注射或吸收到动物中的组合物。抗原与特异性体液或细胞免疫的产物、包括由异源免疫原诱导的产物反应。术语“抗原”包括所有相关的抗原性表位。“表位”或“抗原决定簇”是指抗原上B和/或T细胞对其应答的位点。在一个实施方案中,当表位呈现出与MHC分子相结合时,T细胞对表位发生应答。表位可以由相邻的氨基酸或通过蛋白质的三级折叠而并置的不相邻氨基酸形成。由相邻氨基酸形成的表位典型地在暴露于变性溶剂后得以保留,而通过三级折叠形成的表位典型地在用变性溶剂处理后丧失。表位典型地包含至少3个、更通常至少5个、约9个或约8-10个处于独特空间构型中的氨基酸。确定表位的空间构型的方法包括例如x-射线晶体学和二维核磁共振。
抗原可以是组织特异性抗原或疾病特异性抗原。这些术语不是排他性的,因为组织特异性抗原也可以是疾病特异性抗原。组织特异性抗原在为数有限的组织中表达,例如单一组织。组织特异性抗原可以被一种以上组织表达,例如但不限于在一种以上的生殖组织中、例如在前列腺和子宫组织两者中表达的抗原。疾病特异性抗原的表达与疾病过程同步。疾病特异性抗原的具体的非限制性实例是其表达与结核病相关或预示结核病的抗原。疾病特异性抗原可以是被T细胞或B细胞识别的抗原。Mtb特异性抗原对Mtb有特异性。
抗体:免疫球蛋白分子和免疫球蛋白分子的免疫活性部分,即含有与抗原、例如Mtb多肽特异性结合(发生免疫反应)的抗原结合位点的分子。
天然存在的抗体(例如IgG、IgM、IgD)包括4条多肽链,通过二硫键互相连接的两条重链(H)和两条轻链(L)。但是,已经显示,抗体的抗原结合功能可以由天然存在的抗体的片段来执行。因此,术语“抗体”也打算指示这些抗原结合片段。术语抗体所涵盖的结合片段的具体的、非限制性的实例包括(i)由VL、VH、CL和CH1结构域构成的Fab片段;(ii)由VH和CH1结构域构成的Fd片段;(iii)由抗体的单臂的VL和VH结构域构成的Fv片段;(iv)由VH结构域构成的dAb片段(Ward等,Nature 341:544-546,1989);(v)分离的互补性决定区(CDR);以及(vi)F(ab′)2片段,包含在铰链区由二硫键相连的两个Fab片段的二价片段。
免疫球蛋白及其某些变体是已知的,并有许多已经在重组细胞培养物中制备(参见例如美国专利No.4,745,055;美国专利No.4,444,487;WO 88/03565;EP 256,654;EP 120,694;EP 125,023;Faoulkner等,Nature 298:286,1982;Morrison,J.Immunol.123:793,1979;Morrison等,Ann Rev.Immunol 2:239,1984)。
动物:活的多细胞脊椎生物,该类别包括例如哺乳动物和鸟类。术语哺乳动物包括人类和非人类哺乳动物二者。同样地,术语“对象”包括人类和兽医对象两者。“儿童”是年龄小于约18岁的人类对象。在某些实施方案中,“幼儿”是年龄约1到约5岁的人类对象。“少儿“是年龄约6到约12岁的人类对象。“婴儿”是年龄小于1岁的人类对象。“青少年”是年龄约13到约18岁的人类对象。“青春期前对象”尚未经历青春期,在某些实例中是年龄小于约11岁的人类对象。
抗原呈递细胞(APC):能够向T细胞呈递抗原以便激活T细胞的细胞。树突状细胞是参与初级免疫应答的主要抗原呈递细胞(APC)。它们的主要功能是获得组织中的抗原、向淋巴器官迁移并呈递抗原,以便激活T细胞。
当接收到适合的成熟指令时,树突状细胞接收信号以经历快速的形态和生理变化,促进免疫应答的启动和发展。其中包括上调参与抗原呈递的分子;产生对于生成Th1应答来说关键的促炎性细胞因子、包括IL-12;以及分泌帮助驱动周围幼稚Th细胞分化、扩增和迁移的趋化因子。总起来说,这些上调的分子促进了树突状细胞协调最终为宿主提供保护的其他周围淋巴细胞的活化和效应子功能的能力。
cDNA(互补DNA):一段缺乏内部非编码区段(内含子)和决定转录的调控序列的DNA。cDNA在实验室中通过从细胞提取的信使RNA的反转录来合成。
CD4:分化簇因子4,一种介导与II类MHC分子相互作用的T细胞表面蛋白。在HIV感染期间CD4也作为HIV在T细胞上的主要受体位点。表达CD4的细胞通常是辅助性T细胞。
CD8:分化簇因子8,一种介导与I类MHC分子相互作用的T细胞表面蛋白。表达CD8的细胞通常是细胞毒性T细胞。“CD8+T细胞介导的免疫”是通过向CD8+T细胞呈递抗原而执行的免疫应答。
cDNA(互补DNA):一段缺乏内部非编码区段(内含子)和决定转录的调控序列的DNA。cDNA在实验室中通过从细胞提取的信使RNA的反转录来合成。
保守变体:“保守”氨基酸取代是基本上不影响或降低分枝杆菌多肽的活性或抗原性的氨基酸取代。保守取代的具体的、非限制性的实例包括下述例子:
Figure BPA00001331533600131
术语保守变异还包括使用取代的氨基酸代替未取代的亲本氨基酸,条件是针对取代的多肽产生的抗体也与未取代的多肽发生免疫反应,或针对取代的多肽产生的免疫应答与针对未取代多肽例如分枝杆菌抗原的免疫应答相似。因此,在一个实施方案中,非保守取代是降低活性或抗原性的取代。
基本上由……构成/由……构成:对于多肽来说,是指多肽如果没有包含任何附加氨基酸残基的话,基本上由指定氨基酸序列构成。但是,多肽可以包含附加的非肽类组分,例如标记物(例如荧光、放射活性或固体粒子标记物)、糖类或脂类。由指定氨基酸序列构成的多肽不包含任何附加的氨基酸残基,也不含附加的非肽类组分例如脂类、糖类或标记物。
接触:将一种试剂在存在另一种试剂的情况下进行温育的过程。因此,当细胞与试剂接触时,细胞与试剂温育足够的时间段,使试剂与细胞相互作用。
共刺激分子:尽管TCR与肽-MHC的接合向T细胞发出了一个信号,但单独的该信号可能不足以活化T细胞。共刺激分子是当与其配体结合时发送使T细胞被活化所需的第二个信号的分子。T细胞上最为人熟知的共刺激分子是CD28,其与B7-1(也称为CD80)或B7-2(也称为CD86)结合。其他的共刺激分子是B7-3。也为T细胞活化提供第二信号的辅助分子包括细胞内黏附分子(ICAM-1和ICAM-2)、白细胞功能相关抗原(LFA-1、LFA-2和LFA-3)。整合蛋白和肿瘤坏死因子(TNF)超家族成员也能用作共刺激分子。
细胞因子:由细胞制造的影响其他细胞例如淋巴细胞的行为的蛋白。在一个实施方案中,细胞因子是趋化因子,一类影响细胞的运输的分子。细胞因子的具体的非限制性实例包括白细胞介素(IL-2、IL-4、IL-6、IL-10、IL-21等)和干扰素(IFN)-γ。
简并变体:编码Mtb多肽的表位的多核苷酸,由于遗传密码的原因包含简并的序列。存在20种天然氨基酸,它们大部分由一种以上密码子指定。因此,所有简并的核苷酸序列,只要由所述核苷酸序列编码的Mtb多肽的氨基酸序列不变,都包含在本公开中。
树突状细胞(DC):树突状细胞是参与初次免疫应答的主要抗原呈递细胞(APC)。树突状细胞包括浆细胞样树突状细胞和髓样树突状细胞。它们的主要功能是获得组织中的抗原、向淋巴器官迁移并呈递抗原以活化T细胞。不成熟的树突状细胞在骨髓中产生,并作为不成熟细胞驻留在外周。
诊断:鉴定病理状况例如但不限于结核病的存在或性质。诊断方法在其灵敏度和特异性方面不同。诊断分析的“灵敏度”是测试为阳性的患病个体的百分率(真阳性的百分率)。诊断分析的“特异性”是1减去假阳性率,其中假阳性率被定义为测试为阳性但未患疾病的个体的比例。尽管具体的诊断方法不能提供病症的决定性诊断,但如果方法提供了有助于诊断的阳性指示就已足够。“预后”是指预测病理状况例如结核病发展(例如严重性)的概率。
显示:将肽:抗原复合物、或肽定位于细胞外表面上的过程,其中肽:抗原复合物或肽可以被第二个细胞、由第二个细胞显示的分子或可溶性因子接近。肽或肽:抗原复合物,当存在于细胞外表面上并可以被第二个细胞、由第二个细胞显示的分子或可溶性因子接近时,是被细胞“显示”。
表位:抗原决定簇。它们是具有抗原性、即引发特异性免疫应答的分子上的特定化学基团或肽序列。抗体特异性结合多肽例如分枝杆菌多肽上的特定抗原性表位。
表达控制序列:调控与其可操作连接的异源核酸序列的表达的核酸序列。当表达控制序列控制并调节核酸序列的转录以及在适当情况下的翻译时,表达控制序列与所述核酸序列可操作连接。因此,表达控制序列可以包括启动子、增强子、转录终止子、蛋白编码基因前的起始密码子(即ATG)、内含子的剪接信号、维持所述基因的正确阅读框以允许mRNA的正确翻译、和终止密码子。术语“控制序列”打算最低限度包含其存在能够影响表达的元件,并且也可以包含其存在有利的其他元件,例如前导序列和融合配偶体序列。表达控制序列可以包括启动子。
启动子是足以指导转录的最小序列。还包括足以使启动子依赖性基因的表达针对细胞类型特异性、组织特异性或可受外部信号或药剂诱导可控制的启动子元件;这些元件可以位于基因的5′或3′区中。包括了组成型和诱导型启动子两者(参见例如Bitter等,Methods in Enzymology 153:516-544,1987)。例如当克隆到细菌系统中时,可以使用诱导型启动子例如λ噬菌体的pL、plac、ptrp、ptac(ptrp-lac杂合启动子)等。在一个实施方案中,当克隆到哺乳动物细胞系统中时,可以使用源自于哺乳动物细胞基因组(例如金属硫蛋白启动子)或源自于哺乳动物病毒(例如反转录病毒长末端重复序列;腺病毒晚期启动子;痘苗病毒7.5K启动子)的启动子。也可以使用通过重组DNA或合成技术产生的启动子来提供核酸序列的转录。在一个实施方案中,启动子是巨细胞病毒启动子。
分级:使样品经历将样品的组分根据物理或化学性质、例如但不限于大小、电荷、溶解度或组成分离开的条件或过程。分级过程的实例包括但不限于选择性沉淀、有机萃取、尺寸排阻透析或层析例如离子交换层析。在一个实施方案中,级份是生物体例如分枝杆菌的可溶性提取物或有机提取物。
功能等价的:产生与本文中所述相同的结果的序列变化,例如抗原表位中的序列变化。这样的序列变化可以包括但不限于保守取代、缺失、突变、移码和插入。
异源的:源自于不同的遗传来源或物种。与Mtb多肽异源的多肽源自于不编码Mtb多肽的核酸。在一个具体的、非限制性的实例中,多肽包含来自Mtb多肽的9个连续氨基酸或来自Mtb多肽的最多20个连续氨基酸,并且异源氨基酸序列包括β-半乳糖苷酶、麦芽糖结合蛋白、白蛋白、乙型肝炎表面抗原或免疫球蛋白氨基酸序列。一般来说,与目标蛋白特异性结合的抗体将不与异源蛋白特异性结合。
宿主细胞:载体可以在其中增殖并且其DNA可以在其中表达的细胞。细胞可以是原核或真核的。细胞可以是哺乳动物、例如人类的细胞。该术语还包括对象宿主细胞的任何后代。应该理解,所有后代可以不与亲代细胞一致,因为在复制期间可能发生突变。但是,当使用术语“宿主细胞”时包含了这样的后代。
人类白细胞抗原(HLA):人类主要组织相容性复合物(MHC)的遗传学名称。各基因座由大写字母标明,例如在HLA-E中,并且等位基因用数字标明,例如在HLA-A*0201中。三种主要的I类MHC基因被称为HLA-A、HLA-B和HLA-C。但是,编码与与I类MHC基因连锁的β2微球蛋白相关细胞表面分子的基因有许多。这些基因的表达在组织分布和细胞上的表达量方面是可变的;这些基因被称为IB类MHC基因。
免疫应答:免疫系统的细胞例如B细胞、自然杀伤细胞或T细胞对刺激的应答。在一个实施方案中,应答对特定抗原是特异性的(“抗原特异性应答”)。在一个实施方案中,免疫应答是T细胞应答,例如Th1、Th2或Th3应答。在另一个实施方案中,免疫应答是抑制性T细胞的应答。
免疫原性肽:肽包含等位基因特异性基序或其他序列,使得所述肽与MHC分子结合并诱导T细胞应答,例如CD8+T细胞应答,或针对产生免疫原性肽的抗原的B细胞应答(例如抗体生产)。在其他实例中,免疫原性肽从CD8+T细胞诱导细胞因子产生。
在一个实施方案中,免疫原性肽使用序列基序或本技术领域已知的其他方法例如神经网络或多项式测定法鉴定。典型地,使用算法确定肽的“结合阈值”,以选择具有赋予它们以一定亲和性结合的高概率并将是免疫原性的分值的肽。算法是基于特定位置的特定氨基酸对MHC结合的影响、特定位置的特定氨基酸对抗体结合的影响或含有基序的肽中特定取代对结合的影响。在免疫原性肽的情形中,“保守残基”是该残基在肽中的特定位置处出现的频率比通过随机分布所预期的频率明显更高。在一个实施方案中,保守残基是其中MHC结构可以提供与免疫原性肽的接触点的残基。
免疫原性肽也可以通过测量它们与特定MHC蛋白的结合并通过它们在MHC蛋白的情况下存在时刺激CD8+T细胞的能力来鉴定。在一个实例中,免疫原性“Mtb肽”是来自Mtb蛋白的一系列相邻的氨基酸残基,一般长度在9到20个氨基酸之间,例如长度为约8到11个残基。在本文中公开的特定免疫原性多肽长度为9或10个氨基酸残基,或长度为最多12个氨基酸。
一般来说,免疫原性Mtb多肽可用于在对象中诱导免疫应答,例如B细胞应答或T细胞应答。在一个实例中,免疫原性Mtb多肽当与I类主要组织相容性复合物分子结合时,活化CD8+T细胞,例如针对Mtb的细胞毒性T淋巴细胞(CTLs)。使用合成的肽诱导CTL和本技术领域中已知的CTL细胞毒性分析方法,参见美国专利5,662,907,其在此引为参考。在一个实例中,免疫原性肽包括等位基因特异性基序或其他序列,使得肽将结合MHC分子并诱导针对产生免疫原性肽的抗原的CD8+应答。特异性识别Mtb多肽的CD8+T细胞对特定多肽而不是其他不相关多肽做出响应,活化、增殖和/或分泌细胞因子。
免疫原性组合物:包含免疫原性Mtb多肽或编码免疫原性Mtb多肽的核酸的组合物,其诱导针对Mtb的可测量的T细胞应答,例如CD8+T细胞应答,或诱导可测量的B细胞应答(例如特异性结合Mtb多肽的抗体的生产)。对于体外应用来说,免疫原性组合物可以由分离的核酸、包含核酸的载体/或免疫原性肽构成。对于体内应用来说,免疫原性组合物典型地在可药用载体和/或其他试剂中包含核酸、包括核酸的载体和/或免疫原性多肽。免疫原性组合物可以任选包括佐剂、共刺激分子或编码共刺激分子的核酸。可以容易地测试Mtb多肽或编码多肽的核酸诱导CD8+T细胞应答的能力。
抑制或治疗疾病:抑制疾病例如结核病是指抑制疾病的全面发展。在几个实例中,抑制疾病是指减轻结核病的症状。“治疗”是指改善疾病的体征或症状或与疾病相关的病理状况的治疗性干预,所述疾病例如结核病。
γ-干扰素:IFN-γ是二聚体蛋白,其亚基具有146个氨基酸。蛋白在两个位点处被糖基化,pI为8.3-8.5。IFN-γ作为166个氨基酸的前体蛋白合成,其包含23个氨基酸的分泌信号序列。已经描述了20和25kDa的两种分子形式的生物活性蛋白。它们二者都在25位糖基化。25kDa形式还在97位糖基化。天然IFN-γ在分子质量和电荷方面观察到的差异是由于可变的糖基化模式。在非变性条件下观察到的40-60kDa形式是IFN-γ的二聚体和四聚体。人类基因具有约6kb的长度。它包含四个外显子,并作图于染色体12q24.1。
IFN-γ可以通过灵敏的免疫分析法检测,例如允许检测产生IFN-γ的各细胞的ELSA测试。少量的IFN-γ可以通过测量IFN诱导的蛋白例如Mx蛋白来间接检测。IP-10合成的诱导也可用于测量IFN-γ的浓度。此外,生物分析可用于检测IFN-γ,例如利用在2D9细胞中诱导吲哚胺2,3-双加氧酶活性的分析。IFN-γ的产生可用于评估T细胞活化,例如T细胞被HLA-E呈递的分枝杆菌抗原活化。
分离的:“分离的”核酸已经与天然存在核酸的生物体细胞中的其他核酸序列、即其他染色体和染色体外DNA和RNA基本上分离开或纯化出来。因此,术语“分离的”包含通过标准的核酸纯化方法纯化的核酸。该术语还包含通过在宿主细胞中重组表达而制备的核酸以及化学合成的核酸。
标记物:与另一个分子直接或间接接合以促进该分子的检测的可检测化合物或组合物。标记物的具体的、非限制性的实例包括荧光标签、酶连接和放射性同位素。
接头序列:接头序列是共价连接两个多肽结构域的氨基酸序列。接头序列可以包含在本文公开的Mtb表位之间,为所连接的多肽结构域提供旋转自由度,并由此促进适合的结构域折叠和向MHC的呈递。例如,在包含两个Mtb结构域的重组多肽中,接头序列可以提供在它们之间,例如包含Mtb多肽-接头-Mtb多肽的多肽。接头序列一般长度在2到25个氨基酸之间,其在本技术领域中是众所周知的,并包括但不限于由Chaudhary等在Nature 339:394-397,1989中描述的甘氨酸(4)-丝氨酸间隔物(GGGGS(SEQ ID NO:84)x3)。
淋巴细胞:参与身体的免疫防御的一类白细胞。有两种主要类型的淋巴细胞:B细胞和T细胞。
哺乳动物:该术语包括人类和非人类哺乳动物。同样地,术语“患者”或“对象”包括人类和兽医对象两者。
分枝杆菌:好氧的细胞内细菌生物类属。在感染宿主后,这些生物体存活在单核细胞和巨噬细胞的内体结构中。人类分枝杆菌疾病包括结核病(由结核分枝杆菌(M.tuberculosis)引起)、麻疯病(由麻疯分枝杆菌(M.leprae)引起)、Bairnsdale溃疡病(由溃疡分枝杆菌(M.ulcerans)引起)和可以由海分枝杆菌(M.marinum)、堪萨斯分枝杆菌(M.kansasii)、瘰疠分枝杆菌(M.scrofulaceum)、苏尔加分枝杆菌(M.szulgai)、蟾蜍分枝杆菌(M.xenopi)、偶发分枝杆菌(M.fortuitum)、嗜血分枝杆菌(M.haemophilum)、龟分支杆菌(M.chelonei)和胞内分枝杆菌(M.intracellulare)引起的其他感染。以前被认为是非致病性的分枝杆菌菌株(例如鸟分枝杆菌(M.avium))现在也已知道是免疫抑制的AIDS患者的主要杀手。
对分枝杆菌的主要应答包括与T细胞和巨噬细胞的细胞介导的超敏(DTH)反应,其在生物体的细胞内杀死和隔离(或包含)(肉芽肿形成)中发挥重要作用。主要的T细胞应答涉及识别分枝杆菌热休克蛋白和免疫优势抗原的CD4+淋巴细胞。
可操作连接:当第一个核酸序列被置于与第二个核酸序列有功能性关联时,第一个核酸序列即与第二个核酸序列可操作连接。例如,如果启动子执行编码序列的转录或表达,则启动子与编码序列是可操作连接的。一般来说,可操作连接的DNA序列是相邻的,并且在需要连接两个蛋白编码区的情况下,将开放阅读框对齐。
ORF(开放阅读框):一系列没有任何终止密码子的编码氨基酸的核苷酸三联体(密码子)。这些序列通常可以翻译成多肽。
肽修饰:分枝杆菌多肽包括本文描述的肽的合成实施方案。此外,在本文描述的方法中可以利用这些蛋白的类似物(非肽有机分子)、衍生物(从所公开的肽序列开始,获得的化学功能化的肽分子)和变体(类似物)。本发明的每个多肽由氨基酸序列构成,所述氨基酸可以是天然存在的或非天然存在的L-和/或D-氨基酸。
肽可以通过各种化学技术进行修饰,以产生具有与未修饰肽基本上相同的活性并任选具有其他所需性质的衍生物。例如,蛋白的羧酸基团,不论是羧基末端还是侧链上的,都可以提供成可药用阳离子的盐的形式,或酯化形成C1-C16酯,或转化成式NR1R2的酰胺,其中R1和R2各自独立地是H或C1-C16烷基,或组合形成杂环例如5员或6员环。肽的氨基基团,不论是氨基末端还是侧链上的,都可以采用可药用酸加成盐的形式,例如HCl、HBr、乙酸、苯甲酸、甲苯磺酸、马来酸、酒石酸和其他有机酸的盐,或者可以修饰成C1-C16烷基或二烷基氨基或进一步转化成酰胺。
肽侧链的羟基可以使用公认的技术转化成C1-C16烷氧基或C1-C16酯。肽侧链的苯环或酚环可以用一个或多个卤素原子例如氟、氯、溴或碘、或用C1-C16烷基、C1-C16烷氧基、羧酸及其酯或这些羧酸的酰胺取代。肽侧链的亚甲基可以延长成同源的C2-C4亚烷基。硫醇可以用众多公认的保护基团中的任一种、例如乙酰胺基团进行保护。本技术领域的专业人员还将知道用于将环状结构导入到本发明的肽中的方法,以选择和提供对结构的构型制约,产生增加的稳定性。
设想到了肽模拟和有机模拟的实施方案,由此使这些肽和有机模拟物的化学组成成分的三维排列模拟肽骨架和组成氨基酸侧链的三维排列,导致分枝杆菌多肽的这些肽和有机模拟物具有可测量到的或增加的产生免疫应答的能力。对于计算机模拟应用来说,药效团是对生物活性的结构要求的理想化的、三维限定。可以使用现有的计算机模拟软件(使用计算机辅助药物设计或CADD),将肽和有机模拟物设计成契合每个药效团。对于在CADD中使用的技术的描述,参见在Klegerman & Groves 1993年主编的《药物生物技术》(Pharmaceutical Biotechnology),Interpharm Press:Buffalo Grove,IL中165-174页的Walters的“计算机辅助的药物模拟”(Computer-Assisted Modeling of Drugs),和Munson 1995年主编的《药理学原理》(Principles of Pharmacology)第102章。还包括了使用这样的技术制备的模拟物。
药剂或药物:当适当给药于对象时能够诱导所需的治疗或预防效应的化学化合物或组合物。
可药用载体:可用于本文描述的多肽和核酸的可药用载体是常规的。E.W.Martin的《Remington药物学》(Remington’s Pharmaceutical Sciences),Mack Publishing Co.,Easton,PA第15版(1975年),描述了适合于本文公开的融合蛋白的药物递送的组合物和制剂。
一般来说,载体的性质取决于所使用的具体给药方式。例如,肠胃外制剂通常包含可注射流体,其包括可药用和生理可接受的流体例如水、生理盐水、平衡盐溶液、葡萄糖水、甘油等作为介质。对于固体组合物(例如粉剂、丸剂、片剂或胶囊形式)来说,常规的无毒性固体载体可以包括例如药用级甘露糖醇、乳糖、淀粉或硬脂酸镁。除了生物中性载体之外,待给药的药物组合物可以包含少量无毒性辅助物质,例如润湿或乳化剂、防腐剂和pH缓冲剂等,例如乙酸钠或失水山梨糖醇单月桂酸酯。
多核苷酸:线性核苷酸序列,其包括长度长于100个核苷酸碱基的序列。
多肽:任何氨基酸链,无关长度或翻译后修饰(例如糖基化或磷酸化)。“肽”是长度小于100个氨基酸的氨基酸链。在一个实施方案中,“肽”是多肽的一部分,例如长度超过100个氨基酸的多肽的约10、20、30、40、50或100个连续氨基酸。
核酸序列的部分:相关序列、例如编码抗原的序列的至少10、20、30或40个连续的核苷酸。在某些情况下,使用由50个或以上的核苷酸构成的部分将是有利的。例如,当描述抗原的一部分(例如抗原性表位)时,根据长度除去相关序列包含至少10、20、30、40或50个核苷酸的部分可能是有利的。
探针和引物:核酸探针和引物可以在本发明提供的核酸的基础上容易地制备。探针包含附有可检测标记物或报告分子的分离的核酸。典型的标记物包括放射性同位素、配体、化学发光剂和酶。用于标记的方法和选择适合于各种目的的标记物的指导方针,在例如Sambrook等(1989)和Ausubel等(1987)中进行了讨论。
引物是短的核酸,优选为长度为15个核苷酸或以上的DNA寡核苷酸。引物可以通过核酸杂交与互补的靶DNA链退火,以在引物与靶DNA链之间形成杂交体,然后由DNA聚合酶沿着靶DNA链延伸。通过例如聚合酶链反应(PCR)或其他本技术领域已知的核酸扩增方法,可以使用引物对扩增核酸序列。
用于制备和使用探针和引物的方法,描述在例如Sambrook等主编的《分子克隆实验指南》第二版(Molecular Cloning:A Laboratory Manual,2nd ed).,vol.1-3,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY,1989,和Ausubel等主编的《分子生物学现代方法》(Current Protocols in Molecular Biology),Greene Publishing and Wiley-Interscience,New York,1987(定期更新)中。PCR引物对可以从已知序列衍生出来,例如通过使用打算用于此目的的计算机程序,例如Primer(0.5版,
Figure BPA00001331533600241
1991,Whitehead Institute for Biomedical Research,Cambridge,MA)。
预防或治疗疾病:“预防”疾病是指在例如已知处于被结核分枝杆菌或麻疯分枝杆菌感染的风险下的人中抑制疾病的全面发生。具有已知体质的人的实例是与被诊断患有结核病的人一起生活的人、卫生护理专业人员、在家庭中或已暴露于结核分枝杆菌的人。“预防活动性感染”是指防止潜伏感染转变成结核病。
“治疗”是指在疾病或病理状况例如结核病已经开始发生后改善其体征或症状的治疗性干预。
启动子:启动子是指导核酸转录的一系列核酸控制序列。启动子包括靠近转录的起始位点的必需核酸序列,例如在II型聚合酶启动子的情况下是TATA元件。启动子还任选包括远处的增强子或阻遏子元件,其可以位于距转录起始位点多达几千碱基对的位置处。启动子可以是组成型或诱导型启动子。启动子的具体的、非限制性的实例是HCMV IE启动子。
纯化的:术语纯化的不需要绝对纯度;相反,它打算用作相对术语。因此,例如,纯化的抗原制备物是其中抗原比蛋白在其细胞内的原始环境中更纯的抗原制备物。抗原制备物典型进行纯化,使抗原占制备物总蛋白含量的至少50%。但是,对于某些应用来说可能需要更高度纯化的制备物。例如,对于这样的应用来说,可以使用其中抗原占总蛋白含量的至少75%或至少90%的制备物。在某些实例中,纯化的抗原占总蛋白含量的至少90%、至少95%、至少98%或至少99%。
重组的:重组的核酸或多肽是具有非天然存在的序列或具有通过两个或多个原本分离的序列区段的人工组合而制造的序列的核酸或多肽。该人工组合经常通过化学合成或更常见通过分离的核酸区段的人工操作、例如通过遗传工程技术来实现。
序列同一性:氨基酸序列之间的相似性根据序列之间的相似性表示,也称为序列同一性。序列同一性往往根据同一性(或相似性或同源性)百分数来度量;百分数越高,两个序列越相似。当使用标准方法进行比对时,抗原多肽的变体将具有相对高的序列同一性程度。
比对序列用于比较的方法在本技术领域中是公知的。Altschul等(1994)提出了序列比对方法和同源性计算的详细考虑。NCBI的基本局部比对搜索工具(Basic Local Alignment Search Tool)(BLAST)(Altschul等,1990)可以从几个来源获得,包括国家生物技术信息中心(National Center for Biotechnology Information)(NCBI,Bethesda,MD)和互联网上,用于与序列分析程序blastp、blastn、blastx、tblastn和tblastx结合使用。它可以在NCBI网站访问。如何使用该程序确定序列同一性的描述可以在NCBI网站上获取,缺省参数也是如此。
抗原性多肽例如分枝杆菌多肽的变体,使用NCBI Blast 2.0,即设置为缺省参数的间隙blastp,与天然抗原序列的氨基酸序列进行全长比对时,典型地特征在于具有至少50%的计算的序列同一性。当使用该方法进行评估时,与参比序列具有更高相似性的蛋白将显示出增加的百分同一性,例如至少60%、至少65%、至少70%、至少75%、至少80%、至少90%或至少95%的序列同一性。当对少于整个序列进行序列同一性比较时,变体典型地在10-20个氨基酸的短窗口内具有至少75%的序列同一性,并且取决于它们与参比序列的相似性,可能具有至少85%或至少90%或95%的序列同一性。用于在如此短的窗口内确定序列同一性的方法描述在NCBI网站上。MHC结构域多肽的变体也保留天然多肽的生物活性。出于本发明的目的,通过将变体结构域掺入适合的β1α1或α1α2多肽中,并按照下面的详细描述测定得到的多肽在体外抑制抗原特异性T-细胞增殖或诱导T抑制性细胞或IL-10的表达的能力,来方便地评估该活性。
治疗活性多肽:通过临床响应测量到的引起免疫应答的诱导(例如免疫细胞群体的增加、抗Mtb的溶胞活性增加或可测量到的感染症状的减轻)的药剂,例如Mtb表位。治疗活性分子也可以由核酸制成。基于核酸的治疗活性分子的实例是编码Mtb表位的核酸序列,其中核酸序列与控制元件例如启动子可操作连接。
在一个实施方案中,Mtb多肽的治疗有效量是用于产生免疫应答的量。在几个实例中,“治疗”是指改善结核病的体征或症状的治疗性干预。
治疗有效剂量:足以阻止疾病发展或导致疾病减退或能够缓解由疾病引起的症状的剂量。在一个实施方案中,治疗有效剂量是足以阻止结核病的发展或缓解其症状的剂量。
转导和转化:当病毒或载体将核酸转移到细胞中时,它“转导”细胞。当通过将核酸掺入细胞的基因组中或通过游离型复制使DNA变得被细胞稳定复制时,则细胞被转导到该细胞中的核酸“转化”。在本文中使用时,术语转化包含所有可以将核酸分子导入这种细胞的技术,包括用病毒载体转染、用质粒载体转化、和通过电穿孔、脂转染和粒子枪加速来导入裸露DNA。
结核(TB)病:一种一般由结核分枝杆菌感染引起的疾病。结核病包括肺和肺外结核病。结核病是由Mtb感染引起的有症状的病症。
肺结核病是由Mtb引起的肺病。根据疾病控制中心(Center for Disease Control),症状通常包括咳嗽,并可以包括咳出血或痰、胸痛、虚弱、体重减轻、发烧、发冷和夜汗。
结核分枝杆菌的传播通过在通风不良的封闭区域中的空气途径进行。在超过90%的病例中,在结核分枝杆菌感染后,免疫系统阻止通常被称为活动性结核病的由结核分枝杆菌引起的疾病发展。但是,不是所有的结核分枝杆菌都被杀死,并进而形成微小的硬质荚膜。“原发性结核病”是在初始感染后发生的疾病,常见于儿童。初始的感染灶是小的胸膜下肉芽肿,伴有肉芽肿性肺门淋巴结感染。这些合在一起构成了Ghon综合征。在几乎所有病例中,这些肉芽肿消解,感染没有进一步扩散。“继发性结核病”主要见于成年人中,作为以前感染的重新激活(或再次感染),特别是在健康状态减退时。肉芽肿性炎症更加充分显现并且蔓延。典型情况下,上肺叶受影响最大,并可以发生空洞形成。“潜伏性”结核病是个体中可以通过诊断分析法例如但不限于结核菌素皮试(TST)检测到的Mtb感染,其中感染在该个体中不产生症状。“活动性”结核病是对象中有症状的Mtb感染。
在显微镜下,伴随TB感染产生的炎症是肉芽肿性的,具有上皮样巨噬细胞和朗罕氏(Langhans)巨细胞以及淋巴细胞、浆细胞、可能还具有少量多形核细胞、带有胶原蛋白的成纤维细胞,并且在中心具有特征性干酪样坏死。炎性应答由IV型超敏反应介导,皮试就是基于该反应。在某些实例中,结核病可以通过皮试、抗酸性染色、金胺染色或其组合来诊断。最常用的筛查样本是痰液,但是也可以对组织或其他体液进行组织学染色。
TB是HIV感染的常见并发症。在感染有人类免疫缺陷病毒(HIV)的对象中,TB感染可以容易地扩散并快速发展成活动性疾病。由Mtb感染引起的肺病的具体症状包括长期咳嗽和咯血。TB疾病的其他症状包括疲劳、食欲不振、体重减轻、发烧和大量夜汗。
Mtb感染通常是肺感染。但是,结核病传播到肺外可以导致出现大量不常见的具有特征性模式的结果,包括骨结核、生殖道结核、尿道结核、中枢神经系统(CNS)结核、胃肠结核、肾上腺结核、淋巴结核和心脏结核。因此,MtB感染也可以是肺外的。感染的肺外部位通常包括淋巴结、胸膜和骨关节区域,但是任何器官都可能被涉及。肺外结核病的诊断往往是困难的。一般来说,儿童和免疫抑制的对象对肺外Mtb感染易感。
淋巴结炎是最常发生的肺外结核病形式。颈部淋巴结病最为常见,但波及腹股沟、腋窝、肠系膜、纵隔和乳房内都已有描述。在美国,胸膜结核占所有结核病病例的约5%。胸膜结核经常是伴有咳嗽、肋膜性胸痛、发烧或呼吸困难的急性病。骨和关节结核可以占肺外结核病病例的多达35%。骨结核最通常涉及脊柱,其次是承重关节中的结核性关节炎和脊椎外结核性骨髓炎。中枢神经系统结核病包括结核性脑膜炎(最常见的表象)、颅内结核瘤和脊椎结核性蛛网膜炎。脑膜炎由室管膜下结核结节破裂到蛛网膜下腔中之后的强烈炎症引起。腹部结核病可能涉及胃肠道、腹膜、肠系膜淋巴结或生殖泌尿道。其他器官(例如肝脏、脾脏、肾上腺)通常在粟粒性结核病中受到影响。粟粒性结核病、结核性心包炎以及与肿瘤坏死因子-α(TNF-α)抑制剂相关的结核病,是肺外结核病的其他形式。术语“粟粒性”结核病是指任何进行性、弥散性形式的结核病;该疾病可以在原发性散播期间或未治疗的结核病数年后发生。在10%的患有AIDS和肺结核病的患者中,以及在38%的患有AIDS和肺外结核病的患者中,观察到了粟粒性疾病。
对于所有形式的肺外结核病来说,作为最初疗法,推荐进行6到9个月的治疗方案(两个月的异烟肼、利福平、吡嗪酰胺和乙胺丁醇,然后4到7个月的异烟肼、利福平),除非已知或强烈怀疑生物体对一线药物有抗性。
载体:被导入到宿主细胞中从而产生转化的宿主细胞的核酸分子。载体可以包括允许其在宿主细胞中复制的核酸序列,例如复制原点。载体还可以包括一个或多个选择性标志物基因和本技术领域已知的其他遗传元件。载体包括质粒载体,包括用于在革兰氏阴性和革兰氏阳性细菌细胞中表达的质粒。示例性载体包括用于在大肠杆菌(E.coli)和沙门氏菌(Salmonella)中表达的载体。载体还包括病毒载体,例如但不限于反转录病毒、正痘病毒、鸟痘病毒、禽痘病毒、羊痘病毒、猪痘病毒、腺病毒、疱疹病毒、甲病毒、杆状病毒、辛德比斯(Sindbis)病毒、痘苗病毒和脊髓灰质炎病毒载体。载体也包括用于在酵母细胞中表达的载体。
除非另有解释,否则在本文中使用的所有技术和科学术语具有与本公开所属技术领域中的普通专业人员所通常理解的相同的意义。除非上下文另有明确指明,否则不带具体数量指示的名词包括其复数。同样地,除非上下文另有明确指明,否则单词“或”打算包括“和”。此外应该理解,对于核酸或多肽给出的所有碱基大小或氨基酸大小以及所有的分子量或分子质量值都是近似值,提供其是为了描述。尽管与本文所述的相似或等价的方法和材料可用于本公开的实践或试验,但下面描述了适合的方法和材料。术语“包含”意味着“包括”。所有在本文中提到的出版物、专利申请、专利和其他参考文献以其全文引为参考。在有冲突的情况下,以本说明书、包括术语的解释为准。此外,材料、方法和实例仅仅是说明性的,而不打算是限制性的。
用于检测Mtb感染的方法:T细胞的检测
本文公开了用于在儿童和患有潜伏性结核病感染(LTBI)的对象中检测分枝杆菌感染的方法。儿童可以是任何儿童,包括婴儿、幼儿、少儿、年龄小于约5岁的儿童、年龄为10岁或以下的儿童、青春期前儿童或青少年。在几个实例中,儿童的年龄为10岁或以下,例如年龄为7岁或以下或者5岁或以下,或年龄从5到10岁。在某些实施方案中,儿童具有与TB或LTBI的家庭接触。家庭接触是任何与儿童共同居住的个体。在其他实施方案中,对象是任何疑似患有LTBI的对象。在一个实例中,疑似患有LTBI的对象与有Mtb感染的家庭接触过,或到有结核病高发病率的国家旅行过。
在一个实施方案中,方法是用于检测结核病、包括肺和/或肺外结核病的方法。结核病是由Mtb感染引起的有症状的病症。肺结核病是由引起肺炎的Mtb导致的疾病。本文中提供了用于在例如儿童中检测肺结核病的方法。儿童可以是任何儿童,包括婴儿、幼儿、少儿、年龄小于约5岁的儿童、年龄为10岁或以下的儿童、年龄为5到10岁的儿童、青春期前儿童或青少年。儿童的年龄也可以为7岁或以下、或年龄为6岁或以下、或年龄从4到11岁。
还公开了在成年对象或儿童中检测结核病肺外感染的方法。儿童可以是任何儿童,包括婴儿、幼儿、少儿、年龄小于约5岁的儿童、年龄为10岁或以下的儿童、年龄为5到10岁的儿童、青春期前儿童或青少年。儿童的年龄也可以为7岁或以下、或年龄为6岁或以下、或年龄从4到11岁。在其他实例中,对象由于遗传病症、免疫抑制疗法或被免疫缺陷病毒例如人类免疫缺陷病毒(HIV)感染而免疫力受损。
肺外结核病可以是任何疾病形式,包括淋巴结炎、胸膜结核、骨和关节结核、中枢神经系统结核、腹部结核、粟粒性结核、结核性心包炎以及与肿瘤坏死因子-α(TNF-α)抑制剂相关的结核病。方法可用于检测脊椎的骨结核、承重关节中的结核性关节炎以及脊椎外结核性骨髓炎。方法可用于诊断中枢神经系统结核病,包括结核性脑膜炎(最常见的表象)、颅内结核瘤和脊椎结核性蛛网膜炎。方法还可用于诊断腹部结核病,例如胃肠道、腹膜、肠系膜淋巴结或生殖泌尿道的感染。
在几个实施方案中,可以根据生物样品中CD8+T细胞的存在来检测分枝杆菌感染(和/或结核病),其中T细胞与Mtb多肽特异性反应。在一个实例中,将样品与本文公开的一种或多种分枝杆菌多肽、编码所述一种或多种Mtb多肽的多核苷酸和表达所述一种或多种Mtb多肽或其与MHC结合的片段的APC一起温育。检测CD8+T细胞特异性活化的存在或不存在。CD8+T细胞的活化表明分枝杆菌感染的存在。在一个实例中,通过测量细胞因子、例如但不限于γ-干扰素的表达来检测CD8+T细胞的活化。
在几个实施方案中,方法包括分离CD8+T细胞。在几个实施方案中,包含T细胞的生物样品从目标对象获得。适合的生物样品包括但不限于血样、外周血单核细胞、痰液、唾液、脑脊液或分离的T细胞(例如CD3+T细胞)样品、淋巴结组织、肺组织或其他组织样品。
在检测方法中识别肽的CD8+T细胞一般已被在体内对目标Mtb预先致敏。在几个实施方案中,这些经历过抗原的T细胞一般以106到103个外周血单核细胞(PBMC)中1个的频率出现在已暴露于抗原的宿主的外周血中。
T细胞可以从目标对象分离,所述目标对象例如但不限于婴儿、幼儿、少儿、年龄为5到10岁的儿童、年龄小于5岁的儿童、年龄小于10岁的儿童、青少年、与患有TB或LTBI的个体共同居住的儿童、任何疑似患有LTBI的对象或疑似患有结核病例如肺病的对象。T细胞也可以从任何疑似患有肺外mTB感染的对象、包括儿童、青春期前儿童和成年对象分离。T细胞可以通过常规技术分离(例如通过外周血淋巴细胞的Ficoll/Hypaque密度梯度离心,或通过荧光激活的细胞分拣)。在一个实施方案中,在分析方法中使用的T细胞是未处理或稀释的样品的形式,或是新鲜分离的T细胞(例如直接离体使用的新鲜分离的单核细胞(MC)或外周血单核细胞(PBMC)的形式),使得它们在用于方法中之前不用进行培养。但是,也可以在使用前培养T细胞,例如在一种或多种肽以及一般还有外源的促进生长的细胞因子的存在下。在培养期间,肽典型地呈递在细胞例如APC的表面上。T细胞的预培养可以导致方法的灵敏度增加。因此,T细胞可以转变成细胞系,例如短期细胞系。
确定细胞表面标志物例如CD8的存在或不存在的方法在本技术领域中是众所周知的。典型情况下,使用特异性针对标志物的标记抗体鉴定细胞群体。抗体可以接合有其他化合物,包括但不限于酶、磁性珠、胶态磁性珠、半抗原、荧光团、金属化合物、放射活性化合物或药物。可以与抗体接合的酶包括但不限于碱性磷酸酶、过氧化物酶、脲酶和β-半乳糖苷酶。可以与抗体接合的荧光团包括但不限于荧光素异硫氰酸酯、四甲基罗丹明异硫氰酸酯、藻红蛋白、别藻蓝蛋白和德克萨斯红。对于可以与抗体接合的其他荧光团,参见Haugland,R.P.的《分子探针:荧光探针和研究用化学物质手册》(Molecular Probes:Handbook of Fluorescent Probes and Research Chemicals)(1992-1994)。可以与抗体接合的金属化合物包括但不限于铁蛋白、胶体金以及特别是胶体超顺磁性珠子。可以与抗体接合的半抗原包括但不限于生物素、洋地黄毒甙、噁唑酮和硝基酚。可以与抗体接合或掺入到抗体中的放射活性化合物在本技术领域是已知的,并包括但不限于锝99m(99Tc)、125I和包含任何放射性核素包括但不限于14C、3H和35S的氨基酸。
荧光激活的细胞分拣(FACS)可以通过将细胞与适当标记的抗体接触,用于分拣表达CD8的细胞。在一个实施方案中,其他抗体和FACS分拣还可用于产生基本上纯的CD8+CD3+细胞群体,或用于纯化不表达可检测的CD4或CD56水平的细胞。
在较复杂的检测水平之中,FACS利用了多个颜色通道、低角度和钝角光散射检测通道和阻抗通道来分离或分拣细胞。可以使用任何FACS技术,只要它对目标细胞的存活性无害即可。(对于FACS的示例性方法,参见美国专利No.5,061,620,其在此引为参考)。同样地,FACS可用于基本上纯化CD8+细胞,例如表达CD3但不表达CD56或CD4的CD8+细胞。
但是,可以利用其他不同效能的技术来纯化和分离所需细胞群体。所使用的分离技术应该最大地保留待收集的细胞级份的存活性。当然,所使用的具体技术取决于分离的效率、方法的细胞毒性、分离的容易性和速度、以及需要的设备和/或专门技术。
分离程序可以包括使用抗体包被的磁性珠的磁性分离、亲和层析、与单克隆抗体相连或与补体结合使用的细胞毒性药剂、以及利用附着到固相基质上的单克隆抗体或其他方便技术的“淘选”。附着于磁性珠和其他固相基质例如琼脂糖珠、聚苯乙烯珠、中空纤维膜和塑料皮氏培养皿的抗体,允许进行直接分离。通过简单地将固相支持物与细胞悬液物理分离,可以从细胞悬液中除去被抗体结合的细胞。细胞与固相连接抗体温育的准确条件和时间长度,取决于使用的系统所特定的几种因素。然而,选择的适当条件在本技术领域的技术范围之内。
然后,在允许表达目标标志物(例如CD8)的细胞有足够的时间结合固相连接的抗体之后,可以用生理缓冲液洗脱或洗掉未结合的细胞。然后主要取决于所使用的固相和抗体的性质,通过任何适合的方法从固相上分离结合的细胞。
抗体可以与生物素接合,然后可以使用与支持物结合的亲和素或链亲和素、或使用可以用于荧光激活的细胞分拣器(FACS)的荧光团,将其除去,以能够进行细胞分离(参见上文)。一开始,可以通过CD3的细胞表面表达将CD8细胞与其他细胞分离开。在一个具体的非限制性的实例中,通过磁性珠分离对CD3+细胞进行阳性选择,其中磁性珠包被有CD3反应性单克隆抗体。然后可以将CD3+细胞从磁性珠上取下。
CD3+细胞从磁性珠上的释放可以通过培养释放或其他方法来实现。然后,如果需要的话,使用例如
Figure BPA00001331533600341
流式细胞仪(Becton Dickinson,San Jose,CA)检查分离到的CD3+细胞的纯度。在一个实施方案中,执行进一步的纯化步骤,例如从磁性珠释放的细胞群体的FACS分拣。
在一个实施方案中,使用磁性珠分离来首先分离不表达一种以上谱系特异性标志物例如B220、CD4、CD45、CD5或CD56的细胞群体。此外,可以使用淘选来分离不表达一种或多种B细胞或巨噬细胞谱系特异性标志物的细胞(对于淘选方法,参见Small等,J Immunol Methods3;167(1-2):103-7,1994,其在此引为参考)。
在几个实施方案中,一旦分离后,将CD8+T细胞与Mtb多肽或其结合MHC的片段在37℃下体外温育2到9天,例如约4天。在几个实例中,包括Mtb多肽或其结合MHC的片段(其浓度为例如约5到约25μg/ml,例如约5、约10、约15或约20μg/ml)。在几个实例中,可以将T细胞样品的另一个等分试样在不存在Mtb多肽的情况下温育,用作对照。也可以利用一种以上Mtb多肽。
在一个实施方案中,从样品分离单核细胞(MC)。MC包括T细胞和抗原呈递细胞(APC)。因此在方法中,分离到的MC中存在的APC可以将肽呈递到T细胞。在另一个实施方案中,只有T细胞、例如只有CD8+T细胞可以从样品中纯化。
在方法中使用的APC可以是在其表面上具有I类MHC分子的任何细胞。它可以是或可以不是特化的抗原呈递细胞,例如B细胞、树突状细胞或巨噬细胞。在方法中使用的APC可以来自于与T细胞相同的宿主。一般来说,APC能够向T细胞呈递肽。APC可以是新鲜分离的离体细胞或培养的细胞,例如来自细胞系的细胞。APC可以是同种异体的或自体的。
可以将源自于目标对象样品的T细胞置于具有所有Mtb多肽(或Mtb多肽的合并物或特定Mtb多肽)并打算用于测试相关组集的分析中,或者可以将T细胞分份并置于各含有一种或多种肽的不同的分析中。在一个实施方案中,使用了具有SEQ ID NO:1-12、SEQ ID NO:39或SEQ ID NO:61所显示的氨基酸序列的一种或多种多肽、或一种或多种这些多肽的结合MHC的片段。在其他实施方案中,一种或多种所述多肽是ESAT6或CFP10,但是任何Mtb多肽都可以使用。使用的其他肽在SEQ ID NO:39-83中显示。可以使用任何两种或多种本文公开的Mtb肽,以同时、分别或顺序使用识别这些多肽的T细胞。可以使用本文公开的任何Mtb多肽的其他组合。也可以使用Mtb多肽的合并物。
在一个实施方案中,在不存在T细胞的情况下向呈递细胞提供一种或多种肽。然后,典型地在允许在该细胞表面上呈递肽之后,将其提供给从对象分离的T细胞。
肽与细胞接触的时间长度将根据用于确定肽的识别的方法而变。典型情况下,向每个分析加入105到107、例如约5X105到106个T细胞。在向该分析直接加入肽的情况下,其浓度典型为约10-1到约103μg/ml,例如约0.5到约50μg/ml或约1到约10μg/ml。T细胞与肽温育的时间长度可以从约4到约24小时,例如约6到约16小时,或约12小时。
确定肽被T细胞例如CD8+T细胞特异性识别,可以通过测量肽与T细胞的结合来进行。典型情况下,结合肽的T细胞可以根据这种结合来分拣,例如使用荧光激活的细胞分拣(FACS)技术(参见上文)。如果使用肽分拣到的细胞的频率高于对照值,可以认为发生了检测到识别肽的T细胞的存在。
确定T细胞是否识别肽,也可以通过在存在肽的情况下检测T细胞状态的变化或确定T细胞是否结合肽来进行。状态的变化一般由T细胞受体结合肽后T细胞的抗原特异性功能活性所引起。一般来说,当结合T细胞受体后,肽被结合到I类MHC分子上,其可以呈递在PBMC或抗原呈递细胞(APC)表面上。
T细胞活化可以通过本技术领域的专业人员已知的任何手段来检测。在一个实例中,CD8+T细胞活化是通过评估溶胞活性来检测的。在另一个实例中,CD8+T细胞活化是通过增殖来检测的。在几个实例中,与未感染对象中相比至少高两倍的增殖水平和/或至少高20%的细胞裂解水平,表明在目标对象例如儿童、患有LTBI的对象中存在分枝杆菌感染。在其他实例中,与未感染对象中相比至少高两倍的增殖水平和/或至少高20%的溶胞水平,表明对象患有肺外结核病和/或患有肺结核病。对象可以是任何目标对象,例如儿童。
T细胞状态的变化可以是来自T细胞的物质例如细胞因子诸如干扰素(IFN)-γ、IL-2或TNF-α开始分泌或分泌增加。在一个实例中,可以通过允许物质与特异性结合试剂结合、然后测量特异性结合试剂/物质复合物的存在来检测该物质。特异性结合试剂典型为抗体,例如与物质例如细胞因子结合的多克隆或单克隆抗体。针对细胞因子的抗体是可商购的,或可以使用标准技术来制造。
典型情况下,将特异性结合试剂例如抗体固定化在固相支持物上。在允许细胞因子结合后,可以任选清洗固相支持物以除去没有与抗体特异性结合的物质。抗体/细胞因子复合物可以通过使用与复合物结合的第二种结合试剂、例如用标记物标记(直接或间接)的抗体来检测。一般来说,第二种试剂与物质结合的位点与结合第一种试剂的位点不同。
在几个实例中,第二种结合试剂可以通过用可检测标记物直接或间接标记的第三种试剂来检测。例如,第二种试剂可以包括生物素,允许被包含链亲和素和标记物例如酶标记物、放射活性标记物或荧光标记物的第三种试剂进行检测。
在一个实施方案中,检测系统是ELISPOT分析,例如在PCT公布No.WO 98/23960或美国专利申请No.2005/0208594中描述的分析,二者在此引为参考。在一个实例中,从T细胞分泌的IFN-γ被固定化在固相支持物上的第一种IFN-γ特异性抗体结合。然后使用可检测标记物标记的第二种IFN-γ特异性抗体检测结合的IFN-γ。示例性的标记抗体是可商购的,例如来自MABTECHTM(瑞典斯德哥尔摩)。示例性的ELISPOT分析法描述在下面的实施例部分中。检测方法可以是用于检测细胞因子表达的任何其他方法,参见例如已公布的欧洲专利申请No.EP1867988,其在此引为参考。
还可以测量的T细胞状态的变化可以是T细胞摄入的物质例如胸腺嘧啶摄入的增加。状态的变化也可以通过T细胞尺寸的增加、或T细胞的增殖或T细胞上细胞表面标志物的变化来测量。
本文提供了与本文公开的Mtb多肽特异性结合的、用于检测表达CD8的细胞(CD8+)的试剂。这些试剂是四聚体I类MHC/免疫原性TARP多肽复合物。这些四聚体复合物包含Mtb多肽,例如特异性结合I类MHC的长度为9到30个氨基酸的多肽。
四聚体I类MHC/肽复合物可以使用本技术领域公知的方法来合成(Altmann等,Science 274:94,1996,其在此引为参考)。在一个具体的非限制性实例中,可以利用原核表达系统来合成纯化的HLA重链多肽和β2-微球蛋白(β2m)。使用的表达系统的一个具体的非限制性实例是pET系统(R&D Systems,Minneapolis,MN)。通过删除跨膜和胞质尾区并在COOH末端添加含有生物素蛋白连接酶(Bir-A)的酶法生物素化位点的序列,对重链进行修饰。然后将重链、β2m和肽重新折叠。重新折叠的产物可以通过本技术领域已知的任何手段分离,然后通过Bir-A进行生物素化。然后通过将生物素化的产物与链亲和素接触,产生四聚体。
在一个实施方案中,链亲和素被标记。适合的标记物包括但不限于酶、磁性珠、胶态磁性珠、半抗原、荧光团、金属化合物、放射活性化合物或药物。可以与链亲和素接合的酶包括但不限于碱性磷酸酶、过氧化物酶、脲酶和β-半乳糖苷酶。可以与链亲和素接合的荧光团包括但不限于荧光素异硫氰酸酯、四甲基罗丹明异硫氰酸酯、藻红蛋白、别藻蓝蛋白和德克萨斯红。对于可以与链亲和素接合的其他荧光团,参见Haugland,R.P.的《分子探针:荧光探针和研究用化学物质手册》(Molecular Probes:Handbook of Fluorescent Probes and Research Chemicals)(1992-1994)。可以与链亲和素接合的金属化合物包括但不限于铁蛋白、胶体金以及特别是胶体超顺磁性珠子。可以与链亲和素接合的半抗原包括但不限于生物素、洋地黄毒甙、噁唑酮和硝基酚。可以与链亲和素接合的放射活性化合物在本技术领域是已知的,并包括但不限于锝99m(99Tc)、125I和包含任何放射性核素包括但不限于14C、3H和35S的氨基酸。一般来说,在本文公开的方法中使用荧光团标记的链亲和素。
在一个实施方案中,产生了包括特异性识别Myb多肽的T细胞的细胞悬液,并将细胞在悬液中与所述四聚体反应。在一个实施方案中,这些试剂被用于标记细胞,然后通过荧光激活的细胞分拣(FACS)对细胞进行分析。用于FACS的机器在较复杂的检测水平之中,利用了多个颜色通道、低角度和钝角光散射检测通道和阻抗通道来分离或分拣细胞。可以使用任何FACS技术,只要它对目标细胞的检测无害即可。(对于FACS的示例性方法,参见美国专利No.5,061,620,其在此引为参考)。
用于检测Mtb感染的方法:皮试验证
另一方面,除了上面所公开的使用CD8+T细胞的方法之外,使用皮试进行验证性测试以证实分枝杆菌感染、特别是结核病的诊断。“皮试”是在患者身上直接进行的任何分析方法,其中在将一种或多种上面描述的多肽给药到皮肤中例如皮内注射之后,测量迟发型超敏(DTH)反应(例如硬结、肿胀、发红或皮炎)。这样的注射可以使用足以使多肽与患者的真皮细胞接触的任何适合装置、例如结核菌素注射器或1ml注射器来实现。在几个实例中,反应在注射后至少48小时、例如在注射后约48小时到约72小时之间测量。
DTH反应是细胞介导的免疫应答,其在以前已暴露于测试抗原(Mtb多肽、其结合MHC的片段或其融合蛋白)的对象中更强。应答可以视觉测量,例如使用尺子。在几个实例中,直径大于约0.5cm、例如直径大于约1.0cm的应答是阳性应答,并表明了分枝杆菌感染。
在皮试中使用的Mtb多肽可以配制成含有多肽和生理可接受载体的药物组合物。这些组合物典型地包含一种或多种Mtb多肽(或其结合MHC的片段或其融合蛋白),其量在0.1ml体积中约1μg到约100μg、例如约10μg到约50μg的范围内。在药物组合物中使用的载体可以是具有适合的防腐剂例如苯酚和/或TWEEN80TM的盐水溶液。
一般来说,在皮试中使用的多肽具有足够的大小,使其在反应时间期间保留在注射位点处。在几个实例中,长度为至少9个氨基酸的多肽就足矣。不受理论的限制,多肽在注射后几小时内被巨噬细胞分解,以允许呈递到T细胞。这样的多肽可以包含一个或多个上面公开的序列和/或其他免疫原性或非免疫原性序列的重复序列。
因此,确定肽被T细胞识别可以在体内测量。在几个实例中,将肽给药于个体,然后可以测量表明了肽的识别的应答。在一个实施方案中,肽典型地以与Mantoux试验相似的方式皮内给药。肽可以表皮给药。肽典型地通过针头例如通过注射给药,但是也可以通过其他方法例如冲击学(ballistics)、例如已经用于递送核酸的冲击技术给药。已公布的EPC申请No.EP-A-0693119描述了可以典型地用于肽给药的技术。在几个实例中,给药0.001到1000μg、例如0.01到100μg或0.1到10μg肽。可选地,可以给药能够在体内提供肽的药剂。因此,可以给药能够表达所述多肽的多核苷酸。多核苷酸典型地具有任何下面讨论的多核苷酸的特性。多肽在体内从多核苷酸表达,并可以在体内测量肽的识别。典型情况下,给药0.001到1000μg、例如0.01到100μg或0.1到10μg多核苷酸。
用于检测Mtb感染的方法:验证性测试,抗体检测
另一方面,除了上面所公开的使用CD8+T细胞的方法之外,在分析中使用一种或多种多肽进行了验证性测试,以确定生物样品(例如但不限于全血、痰液、血清、血浆、唾液或脑脊液)中针对多肽的抗体相对于对照的存在或不存在。这种抗体的存在表明以前对分枝细菌抗原的敏化,其可以表明分枝杆菌感染和特别是结核病。
在使用一种以上多肽的实施方案中,多肽可以是互补的,使得一种成分多肽将检测样品中的感染,其中所述感染不能被另一种成分多肽检测。互补多肽一般可以通过单独地使用每种多肽来评估从一系列已知被分枝杆菌感染的患者获得的血清样品来鉴定。在确定使用每种多肽将哪些样品正确鉴定为阳性之后,可以配制出能够在大多数或所有被测试样品中检测感染的两种或多种多肽的组合。互补多肽可用于增加诊断测试的灵敏度。因此,在分析中可以包含一种以上的上述Mtb多肽。来自Mtb的其他多肽(没有在本文中描述的)可以任选包含在分析中。
有多种分析格式可用于检测样品中的抗体(参见例如Harlow和Lane的《抗体实验指南》(Antibodies:A Laboratory Manual),Cold Spring Harbor Laboratory(1988),其在此引为参考)。一般来说,患者中Mtb感染的存在或不存在,可以如下来确定:(a)将从患者获得的生物样品与一种或多种Mtb多肽接触;(b)检测样品中与多肽结合的抗体的存在(或不存在);以及(c)将抗体水平与对照进行比较。对照可以是标准值,例如预定的截止值。对照可以是已知被Mtb感染的对象中抗体的量,或在已知没有被Mtb感染的对象中特异性结合多肽的抗体的量。
在几个实施方案中,分析方法包括使用固定化在固相支持物上的多肽。特异性结合目标多肽的抗体与固相支持物结合。然后可以使用包含可检测标记物的检测试剂来检测结合的抗体。适合的检测试剂包括与抗体/多肽复合物结合的标记的抗体。适合的检测试剂还包括与抗体多肽复合物结合的第二种未标记的抗体和特异性结合第二抗体的第三抗体。适合的检测试剂还包括用报告基团标记的未结合多肽(例如在半竞争性分析法中)。
可选地,可以使用竞争性分析法,其中将与目标多肽结合的、用报告基团标记的抗体与样品温育。在温育后,在将固定化的抗原与样品温育之后,允许抗体与固定化的抗原结合。样品的组分抑制标记抗体与固定化多肽的结合的程度,表明了样品与固定化多肽的反应性。
在本文公开的分析法中使用的固相支持物可以是任何可以附着抗原的固体材料。例如,固相支持物可以是微量滴定板中的测试孔或硝酸纤维素或其他适合的膜。可选地,固相支持物可以是珠子或圆盘,例如玻璃、玻璃纤维、乳胶或塑料材料例如聚苯乙烯或聚氯乙烯。支持物也可以是磁性粒子或光学纤维传感器,例如在美国专利No.5,359,681中所公开的。
可以使用各种技术将多肽结合到固相支持物上。多肽的结合可以通过非共价缔合例如吸附、或共价附着例如抗原与支持物上的官能团之间的直接连键或通过交联剂连键来实现。
对于通过吸附的结合来说,结合可以通过将一种或多种Mtb多肽(一般在缓冲液中)与固相支持物接触适量的时间来实现。针对结合的接触时间典型在约1小时到1天之间。一般来说,结合通过将聚苯乙烯或聚氯乙烯固相支持物与一种或多种Mtb多肽相接触来实现,所述Mtb多肽的量在约10ng到约1μg的范围内,例如约100ng抗原。
目标Mtb多肽与固相支持物的共价附着一般可以通过将支持物与能够与支持物和多肽上的官能团例如羟基或氨基均有反应的双功能试剂进行反应来实现。例如,可以使用苯醌或通过支持物上的醛基与多肽上的胺和活性氢的缩合,将Mtb多肽结合到具有适合的聚合物涂层的支持物上(《Pierce免疫技术目录和手册》(Pierce Immunotechnology Catalog and Handbook),A12A13,1991)。
在某些实施方案中,分析是酶联免疫吸附分析(ELISA)。该分析可以通过首先将已经固定化在固相支持物上(例如微量滴定板的孔中)的多肽抗原与样品相接触来进行,所述接触的方式使得样品中存在的特异性结合目标多肽的抗体与固定化的多肽相结合。然后除去未结合的样品,并加入能够与固定化的抗体-多肽复合物结合的检测试剂。使用适合于具体检测试剂的方法来测定保持结合的检测试剂的量。例如,检测方法可以检测荧光或酶活性的存在。
在某些实施方案中,将多肽固定化在支持物上;典型将支持物上任何残留的蛋白结合位点阻断。可以使用任何适合的阻断剂来阻断未结合的蛋白结合位点,例如可以使用牛血清白蛋白或TWEEN 20TM。然后将固定化的多肽与样品温育,并允许抗体与抗原结合。在温育前,可以将样品用适合的稀释剂例如缓冲液如磷酸盐缓冲的盐水(PBS)稀释。一般来说,适合的接触时间(温育时间)是足以在分枝杆菌感染的样品中检测抗体的存在的时间长度。在一个具体的非限制性的实例中,接触时间足以获得在结合与未结合的抗体之间处于平衡时达到的结合水平的至少95%。达到平衡所需的时间可以通过在分析一段时间内发生的结合水平来确定。在室温下,一般来说约30分钟的温育时间是足够的。
然后可以通过用适合的缓冲液、例如含有0.1%TWEEN 20TM的PBS洗涤固相支持物,来除去未结合样品。然后可以向固相支持物添加检测试剂。检测试剂可以是任何与固定化的抗体-多肽复合物结合并可以被检测的化合物。在几个实施方案中,检测试剂包含与标记物接合的结合试剂(例如蛋白A、蛋白G、免疫球蛋白、凝集素或游离抗原)。使用的标记物包括酶(例如辣根过氧化物酶)、底物、辅因子、抑制剂、染料、放射性核素、发光基团、荧光基团和生物素。结合剂与标记物的接合可以使用本技术领域已知的方法来实现;接合的结合试剂也是可商购的(例如来自Zymed Laboratories,San Francisco,Calif.和Pierce,Rockford,Ill.)。
将检测试剂与固定化的抗体-多肽组合物温育足以检测结合的抗体的时间量。适合的时间量一般可以从制造商的说明书或通过分析在一段时间内发生的结合的水平来确定。然后除去未结合的检测试剂,并使用标记物检测结合的检测试剂。对于放射性标记物来说,可以使用闪烁计数或放射自显影方法来检测。可以使用光谱方法检测用作标记物的染料、发光基团和荧光基团。生物素可以使用与不同标记物例如放射性标记物、荧光标记物或酶标记物偶联的亲和素来检测。酶标记物可以通过添加底物(一般进行特定的时间长度)、然后对反应产物进行光谱或其他分析来检测。
为了确定样品中抗分枝杆菌抗体的存在或不存在,一般将从与固相支持物结合的标记物上检测到的信号与对照进行比较。在一个实施方案中,对照是标准值,例如当将固定化的抗原与来自未感染患者的样品温育时获得的平均信号。一般来说,产生高于对照两个或三个标准偏差的信号的样品,被认为是分枝杆菌感染阳性的。在另一个实施方案中,对照值使用接受者工作曲线(Receiver Operator Curve),按照Sackett等的《临床流行病学:临床医学的基础科学》(Clinical Epidemiology:A Basic Science for Clinical Medicine),Little Brown and Co.,1985第106-107页中描述的方法来确定。简单来说,在该实施方案中,从对应于诊断测试结果的每个可能对照值的真阳性率(灵敏性)和假阳性率(100%特异性)配对图确定对照值。在图上围住最大面积的对照值是最精确的截止值,产生高于通过该方法确定的截止值的信号的样品,被认为是阳性的。可选地,可以移动截止值以最小化假阳性率或最小化假阴性率。一般来说,产生高于通过该方法确定的截止值的信号的样品,被认为是结核病阳性的。
在相关实施方案中,所述分析以快速流过或测试条格式进行,其中将抗原固定化在膜、例如但不限于硝酸纤维素上。在流过试验中,当样品经过膜时,样品中的抗体与固定化的多肽结合。当含有检测试剂的溶液流过膜时,检测试剂(例如蛋白A-胶体金)与抗体-多肽复合物结合。检测结合的检测试剂可以如上所述进行。
在测试条格式的一个实例中,将膜结合有多肽的一端浸没在含有样品的溶液中。样品沿着膜迁移,通过含有检测试剂的区域并到达固定化多肽的区域。多肽处检测试剂的浓度表明了样品中抗分枝杆菌抗体的存在。典型情况下,该位点处检测试剂的浓度产生可以视觉读出的图案例如线。不存在这种图案表示阴性结果。一般来说,对固定化在膜上的多肽的量进行选择,以便当生物样品含有足以在酶联免疫吸附分析分析(ELISA)中产生阳性信号的抗体水平时,产生可视觉辨别的图案。在几个实施方案中,固定化在膜上的多肽的量在约25ng到约1μg、例如约50ng到约500ng的范围内。这样的试验典型地使用非常小体积的患者血清或血液来进行。
检测Mtb感染的方法:用于检测多核苷酸的验证性测试
另一方面,除了上面公开的使用CD8+T细胞的方法之外,通过检测生物样品中编码分枝杆菌多肽的mRNA的存在、不存在或水平,进行了验证性测试。在几个实例中,利用了杂交分析,例如Northern印记或斑点印记分析。在其他实例中,利用了基于PCR的分析。
用于mRNA提取的通用方法在本技术领域中是公知的,并公开在标准的分子生物学教科书中,包括Ausubel等的《分子生物学现代方法》(Current Protocols of Molecular Biology),John Wiley和Sons(1997)。用于从石蜡包埋的组织提取RNA的方法公开在例如Rupp和Locker,Lab Invest.56:A67(1987),以及De Andres等,BioTechniques 18:42044(1995)中。具体来说,RNA分离可以使用来自商业制造商例如的纯化试剂盒、缓冲液组和蛋白酶,按照制造商的说明书来进行。例如,来自培养物(例如从对象获得的)中的细胞的总RNA,可以使用
Figure BPA00001331533600462
小型柱来分离。其他可商购的RNA分离试剂盒包括
Figure BPA00001331533600463
全DNA和RNA纯化试剂盒(
Figure BPA00001331533600464
Madison,Wis.)和石蜡块RNA分离试剂盒(Ambion,Inc.)。来自组织样品的总RNA可以使用RNA Stat-60(Tel-Test)分离。从生物样品制备的RNA可以通过例如氯化铯密度梯度离心来分离。
用于mRNA定量的方法在本技术领域中是公知的。在一个实例中,方法利用了反转录酶聚合酶链反应(RT-PCR)。一般来说,在通过RT-PCR进行基因表达情况分析中的第一个步骤是将RNA模板反转录成cDNA,然后在PCR反应中对其进行指数扩增。两种最常用的反转录酶是禽类成髓细胞瘤病毒反转录酶(AMV-RT)和莫洛尼(Moloney)鼠白血病病毒反转录酶(MMLV-RT)。反转录步骤根据环境和表达情况分析的目标,典型地使用特异性引物、随机六聚体或寡聚dT引物引发。例如,提取的RNA可以使用GeneAmp RNA PCR试剂盒(Perkin Elmer,Calif.,USA),按照制造商的说明书进行反转录。然后可以将产生的cDNA作为模板用于随后的PCR反应中。
尽管PCR步骤可以使用各种热稳定的DNA依赖性DNA聚合酶,但它典型使用具有5′-3′核酸酶活性但是缺乏3′-5′校读内切核酸酶活性的Taq DNA聚合酶。因此,
Figure BPA00001331533600465
PCR典型地利用Taq或Tth聚合酶的5′-核酸酶活性来水解与靶扩增子结合的杂交探针,但是也可以使用具有等价的5′核酸酶活性的任何酶。使用两个寡核苷酸引物来产生PCR反应典型的扩增子。第三个寡核苷酸或探针被设计用于检测位于两个PCR引物之间的核苷酸序列。探针不能被Taq DNA聚合酶延伸,并用报告荧光染料和淬灭荧光染料标记。当两种染料在探针上位置靠近在一起时,来自报告染料的任何激光诱导的发射被淬灭染料淬灭。在扩增反应期间,Taq DNA聚合酶以模板依赖性方式切开探针。得到的探针片段在溶液中解离,并且来自释放的报告染料的信号不受第二个荧光团的淬灭效应的影响。对于每个合成的新分子来说释放一个报告染料分子,并且未淬灭的报告染料的检测为数据的定量解释提供了基础。
Figure BPA00001331533600471
RT-PCR可以使用可商购的设备进行,例如ABIPRISM 
Figure BPA00001331533600472
序列检测系统TM(Perkin-Elmer-Applied Biosystems,Foster City,Calif.,USA)或Lightcycler(Roche Molecular Biochemicals,Mannheim,德国)。在一个实施方案中,5′核酸酶程序在实时定量PCR装置例如ABI PRISM 
Figure BPA00001331533600473
序列检测系统
Figure BPA00001331533600474
上运行。系统包括热循环仪、激光器、电荷耦合装置(CCD)、照相机和计算机。系统以96孔板格式在热循环仪上扩增样品。在扩增期间,通过光纤缆线实时收集所有96个孔的激光诱导的荧光信号,并在CCD上进行检测。系统包括用于运行仪器和分析数据的软件。
在某些实例中,5′-核酸酶分析数据首先表示成Ct或阈值循环。正如上面讨论的,在每个循环期间记录荧光值,并用其表示在扩增反应中扩增到该点时的产物量。首次记录到统计学显著的荧光信号时的点是阈值循环(Ct)。
为了将样品之间变化的误差和影响降到最低,可以使用内标进行RT-PCR。理想的内标在不同组织之间以恒定水平表达,并且不受实验处理的影响。最常用于将基因表达模式归一化的RNA是看家基因甘油醛-3-磷酸-脱氢酶(GAPDH)、β-肌动蛋白的mRNA和18S核糖体RNA。
RT-PCR技术最近的变化是实时定量PCR,其通过双重标记的产荧光探针(即
Figure BPA00001331533600475
探针)测量PCR产物积累。实时PCR与使用每个靶序列的内部竞争物进行归一化的定量竞争PCR、以及与使用包含在样品中的归一化基因或用于RT-PCR的看家基因的定量比较PCR两者相容(参见Held等,Genome Research 6:986994,1996)。定量PCR也描述在美国专利No.5,538,848中,其公开内容在此引为参考。相关的探针和定量扩增程序描述在美国专利No.5,716,784和美国专利No.5,723,591中,其公开内容在此引为参考。用于在微量滴定板中执行定量PCR的仪器可以从PE Applied Biosystems,850 Lincoln Centre Drive,Foster City,Calif.94404获得,商品名ABI 
Figure BPA00001331533600481
7700。
使用固定的石蜡包埋组织作为RNA源,对基因表达进行定量的代表性方案的步骤包括mRNA分离、纯化、引物延伸和扩增,它们在各种出版的杂志文章中给出(参见Godfrey等,J.Molec.Diagnostics 2:8491,2000;K.Specht等,Am.J.Pathol.158:41929,2001)。简单来说,代表性的方法从切出约10μm厚的石蜡包埋的组织样品切片开始。然后提取RNA,除去蛋白质和DNA。在分析RNA浓度后,如果需要可以包含RNA修复和/或扩增步骤,并使用基因特异性启动子然后通过RT-PCR将RNA反转录。
可选的定量核酸扩增程序描述在美国专利No.5,219,727中,其在此引为参考。在该程序中,通过同时扩增靶序列和内标核酸区段来确定样品中靶序列的量。测定从每个区段扩增的DNA的量,并与标准曲线进行比较以确定扩增前样品中存在的靶核酸区段的量。
在这种方法的某些实施方案中,也可以评估“看家”基因或“内部对照(internal control)”的表达。这些术语意指包括其存在能够评估细胞因子的mRNA水平的任何组成性或全面表达的基因。这样的评估包含测定基因转录的总体组成性水平和用于RNA回收中的变化的对照。
监测感染的发展和/或疗法的有效性
在几个实施方案中,本文公开的诊断方法用于在例如儿童或患有LTBI的对象中监测分枝杆菌感染的发展。在该实施方案中,可以在一段时间内执行如上所述的用于诊断分枝杆菌感染的分析方法,并测量CD8+T细胞反应性的变化。例如,分析可以在指定的时间段例如在数月或数周内约每12、24、36、48、60或72小时执行,然后按照需要执行。
一般来说,在例如使用细胞因子例如IFN-γ的表达检测到的CD8+T细胞的反应性随时间增加的那些患者中,分枝杆菌感染正在发展。相反,当CD8+T细胞的反应性随时间保持恒定或降低时,分枝杆菌感染没有发展。以这种方式,可以在例如儿童或患有LTBI的对象中评估特定治疗方案的有效性。
在一个实施方案中,评估了对象例如儿童中特异性识别Mtb多肽的T细胞、例如CD8+T细胞和/或CD4+T细胞的存在。对象施行治疗方案。然后评估特异性识别Mtb多肽的T细胞的存在。与治疗方案施行之前特异性识别Mtb多肽的CD8+T细胞的量相比,相应特异性识别Mtb多肽的CD8+T细胞的量的降低或不变,表明治疗方案无效。与治疗方案施行之前特异性识别Mtb多肽的CD8+T细胞的量相比,特异性识别Mtb多肽的CD8+T细胞的量的增加,表明治疗方案有效。也可以测量CD4+细胞。
应该指出,对于任何上述的分析方法来说,为了提高灵敏度,可以分析给定样品中的多个分枝杆菌标志物。显然,本文公开的分析方法可以组合使用。因此,分枝杆菌多肽组,以及分析方法的组合,可用于优化灵敏度和特异性。
分枝杆菌多肽
本文中公开了几种分枝杆菌多肽可用于诱导针对Mtb的免疫应答,例如T细胞应答。分枝杆菌多肽可用于诊断分析中,以鉴定感染有分枝杆菌例如Mtb的对象。在几个实施方案中,多肽包含下列显示的氨基酸序列或由其构成:
1.MX1SRFMTDPHAMRDMAGRFEVHAQTVEDEARRMWASAQNISGAGWSGMAEATSLDTMX2X3MNQAFRNIVNMLHGVRDGLVRDANNYEQQEQASQQILS,(SEQ ID NO:1,其中X1是A或T,X2是T或A,和X3是任何氨基酸,例如Q或无氨基酸)
在几个实例中,多肽包含下列显示的氨基酸序列或基本上由其构成或由其构成:
a.MASRFMTDPHAMRDMAGRFEVHAQTVEDEARRMWASAQNISGAGWSGMAEATSLDTMTQMNQAFRNIVNMLHGVRDGLVRDANNYEQQEQASQQILS(SEQ ID NO:2)(也参见2007年3月1日提供的TUBERCULIST No.Rv1038c,在此引为参考,被称为EsxJ、ES6_2、TB11.0、QILSS)
b.MASRFMTDPHAMRDMAGRFEVHAQTVEDEARRMWASAQNISGAGWSGMAEATSLDTMAQMNQAFRNIVNMLHGVRDGLVRDANNYEQQEQASQQILSS(SEQ ID NO:3,TUBERCULIST No.Rv1197,2007年3月1日提供,在此引为参考,也称为EsxK、TB11.0、QILSS)
c.MASRFMTDPHAMRDMAGRFEVHAQTVEDEARRMWASAQNISGAGWSGMAEATSLDTMT+MNQAFRNIVNMLHGVRDGLVRDANNYEQQEQASQQILSS(SEQ ID NO:4,TUBERCULIST No.Rv1992,2007年3月1日提供,在此引为参考,被称为EsxM、TB11.0、QILSS)。
d.MATRFMTDPHAMRDMAGRFEVHAQTVEDEARRMWASAQNISGAGWSGMAEATSLDTMAQMNQAFRNIVNMLHGVRDGLVRDANNYEQQEQASQQILSS(SEQ ID NO:5,TUBERCULIST No.Rv2347c,2007年3月1日提供,在此引为参考,也称为EsxP、ES6_7、QILSS)
e.MTSRFMTDPHAMRDMAGRFEVHAQTVEDEARRMWASAQNISGAGWSGMAEATSLDTMTQMNQAFRNIVNMLHGVRDGLVRDANNYEQQEQASQQILSS(SEQ ID NO:6,TUBERCULIST No.Rv3620c,2007年3月1日提供,在此引为参考,也称为EsxW、ES6_10、QILSS)。
在其他实施方案中,多肽包含下列显示的氨基酸序列或基本上由其构成或由其构成:
2. MSYMIATPAALTAAATDIDGIGSAVSVANAAAVAATTGVLAAGGDEVLAAIARLFNANAEEYHALSAQVAAFQTLFVRTLTGGCGVFRRRRGRQCVTAA
3.VSLVIATPQLLATAALDLASIGSQVSAANAAAAMPTTEVVAAAADEVSAAIAGLFGAHARQYQALSVQVAAFHEQFVQALTAAAGRYASTEAAVERSLLGAVNAPTEALLGRPLIGNGADGTAPGQPGAAGGLLFGNGGNGAAGGFGQTGGSGGAAGLIGNGGNGGAGGTGAAGGAGGNGGWLWGNGGNGGVGGTSVAAGIGGAGGNGGNAGLFGHGGAGGTGGAGLAGANGVNPTPGPAASTGDSPADVSGIGDQTGGDGGTGGHGTAGTPTGGTGGDGATATAGSGKATGGAGGDGGTAAAGGGGGNGGDGGVAQGDIASAFGGDGGNGSDGVAAGSGGGSGGAGGGAFVHIATATSTGGSGGFGGNGAASAASGADGGAGGAGGNGGAGGLLFGDGGNGGAGGAGGIGGDGATGGPGGSGGNAGIARFDSPDPEAEPDVVGGKGGDGGKGGSGLGVGGAGGTGGAGGNGGAGGLLFGNGGNGGNAGAGGDGGAGVAGGVGGNGGGGGTATFHEDPVAGVWAVGGVGGDGGSGGSSLGVGGVGGAGGVGGKGGASGMLIGNGGNGGSGGVGGAGGVGGAGGDGGNGGSGGNASTFGDENSIGGAGGTGGNGGNGANGGNGGAGGIAGGAGGSGGFLSGAAGVSGADGIGGAGGAGGAG GAGGSGGEAGAGGLTNGPGSPGVSGTEGMAGAPG(SEQID NO:8,TUBERCULIST No.Rv2487,2007年3月1日提供,在此引为参考,也被称为PE_PGRS42)
4.MHQVDPNLTRRKGRLAALAIAAMASASLVTVAVPATANADPEPAPPVPTTAASPPSTAAAPPAPATPVAPPPPAAANTPNAQPGDPNAAPPPADPNAPPPPVIAPNAPQPVRIDNPVGGFSFALPAGWVESDAAHFDYGSALLSKTTGDPPFPGQPPPVANDTRIVLGRLDQKLYASAEATDSKAAARLGSDMGEFYMPYPGTRINQETVSLDANGVSGSASYYEVKFSDPSKPNGQIWTGVIGSPAANAPDAGPPQRWFVVWLGTANNPVDKGAAKALAESIRPLVAPPPAPAPAPAEPAPAPAPAGEVAPTPTTPTPQRTLPA(SEQ ID NO:9,TUBERCULIST No.Rv1860,2007年3月1日提供,在此引为参考,也被称为Apa、modD、mpt32)
5.MLLALLRQHIRPYRRLVAMLMMLQLVSTLASLYLPTVNAAIVDDGVAKGDTATIVRLGAVMLGVTGLQVLCAIGAVYLGSRTGAGFGRDLRSAMFEHIITFSERETARFGAPTLLTRSTNDVRQILFLVQMTATVLVTAPIMCVGGIIMAIHQEAALTWLLLVSVPILAVANYWIISHMLPLFRRMQSLIDGINRVMRDQLSGVRVVRAFTREGYERDKFAQANTALSNAALSAGNWQALMLPVTTLTINASSVALIWFGGLRIDSGQMQVGSLIAFLSYFAQILMAVLMATMTLAVLPRASVCAERITEVLSTPAALGNPDNPKFPTDGVTGVVRLAGATFTYPGADCPVLQDISLTARPGTTTAIVGSTGSGKSTLVSLICRLYDVTAGAVLVDGIDVREYHTERLWSAIGLVPQRSYLFSGTVADNLRYGGGPDQVVTEQEMWEALRVAAADGFVQTDGLQTRVAQGGVNFSGGQRQRLAIARAVIRRPAIYVFDDAFSALDVHTDAKVHASLRQVSGDATIIVVTQRISNAAQADQVIVVDNGKIVGTGTHETLLADCPTYAEFAASQSLSATVGGVG(SEQ ID NO:10,TUBERCULIST No.Rv1273c,2007年3月1日提供,在此引为参考)
6.MSYVIAAPEMLATTAADVDGIGSAIRAASASAAGPTTGLLAAAADEVSSAAAALFSEYARECQEVLKQAAAFHGEFTRALAAAGAAYAQAEASNTAAMSGTAGSSGALGSVGMLSGNPLTALMMGGTGEPILSDRVLAIIDSAYIRPIFGPNNPVAQYTPEQWWPFIGNLSLDQSIAQGVTLLNNGINAELQNGHDVVVFGYSQSAAVATNEIRALMALPPGQAPDPSRLAFTLIGNINNPNGGVLERYVGLYLPFLDMSFNGATPPDSPYQTYMYTGQYDGYAHNPQYPLNILSDLNAFMGIRWVHNAYPFTAAEVANAVPLPTSPGYTGNTHYYMFLTQDLPLLQPIRAIPFVGTPIAELIQPDLRVLVDLGYGYGYADVPTPASLFAPINPIAVASALATGTVQGPQAALVSIGLLPQSALPNTYPYLPSANPGLMFNFGQSSVTELSVLSGALGSVARLIPPIA  (SEQ  IDNQ:11,TUBERCULIST No.Rv0159c,2007年3月1日提供,在此引为参考,也称为PE3或PE)。
7.MEFPVLPPEINSVLMYSGAGSSPLLAAAAAWDGLAEELGSAAVSFGQVTSGLTAGVWQGAAAAAMAAAAAPYAGWLGSVAAAAEAVAGQARVVVGVFEAALAATVDPALVAANRARLVALAVSNLLGQNTPAIAAAEAEYELMWAADVAAMAGYHSGASAAAAALPAFSPPAQALGGGVGAFLTALFASPAKALSLNAGLGNVGNYNVGLGNVGVFNLGAGNVGGQNLGFGNAGGTNVGFGNLGNGNVGFGNSGLGAGLAGLGNIGLGNAGSSNYGFANLGVGNIGFGNTGTNNVGVGLTGNHLTGIGGLNSGTGNIGLFNSGTGNVGFFNSGTGNFGVFNSGNYNTGVGNAGTASTGLFNAGNFNTGVVNVGSYNTGSFNAGDTNTGGFNPGGVNTGWLNTGNTNTGIANSGNVNTGAFISGNFNNGVLWVGDYQGLFGVSAGSSIPAIPIGLVLNGDIGPITIQPIPILPTIPLSIHQTVNLGPLVVPDIVIPAFGGGIGIPINIGPLTITPITLFAQQTFVNQLPFPTFSLGKITIPQIQTFDSNGQLVSFIGPIVIDTTIPGPTNPQIDLTIRWDTPPITLFPNGISAPDNPLGLLVSVSISNPGFTIPGFSVPAQPLPLSIDIEGQIDGFSTPPITIDRIPLTVGGGVTIGPITIQGLHIPAAPGVGNTTTAPSSGFFNSGAGGVSGFGNVGAGSSGWWNQAPSALLGAGSGVGNVGTLGSGVLNLGSGISGFYNTSVLPFGTPAAVSGIGNLGQQLSGVSAAGTTLRSMLAGNLGLANVGNFNTGFGNVGDVNLGAANIGGHNLGLGNVGDGNLGLGNIGHGNLGFANLGLTAGAAGVGNVGFGNAGINNYGLANMGVGNIGFANTGTGNIGIGLVGDHRTGIGGLNSGIGNIGLFNSGTGNVGFFNSGTGNFGIGNSGRFNTGIGNSGTASTGLFNAGSFSTGIANTGDYNTGSFNAGDTNTGGFNPGGINTGWFNTGHANTGLANAGTFGTGAFMTGDYSNGLLWRGGYEGLVGVRVGPTISQFPVTVHAIGGVGPLHVAPVPVPAVHVEITDATVGLGPFTVPPISIPSLPIASITGSVDLAANTISPIRALDPLAGSIGLFLEPFRLSDPFITIDAFQVVAGVLFLENIIVPGLTVSGQILVTPTPIPLTLNLDTTPWTLFPNGFTIPAQTPVTVGMEVANDGFTFFPGGLTFPRASAGVTGLSVGLDAFTLLPDGFTLDTVPATFDGTILIGDIPIPIIDVPAVPGFGNTTTAPSSGFFNTGGGGGSGFANVGAGTSGWWNQGHDVLAGAGSGVANAGTLSSGVLNVGSGISGWYNTSTLGAGTPAVVSGIGNLGQQLSGFLANGTVLNRSPIVNIGWADVGAFNTGLGNVGDLNWGAANIGAQNLGLGNLGSGNVGFGNIGAGNVGFANSGPAVGLAGLGNVGLSNAGSNNWGLANLGVGNIGLANTGTGNIGIGLVGDYQTGIGGLNSGSGNIGLFNSGTGNVGFFNTGTGNFGLFNSGSFNTGIGNSGTGSTGLFNAGNFNTGIANPGSYNTGSFNVGDTNTGGFNPGDINTGWFNTGIMNTGTRNTGALMSGTDSNGMLWRGDHEGLFGLSYGITIPQFPIRITTTGGIGPIVIPDTTILPPLHLQITGDADYSFTVPDIPIPAIHIGINGVVTVGFTAPEATLLSALKNNGSFISFGPITLSNIDIPPMDFTLGLPVLGPITGQLGPIHLEPIVVAGIGVPLEIEPIPLDAISLSESIPIRIPVDIPASVIDGISMSEVVPIDASVDIPAVTITGTTISAIPLGFDIRTSAGPLNIPIIDIPAAPGFGNSTQMPSSGFFNTGAGGGSGIGNLGAGVSGLLNQAGAGSLVGTLSGLGNAGTLASGVLNSGTAISGLFNVSTLDATTPAVISGFSNLGDHMSGVSIDGLIAILTFPPAESVFDQIIDAAIAELQHLDIGNALALGNVGGVNLGLANVGEFNLGAGNVGNINVGAGNLGGSNLGLGNVGTGNLGFGNIGAGNFGFGNAGLTAGAGGLGNVGLGNAGSGSWGLANVGVGNIGLANTGTGNIGIGLTGDYRTGIGGLNSGTGNLGLFNSGTGNIGFFNTGTGNFGLFNSGSYSTGVGNAGTASTGLFNAGNFNTGLANAGSYNTGSLNVGSFNTGGVNPGTVNTGWFNTGHTNTGLFNTGNVNTGAFNSGSFNNGALWTGDYHGLVGFSFSIDIAGSTLLDLNETLNLGPIHIEQIDIPGMSLFDVHEIVEIGPFTIPQVDVPAIPLEIHESIHMDPIVLVPATTIPAQTRTIPLDIPASPGSTMTLPLISMRFEGEDWILGSTAAIPNFGDPFPAPTQGITIHTGPGPGTTGELKISIPGFEIPQIATTRFLLDVNISGGLPAFTLFAGGLTIPTNAIPLTIDASGALDPITIFPGGYTIDPLPLHLALNLTVPDSSIPIIDVPPTPGFGNTTATPSSGFFNSGAGGVSGFGNVGSNLSGWWNQAASALAGSGSGVLNVGTLGSGVLNVGSGVSGIYNTSVLPLGTPAVLSGLGNVGHQLSGVSAAGTALNQIPILNIGLADVGNFNVGFGNVGDVNLGAANLGAQNLGLGNVGTGNLGFANVGHGNIGFGNSGLTAGAAGLGNTGFGNAGSANYGFANQGVRNIGLANTGTGNIGIGLVGDNLTGIGGLNSGAGNIGLFNSGTGNIGFFNSGTGNFGIGNSGSFNTGIGNSGTGSTGLFNAGSFNTGVANAGSYNTGSFNAGDTNTGGFNPGTINTGWFNTGHTNTGIANSGNVGTGAFMSGNFSNGLLWRGDHEGLFSLFYSLDVPRITIVDAHLDGGFGPVVLPPIPVPAVNAHLTGNVAMGAFTIPQIDIPALTPNITGSAAFRIVVGSVRIPPVSVIVEQIINASVGAEMRIDPFEMWTQGTNGLGITFYSFGSADGSPYATGPLVFGAGTSDGSHLTISASSGAFTTPQLETGPITLGFQVPGSVNAITLFPGGLTFPATSLLNLDVTAGAGGVDIPAITWPEIAASADGSVYVLASSIPLINIPPTPGIGNSTITPSSGFFNAGAGGGSGFGNFGAGTSGWWNQAHTALAGAGSGFANVGTLHSGVLNLGSGVSGIYNTSTLGVGTPALVSGLGNVGHQLSGLLSGGSAVNPVTVLNIGLANVGSHNAGFGNVGEVNLGAANLGAHNLGFGNIGAGNLGFGNIGHGNVGVGNSGLTAGVPGLGNVGLGNAGGNNWGLANVGVGNIGLANTGTGNIGIGLTGDYQTGIGGLNSGAGNLGLFNSGAGNVGFFNTGTGNFGLFNSGSFNTGVGNSGTGSTGLFNAGSFNTGVANAGSYNTGSFNVGDTNTGGFNPGSINTGWLNAGNANTGVANAGNVNTGAFVTGNF SNGILWRGDYQGLAGFAVGYTLPLFPAVGADVSGGIGPITVLPPIHIPPIPVGFAAVGGIGPIAIPDISVPSIHLGLDPAVHVGSITVNPITVRTPPVLVSYSQGAVTSTSGPTSEIWVKPSFFPGIRIAPSSGGGATSTQGAYFVGPISIPSGTVTFPGFTIPLDPIDIGLPVSLTIPGFTIPGGTLIPTLPLGLALSNGIPPVDIPAIVLDRILLDLHADTTIGPINVPIAGFGGAPGFGNSTTLPSSGFFNTGAGGGSGFSNTGAGMSGLLNAMSDPLLGSASGFANFGTQLSGILNRGAGISGVYNTGALGVVTAAVVSGFGNVGQQLSGLLFTGVGP(SEQ IDNO:12,TUBERCULIST No.Rv3350c,2007年3月1日提供,在此引为参考,也被称为PPE56或PPE)。
在其他实施方案中,Mtb多肽包含ESAT-6或基本上由其构成或由其构成:
MTEQQWNFAGIEAAASAIQGNVTSIHSLLDEGKQSLTKL
AAWGGGSGSEAYQGVQQKWDATATELNNALQNLARTISEAG
QAMASTEGNVTGMFA
(SEQ ID NO:39)
使用的肽:
MTEQQWNFAGIEAAA    SEQ ID NO:40
QWNFAGIEAAASAIQ    SEQ ID NO:41
AGIEAAASAIQGNVT    SEQ ID NO:42
AAASAIQGNVTSIHS    SEQ ID NO:43
AIQGNVTSIHSLLDE    SEQ ID NO:44
NVTSIHSLLDEGKQS    SEQ ID NO:45
IHSLLDEGKQSLTKL    SEQ ID NO:46
LDEGKQSLTKLAAAWG   SEQ ID NO:47
KQSLTKLAAAWGGSG    SEQ ID NO:48
TKLAAAWGGSGSEAY    SEQ ID NO:49
AAWGGSGSEAYQGVQ    SEQ ID NO:50
GSGSEAYQGVQQKWD    SEQ ID NO:51
EAYQGVQQKWDATAT    SEQ ID NO:52
GVQQKWDATATELNN    SEQ ID NO:53
KWDATATELNNALQN    SEQ ID NO:54
TATELNNALQNLART    SEQ ID NO:55
LNNALQNLARTISEA    SEQ ID NO:56
LQNLARTISEAGQAM    SEQ ID NO:57
ARTISEAGQAMASTE    SEQ ID NO:58
SEAGQAMASTEGNVT    SEQ ID NO:59
QAMASTEGNVTGMFA    SEQ ID NO:60
在其他实施方案中,Mtb多肽包含CFP-10或基本上由其构成或由其构成:
MAEMKTDAATLAQEAGNFERISGDLKTQIDQVESTAGSLQGQWRG
AAGTAAQAAVVRFQEAANKQKQELDEISTNIRQAGVQYSRADEEQQ
QALSSQMG
(SEQ ID NO:61)
使用的肽:
MAEMKTDAATLAQEA    SEQ ID NO:62
KTDAATLAQEAGNFE    SEQ ID NO:63
ATLAQEAGNFERISG    SEQ ID NO:64
QEAGNFERISGDLKT    SEQ ID NO:65
NFERISGDLKTQIDQ    SEQ ID NO:66
ISGDLKTQIDQVEST    SEQ ID NO:67
LKTQIDQVESTAGSL    SEQ ID NO:68
IDQVESTAGSLQGQW    SEQ ID NO:69
ESTAGSLQGQWRGAA    SEQ ID NO:70
GSLQGQWRGAAGTAA    SEQ ID NO:71
GQWRGAAGTAAQAAV    SEQ ID NO:72
GAAGTAAQAAVVRFQ    SEQ ID NO:73
TAAQAAVVRFQEAAN    SEQ ID NO:74
AAVVRFQEAANKQKQ    SEQ ID NO:75
RFQEAANKQKQELDE    SEQ ID NO:76
AANKQKQELDEISTN    SEQ ID NO:77
QKQELDEISTNIRQA    SEQ ID NO:78
LDEISTNIRQAGVQY    SEQ ID NO:79
STNIRQAGVQYSRAD    SEQ ID NO:80
RQAGVQYSRADEEQQ    SEQ ID NO:81
VQYSRADEEQQQALS    SEQ ID NO:82
RADEEQQQALSSQMG    SEQ ID NO:83
使用的其他Mtb多肽公开在已公布的美国专利申请No.2005/0208594、PCT公布No.WO 2005/0909988、已公布的美国专利申请No.2003/0147897、已公布的美国专利申请No.2004/01151211、已公布的美国专利申请No.2005/0272104、已公布的美国专利申请No.2006/0024332、已公布的美国专利申请No.2006/0115847、已公布的美国专利申请No.2007/0009547、已公布的美国专利申请No.2007/0184073中,在此以其全文引为参考。可以使用一种以上的Mtb多肽。在几个实施方案中,在本文公开的方法中使用了ESAT-6(SEQ ID NO:39)和/或CFP-10(SEQ ID NO:61)。
在另一个实施方案中,在本文公开的方法中使用的Mtb多肽具有与SEQ ID NO:1-12或39-83之一中显示的一个氨基酸序列至少75%、85%、90%、95%、96%、97%、98%或99%同源的序列。例如,多肽可以具有与SEQ ID NO:1-12或39-83中显示的氨基酸序列之一至少85%、90%、95%、96%、97%、98%或99%同源的氨基酸序列。可以使用容易在互联网上获得的计算机程序和本文提出的氨基酸序列来获得示例性序列。在一个实例中,多肽保留了Mtb蛋白的功能,例如与特异性结合Mtb表位的抗体结合的功能。
Mtb多肽的一级氨基酸序列的少量修饰可以产生与本文描述的未修饰的对应多肽相比具有基本上相等的活性的肽。这样的修饰可以是如通过位点定向诱变那样有意设计的,或者可以是自发的。本文包含了通过这些修饰产生的所有多肽。因此,Mtb多肽的具体的、非限制性的实例是Mtb多肽的保守变体。本文中提供了保守取代的表格。可以根据该表格制造在SEQ ID NO:1-12和39-83中显示的氨基酸序列的取代。在几个实施方案中,在Mtb多肽中引入了至多一个、至多两个、至多三个、至多四个或至多五个保守取代。
本文中公开了可用于检测针对Mtb的免疫应答的Mtb多肽。这些肽包含至少9个氨基酸或由其构成,例如上面提出的Mtb多肽的9到20个氨基酸的连续氨基酸。具体的非限制性的实例是上面提出的Mtb多肽之一的12、11、10个氨基酸或9个连续的氨基酸。在这些实例中,Mtb多肽不包括SEQ ID NO:1-12、SEQ ID NO:39和/或SEQ ID NO:61显示的全长氨基酸序列。
公开了包括来自Mtb多肽的9到12个连续氨基酸的分离的多肽,其中分离的多肽包含显示为QTVEDEARRMW(SEQ ID NO:13)的氨基酸序列。在某些实施方案中,多肽的长度为9、10或11个氨基酸。在其他实施方案中,多肽由SEQ ID NO:13所显示的氨基酸序列构成。公开了包含来自Mtb多肽的9到12个连续氨基酸的分离的多肽,其中分离的多肽包含显示为VSAAIAGLF(SEQ ID NO:14)的氨基酸序列。在某些实施方案中,多肽的长度为9、10或11个氨基酸。在其他实施方案中,多肽由SEQ ID NO:14所显示的氨基酸序列构成。
在其他实施方案中,多肽的长度为9到12个连续氨基酸,并包含SEQ ID NO:40-60或SEQ ID NO:65-83所显示的氨基酸序列之一,或基本上由其构成或由其构成。
在几个实施方案中,分离的Mtb多肽包含在融合蛋白中。因此,融合蛋白可以包括Mtb多肽(参见上文)和第二个异源部分,例如与Mtb多肽共价相连的myc蛋白、酶或载体(例如肝炎载体蛋白或牛血清白蛋白)。在几个实例中,由SEQ ID NO:1-14、SEQ ID NO:39或SEQ ID NO:61所显示的氨基酸序列之一的9到12个氨基酸构成的结合I类MHC的多肽,与载体共价相连。在其他实例中,由SEQ ID NO:1-14之一所显示的氨基酸序列之一构成、或由SEQ ID NO:40-60或65-83所显示的氨基酸序列之一构成的多肽,与载体共价相连。
在其他实例中,多肽可以是融合蛋白,并且还可以包含对Mtb来说异源的序列(例如不包含在SEQ ID NO:1中的长度为至少9个氨基酸的氨基酸序列)。因此,在几个具体的非限制性实例中,免疫原性肽是融合多肽,例如该多肽包括6个连续的组氨酸残基、β-半乳糖苷酶氨基酸序列或免疫球蛋白氨基酸序列。多肽也可以与载体共价相连。在其他实施方案中,蛋白由Mtb多肽构成。
多肽可以任选包含本文公开的一个或多个Mtb多肽的重复。在一个具体的非限制性实例中,多肽包括上述Mtb多肽之一的2、3、4、5或多达10个重复。可选地,在融合多肽中可以包含一个以上多肽。因此,在几个实例中,多肽可以包括至少两个、至少三个、至少四个、至少五个或至少六个SEQ ID NO:1-14和/或SEQ ID NO:39-83所显示的氨基酸序列。在Mtb多肽之间可以任选包含接头序列。
本文公开的Mtb多肽可以通过标准方法化学合成,或可以重组生产。用于多肽生产的示例性方法描述在Lu等,Federation of European Biochemical Societies Letters.429:31-35,1998中。它们也可以通过包括制备型色谱和免疫分离在内的方法进行分离。
如果需要,多肽也可以通过新兴技术化学合成。一种这样的方法描述在W.Lu等,Federation of European Biochemical Societies Letters.429:31-35,1998中。多肽也可以使用分子遗传技术来生产,例如通过将编码Mtb或其表位的核酸插入到表达载体中,将表达载体导入宿主细胞,并分离多肽(参见下文)。
还提供了编码本文公开的Mtb多肽的多核苷酸。示例性的核酸序列显示如下:
ESXJ(ESAT-6样蛋白2)
atggcctcgcgttttatgacggatccgcacgcgatgcgggacatggcgggccgttttgaggtgcacgcccagacggtggaggacgaggctcgccggatgtgggcgtccgcgcaaaacatctcgggcgcgggctggagtggcatggccgaggcgacctcgctagacaccatgacccagatgaatcaggcgtttcgcaacatcgtgaacatgctgcacggggtgcgtgacgggctggttcgcgacgccaacaactacgaacagcaagagcaggcctcccagcagatcctcagcagctga
(SEQ ID NO:15)
ESXK(ESAT-6样蛋白3)
atggcctcacgttttatgacggatccgcacgcgatgcgggacatggcgggccgttttgaggtgcacgcccagacggtggaggacgaggctcgccggatgtgggcgtccgcgcaaaacatttccggtgcgggctggagtggcatggccgaggcgacctcgctagacaccatggcccagatgaatcaggcgtttcgcaacatcgtgaacatgctgcacggggtgcgtgacgggctggttcgcgacgccaacaactacgagcagcaagagcaggcctcccagcagatcctcagcagctaa
(SEQ ID NO:16)
ESXM(ESAT-6样蛋白ESXM)
atggcctcacgttttatgacggatccgcatgcgatgcgggacatggcgggccgttttgaggtgcacgcccagacggtggaggacgaggctcgccggatgtgggcgtccgcgcaaaacatttccggtgcgggctggagtggcatggccgaggcgacctcgctagacaccatgacctagatgaatcaggcgtttcgcaacatcgtgaacatgctgcacggggtgcgtgacgggctggttcgcgacgccaacaactacgaacagcaagagcaggcctcccagcagatcctgagcagctag
(SEQ ID NO:17)
ESXP(ESAT-6样蛋白7)
atggcaacacgttttatgacggatccgcacgcgatgcgggacatggcgggccgttttgaggtgcacgcccagacggtggaggacgaggctcgccggatgtgggcgtccgcgcaaaacatctcgggcgcgggctggagtggcatggccgaggcgacctcgctagacaccatggcccagatgaatcaggcgtttcgcaacatcgtgaacatgctgcacggggtgcgtgacgggctggttcgcgacgccaacaactacgagcagcaagagcaggcctcccagcagatcctcagcagctaa
(SEQ ID NO:18)
ESXW(ESAT-6样蛋白10)
atgacctcgcgttttatgacggatccgcacgcgatgcgggacatggcgggccgttttgaggtgcacgcccagacggtggaggacgaggctcgccggatgtgggcgtccgcgcaaaacatttccggcgcgggctggagtggcatggccgaggcgacctcgctagacaccatgacccagatgaatcaggcgtttcgcaacatcgtgaacatgctgcacggggtgcgtgacgggctggttcgcgacgccaacaactacgaacagcaagagcaggcctcccagcagatcctcagcagctga
(SEQ ID NO:19)
PE9(PE家族蛋白)
atgtcatacatgattgccacaccagcggcgttgacggcggcggcaacggatatcgacgggattggctcggcggttagcgttgcgaacgccgcggcggtcgccgcgacaaccggagtgctggccgccggtggcgatgaagtgttggcggccatcgctaggctgttcaacgcaaacgccgaggaatatcacgccctcagcgcgcaggtggcggcgtttcaaaccctgtttgtgcgcaccttgactggggggtgcggagtctttcgccggcgccgaggccgccaatgcgtcacagctgcagagcatcgcgcggcaggtgcggggcgccgtcaacgccgtcgccggtcaggtgacgggcaatggcggctccggcaacagcggcacttcggctgcggcggccaacccgaattccgacaacacagcGagcatcgccgatag
(SEQ ID NO:20)
PE PGRS42(PE-PGRS家族蛋白)
gtgtcgttggtgatcgcgacgccgcagctgctggcaactgcggctttggatttagcgagtattggttcgcaggtgagcgcggctaatgcggccgcggcgatgccgacgacggaagtggtggctgcggctgccgatgaagtgtcggcggcgattgcggggttgttcggggcccatgctcggcagtatcaggcgctcagcgtacaggtggcagcgtttcacgagcagtttgtgcaggcgttgactgcggccgcgggtcggtatgccagcactgaggccgctgttgagcggagtctgctgggtgcggtgaatgcgcccaccgaggcgcttttggggcgcccgttgatcggaaacggcgccgacgggacggcacccgggcagcctggcgcggccggcgggttgctgtttggcaacggtggcaacggcgcggctggcgggttcggtcaaaccggcggcagcggaggcgcggccgggttgatcggcaacggcggcaacggcggggccggtggtaccggcgcggccggcggtgccggtgggaacggggggtggttgtggggcaacggcggcaacggcggtgtcggcggcaccagcgtggccgcaggcatcgggggtgcgggcggtaacggcggcaacgccgggctgttcggccatggcggcgccggtggtaccggcggcgccggcctcgccggggcaaacggggtcaatcccacgcccggccccgcggccagcaccggggacagcccggcagatgtgtccggcatcggtgatcaaaccggcggcgacggcggcacgggcggccatggcactgccggcacgccgaccggtggcaccggcggcgacggtgccaccgcgacggcaggctcgggcaaggccaccggcggtgccggtggtgacggcggtaccgccgctgccggtggcggcggcggcaacggcggcgacggcggagtcgcgcagggcgacattgcgagcgcctttggcggtgatggtggcaacgggtccgacggtgtagccgccggcagtgggggtggtagcggcggcgccggaggcggcgctttcgtacacatcgccactgccacctctaccggtggtagcggcggtttcggtggtaacggggctgccagtgccgcctccggcgccgacggtggcgcagggggagctggcggcaatggtggcgccggcgggttgctattcggtgatggcggcaacggtggcgccggtggcgcgggtggtatcggtggtgacggcgccacgggggggcccgggggaagcggcggcaacgctggcatcgcgaggtttgacagcccagaccccgaggcagaacccgatgtggtcggcggcaagggtggtgatggcggcaagggcggcagcggccttggcgtcggcggcgccggcgggaccggcggcgcgggcggcaacggcggcgccggcgggttgttgttcggcaacggcggcaacggcggcaacgccggggccggcggggatggcggcgccggcgttgccggtggggttggcggtaacggcggcggtggtggcaccgcgacgtttcacgaagacccggtcgctggtgtctgggcggtcggtggcgtaggtggtgatggtggctccggcggcagctcgcttggtgtcggcggggtgggcggagccggtggcgtgggtggcaagggtggcgccagcggcatgttgatcggcaacggcggcaacggtggcagcggcggagtcggtggggccggtggagtcggcggggctggcggtgacggcggcaacggcggctccggtggcaacgccagtacttttggcgatgagaactccatcggcggggccggcgggacgggcggcaacgggggcaacggcgcaaacggcggtaacggtggcgctggcggtattgccggcggtgcgggtgggtccggagggttcctcagcggtgccgcaggagtcagcggcgctgacggtatcggtggcgcgggcggcgcaggcggtgccggtggcgcgggcggtagcggcggtgaggcaggcgcggggggcctcaccaacggccccgggtcccctggcgtttccggcaccgaaggcatggccggcgcgcccggctag
(SEQ ID NO:21)
Rv1860(纤连蛋白结合蛋白)
atgcatcaggtggaccccaacttgacacgtcgcaagggacgattggcggcactggctatcgcggcgatggccagcgccagcctggtgaccgttgcggtgcccgcgaccgccaacgccgatccggagccagcgcccccggtacccacaacggccgcctcgccgccgtcgaccgctgcagcgccacccgcaccggcgacacctgttgcccccccaccaccggccgccgccaacacgccgaatgcccagccgggcgatcccaacgcagcacctccgccggccgacccgaacgcaccgccgccacctgtcattgccccaaacgcaccccaacctgtccggatcgacaacccggttggaggattcagcttcgcgctgcctgctggctgggtggagtctgacgccgcccacttcgactacggttcagcactcctcagcaaaaccaccggggacccgccatttcccggacagccgccgccggtggccaatgacacccgtatcgtgctcggccggctagaccaaaagctttacgccagcgccgaagccaccgactccaaggccgcggcccggttgggctcggacatgggtgagttctatatgccctacccgggcacccggatcaaccaggaaaccgtctcgctcgacgccaacggggtgtctggaagcgcgtcgtattacgaagtcaagttcagcgatccgagtaagccgaacggccagatctggacgggcgtaatcggctcgcccgcggcgaacgcaccggacgccgggccccctcagcgctggtttgtggtatggctcgggaccgccaacaacccggtggacaagggcgcggccaaggcgctggccgaatcgatccggcctttggtcgccccgccgccggcgccggcaccggctcctgcagagcccgctccggcgccggcgccggccggggaagtcgctcctaccccgacgacaccgacaccgcagCggaccttaccggcctga
(SEQ ID NO:22)
Rv1273c(可能的药物运输跨膜ATP结合蛋白ABC转运蛋白)
atgctcctggccctgctgcgccagcacatccgaccgtaccgccggctggtcgcgatgctgatgatgctgcagctggtcagcaccctggcttcgctatacctcccgacggtcaacgccgcaatcgtcgacgacggcgtcgccaagggcgacaccgccaccatcgtacggctgggtgcggtgatgcttggggtgaccggattgcaggtgctgtgcgcgatcggggcggtctatctgggctcccggaccggggcgggtttcggccgtgacctgcgctcggcaatgttcgaacacatcatcaccttctcggaacgcgagaccgcccgattcggcgctccgacgttgttgacccgcagcaccaacgacgtccggcagatcctgttcctggtccagatgaccgccaccgtgctggtcaccgcaccgatcatgtgcgtcggcggaatcatcatggccatccaccaggaggccgcgctgacatggctgctgctggtcagcgttccgattctggccgtagcaaactactggatcatctcccacatgctgccgctcttccgccgcatgcagagcctgatcgacggcatcaaccgggtgatgcgcgatcagctgtccggggtgcgagtggtccgcgccttcacccgcgaaggctatgaacgcgacaagttcgcgcaggccaatacggcgctgtcgaatgccgcactgagcgccggcaactggcaagcactgatgctgccggtgaccacgctgaccatcaacgcatccagcgtcgcactgatctggttcggtgggctacgcatcgacagcggccagatgcaggtcggctccctgatcgccttcctgtcctacttcgcccagatcctgatggcggtgttgatggcgaccatgacgctggccgtgctgccacgagcgtcggtctgcgccgaacgcatcaccgaggtgctttccacgcccgccgcactcggtaaccccgacaatcccaagttcccgacggacggggtcacgggcgtagtgcgcttggctggcgcaacctttacctatcctggcgccgactgcccggtgctgcaggacatttcgttgactgcgcggcccggtaccaccaccgcgatcgtcggcagtaccggttcgggcaagtcgacactggtgtcgttgatctgccggctctacgacgtcaccgctggcgcggtcttggttgacggtatcgacgtccgcgagtaccacaccgagcggctctggtcagcgatcgggctggtgccccagcgcagctacctcttctccggaaccgtcgcggacaacctgcgctacggcgggggcccagaccaggtagtcaccgagcaggagatgtgggaggcgctgcgggtcgccgcggccgacggctttgtacaaacagacgggctgcagacgcgtgtcgcccaaggtggtgtcaacttctccggcgggcagcgccaacggctggcgatagcccgagcggtcatccgacgtccggccatctatgtgttcgacgacgcgttctccgcacttgacgtgcacaccgacgccaaagtccacgcatcgctgcgacaggtatctggtgatgcaaccatcattgttgttacacaacggatttcgaatgccgctcaggccgaccaggtcatcgttgtcgataacggtaagatcgtcggcacgggcacccacgaaacgctgctggccgattgccccacctatgccgaattcgccgcctcacaatcgctgagcgccacggtcgggggtGtagggtga
(SEQ ID NO:23)
Rv0159c(PE家族蛋白)
atgtcctacgtcatcgcggccccggagatgttggcaacgacggccgcggacgtggacgggatcggttcggcgatacgagcggccagcgcgtccgctgcgggtccaacgaccggactgctggccgcggccgccgatgaggtgtcgtcggccgctgcagcgctgttcagcgaatacgcgcgcgaatgtcaagaggtcctaaagcaggctgcggcgttccatggcgagttcacccgggcgctggctgccgccggggccgcctatgcccaggctgaagccagcaacaccgctgctatgtcgggcaccgccgggtccagcggcgccctcggttctgtcgggatgctgtcaggcaacccgctaaccgcgttgatgatgggcggcaccggggaaccgatccttagtgaccgcgtcttggcgatcattgacagcgcatacattcggcccattttcgggcccaacaacccggtcgcccagtacacgcccgagcagtggtggccgtttatcgggaacctgtcactggaccaatccatcgcccagggtgtcacgctgctgaacaacggcatcaacgcggaactacaaaatgggcatgacgtcgtcgttttcggctactcgcaaagcgccgcggtagcgaccaatgaaatacgcgctcttatggcgttaccaccgggccaagccccagatccaagccggctggctttcacgttgatcggtaatatcaataaccccaacggcggcgtcctcgagcgttacgtgggcctttacctcccgttcttggatatgtcgttcaacggtgcgactccaccggattccccctaccagacctacatgtacaccggccaatacgacggctacgcccacaacccgcagtacccgctcaatatcttgtcggacctcaacgccttcatgggcatcagatgggtgcacaacgcgtaccccttcaccgcggccgaggttgccaatgccgtgccgttgcccacgtctccgggctacaccggcaacacccattactacatgtttctgacccaggacctgccgctgttgcagccgattcgcgccatccccttcgtagggaccccaatagccgagctgattcagcccgacctacgggtgctagtcgacttgggctatggctacggctacgccgacgtacccaccccggccagcctgttcgcgccaatcaacccgatcgccgtggcctcggccctggcgaccgggaccgtgcaaggcccccaagccgccctagtaagcatcggattgttaccgcagtccgcgctacccaatacgtatccgtatcttccgtcggcgaatccgggcctgatgttcaacttcggtcaatccagtgtgacggagttgtcggtgctcagtggcgccctcgggtccgtagcgagattgattccaccgatcgcgtga
(SEQ ID NO:24)
Rv3350c(PPE家族蛋白)
atggagtttccggtgttgccaccggaaatcaactccgtgctgatgtattcgggtgcggggtcgagcccgttgctggcggcggccgcggcgtgggatgggctggctgaggagttggggtcggcggcggtgtcgtttgggcaggtgacgtcgggcctgacggcgggggtgtggcagggtgcggcggcggcggcgatggcggccgcggcggcgccgtatgcggggtggttgggttcggtggcggccgcggccgaggcggtggccgggcaggcgcgggtggtggtgggggtctttgaggcggcgttggcggcgacggtggatccggcgctggtggcggccaaccgggcgcggctggtggcgttggcggtgtcgaatctgttggggcagaacacgccggcgatcgcggccgccgaggccgagtacgagctgatgtgggccgccgatgtggcggcgatggccggctaccattccggcgcgtcggctgctgccgcggcgttgccggcgttcagcccaccggcgcaggcgctggggggaggtgtcggcgcgttccttaccgccctgttcgccagccctgcgaaggcgctgagcctgaatgcgggtttgggcaatgtcggcaattacaacgtcgggttgggcaatgtcggggtgttcaacctgggcgcgggcaatgtgggtgggcagaatctgggtttcgggaatgccggtggcaccaatgtcgggttcggcaacctcggtaacgggaatgtcgggttcggcaactccggtctgggggcgggcctggccggcttgggcaatatcgggttgggcaatgcgggcagcagcaactatggtttcgcaaacctgggtgtgggcaacatcggtttcggcaacaccggcaccaacaacgtcggcgtcgggctcaccggcaaccacctgacgggtatcgggggcctgaattcgggcaccgggaatatcgggttgttcaactccggcaccgggaatgtggggttcttcaattcggggaccgggaacttcggggtgttcaactcgggtaattacaacaccggtgtcggtaatgcggggacggccagcacggggttgttcaatgccggcaatttcaacaccggcgtggtgaacgtgggcagttacaacaccggcagtttcaacgccggcgacaccaacaccggtggcttcaaccccggcggtgtgaacaccggctggctgaacaccggcaacaccaacaccggcatcgccaactcgggcaacgtcaacaccggcgcgttcatctcgggcaacttcaacaacggcgtgctgtgggtgggtgactaccagggcctgttcggcgtctccgccggctcgtcgatccccgcaattcccatcggcctggtgctcaacggcgacatcggcccgatcaccatccagcccatcccgatcctgcccaccatcccgctcagcattcaccaaaccgtcaacttgggcccgctggtggttcccgacatcgtgatccccgccttcggcggcggtatcggcatacccatcaacatcggcccgctgaccatcacacccatcaccctgtttgcccaacagacatttgtcaaccaattgccctttcccaccttcagtttagggaaaatcacaattccacaaatccaaacctttgattctaacggtcagcttgtcagctttatcggccctatcgttatcgacaccaccattcccggacccaccaatccacagattgatttaacgatcagatgggatacccctccgatcacgctgttcccgaatggcatcagtgctcccgataatcctttggggttgctggtgagtgtgtcgatcagtaacccgggctttaccatcccgggatttagtgttcccgcgcagccgttgccgttgtcgatcgatatcgagggccagatcgacgggttcagcaccccgccgatcacgatcgatcgcatccccctgaccgtggggggcggggtcacgatcggccccatcacgatccagggccttcatatcccggcggcgccgggagtggggaacaccaccacggccccgtcgtcgggattcttcaactccggtgcgggtggggtgtcgggtttcggcaacgtcggcgcgggcagctcgggctggtggaaccaggcgccgagcgcgctgttgggggccggttcgggtgttggcaacgtgggcaccctgggctcgggtgtgctcaacctgggctcagggatctcggggttctacaacaccagcgtgttgcctttcgggacaccggcggcggtgtcgggcatcggcaacctgggccagcagctgtcgggggtgtcggcggcgggaaccacgctgcgctcgatgctcgccggcaacctcgggttggccaatgtgggcaacttcaacaccgggttcggaaatgtcggggacgtcaacctgggtgcggccaacatcggtgggcacaacctgggcctgggcaatgtcggggacggcaacctggggttgggcaacatcggccatggcaacctggggtttgccaacttgggcctgaccgccggcgcggcgggggtgggcaatgttggttttggcaatgccggcatcaacaactatggcttggcgaacatgggtgtgggcaatattgggtttgccaacaccggcacgggcaacatcgggatcgggctggtcggggaccatcggaccgggatcgggggcttgaactccggcatcggcaatatcgggttgttcaactccggcaccggcaacgtcgggttcttcaattccgggaccggcaacttcggcatcgggaactccggccgcttcaacaccgggatcggtaatagcggaacggccagcaccgggctcttcaatgccggcagcttcagcaccggcatcgccaacactggtgactacaacacgggcagcttcaacgccggcgacaccaacaccggtggcttcaacccgggcggcatcaacaccggctggttcaacaccgggcatgccaacaccgggttggccaacgcgggcaccttcggcaccggcgccttcatgacgggcgactacagcaacggcctgttgtggcggggcggctacgagggcctggtcggcgtccgcgtcgggcccacgatctcccaattcccggtcaccgtgcacgcgatcggcggggtgggcccgctgcatgtggcgcccgtcccggtacccgccgtgcacgtcgagatcaccgacgccaccgtcggcctgggtccgttcaccgtcccaccgatcagcattccctcacttcccatcgccagcatcaccggaagcgtggacctggccgcaaacaccatctcgccgattcgcgctcttgacccgctcgccggttcgatagggctttttctcgagccgttccgcctcagtgacccatttatcaccattgatgcgttccaagttgttgccggtgtcttgttcctagagaacatcattgtgcccggcctcacggttagcggtcagatattggtcaccccgacaccaattcccctaaccctcaacttggacaccaccccgtggacgcttttcccgaatggtttcaccattcccgcgcaaacccccgtgacggtgggtatggaggtcgccaacgacgggttcaccttcttcccgggtgggctgacctttccgcgggcctccgccggggtcaccggactgtccgtggggctggacgcgttcacgctgttgcccgacgggttcaccctcgacaccgtgccggcgaccttcgacggcaccatcctcatcggcgatatcccgatcccgatcatcgatgtgccggcggtgccggggttcggcaacaccaccacggccccatcgtcggggttcttcaacaccggcggcggcggtggatcggggttcgccaacgtcggcgcgggcacgtcgggctggtggaaccaggggcacgacgtgttagcaggggcgggctcgggagttgccaatgccggcacgctgagctcgggcgtgctgaacgtcggctcggggatctccgggtggtacaacaccagcaccctgggagcgggcaccccggcggtggtctcgggcatcggcaacctcggccagcagctgtcggggttcttggcaaatgggaccgtgctcaaccggagccccattgtcaatatcgggtgggccgatgtgggcgcgttcaacaccgggttgggcaatgtgggggacctcaactggggtgcggccaacatcggcgcgcagaacctgggcctgggcaatctcggcagcgggaacgtcgggttcggcaacatcggtgccggcaacgtcgggttcgccaactcgggtccggcggtgggcctggccggcctgggcaacgtggggttgagcaatgccggcagcaacaactgggggctggccaacctgggtgtgggcaacatcgggttggccaacaccggcacgggcaacatcgggatcgggctggtcggcgactaccagaccggcatcggcggcctcaactcgggtagtggcaatatcggattgttcaattccggcaccggcaatgtcgggttcttcaacaccggcaccggcaacttcggactgttcaactccggtagtttcaacaccggcatcggtaatagcggaaccggcagtactgggctcttcaatgccggcaatttcaacaccggcatcgccaaccccgggtcgtacaacacgggcagcttcaatgtcggtgataccaacaccggtggtttcaacccgggcgacatcaacaccggctggttcaacaccggcattatgaatacgggcacccgcaacaccggcgccctcatgtcggggaccgacagcaacggcatgctgtggcgcggcgaccacgagggcctgttcggcctgtcctatggcatcacgatcccgcaattcccgatccgcatcaccacgactggcggtatcggccccatcgtcatcccggacaccacgatccttccgccgctgcacctgcagatcaccggcgacgcggactacagcttcaccgtgcccgacatccccatccccgccatccacatcggcatcaatggcgtcgtcaccgtcggcttcaccgccccggaagccaccctgctgtccgccctgaagaataacggtagcttcatcagcttcggccccatcacgctctcgaatatcgatattccgcccatggatttcacgttaggcctgcccgttcttggtcctatcacgggccaactcggaccaattcatcttgagccaatcgtggtggccgggatcggtgtgcccctggagatcgagcccatccccctggatgcgatttcgttgagtgagtcgattcctatccgcatacctgttgatattccggcctcggtcatcgatgggatttcaatgtcggaagtggtgccgatcgatgcgtccgtggacatcccggcggtcacgatcacaggcaccaccatttccgcgatcccgctgggcttcgacattcgcaccagtgccggacccctcaacatcccgatcatcgacatcccggcggcgccgggcttcgggaactcgacccagatgccgtcgtcggggttcttcaacaccggtgccggcggcggatcgggcatcggcaacttgggtgcgggcgtgtcgggcctgctcaaccaggccggcgcggggtcactggtggggacactctcggggctgggcaatgccggcaccctggcctcgggtgtgctgaactccggcaccgccatctccgggctgttcaacgtgagcacgctggacgccaccaccccggcggtgatctcggggttcagcaacctcggcgaccatatgtcgggggtgtccatcgatggcctgatcgcgatcctcaccttcccacctgccgagtccgtgttcgatcagatcatcgacgcggccatcgccgagctgcagcacctcgacatcggcaacgctttggccttgggcaatgtcggcggggtgaacctcggtttggctaacgtcggtgagttcaacctgggtgcgggcaacgtcggcaacatcaacgtcggcgccggcaacctcggcggcagcaacttggggttgggcaacgtcgggaccggcaacctcgggttcggcaacatcggtgccggcaatttcggattcggcaacgcgggcctgaccgcgggcgcggggggcctgggcaatgtggggttgggtaacgccggcagcggcagctgggggttggccaacgtgggtgtgggcaatatcgggttggccaacaccggcaccggcaacatcgggatcgggctgaccggggactatcggaccgggatcggcggcctgaactcgggcaccgggaacctcgggttgttcaactcgggcaccggcaacatcgggttcttcaacaccgggaccgggaacttcgggctgttcaactcgggcagttacagcaccggtgtggggaatgcgggcacggccagcaccgggttgttcaacgcggggaacttcaacaccggtctggccaatgccggctcctacaacaccggcagcctcaacgtgggcagcttcaacaccggcggcgtcaacccgggcaccgtcaacaccggctggttcaacaccggccacaccaacaccggcctgttcaacaccggcaacgtcaacaccggcgcgttcaactccggcagcttcaacaacggggcgctgtggaccggtgactaccacgggctggtcggcttctccttcagcatcgacatcgccggcagcaccctgctggacctcaacgaaaccctcaacctgggccccatccacatcgagcagatcgacatccccggcatgtcgctgttcgacgtccacgaaatcgtcgagatcggacccttcaccatcccgcaggtcgatgttcccgcgataccgctagagatccacgaatcgatccacatggatcccatcgtcctggtgcccgccaccacaattcccgcacagacgagaaccattccgctggacatccccgcctcacccgggtcaaccatgacgcttccgctcatcagcatgcgcttcgaaggcgaggactggatcctcgggtcgaccgcggcgattcccaatttcggagaccccttcccggcgcccacccagggcatcaccattcacaccggccctggccccggaacgaccggcgagctcaagatatctattccgggtttcgagattccgcaaatcgctaccacgagattcctgttggacgtgaacatcagcggtggtctgccggccttcaccttgttcgcgggtggcctgacgatccccacgaacgccatcccgttaacgatcgatgcgtccggcgcgctggatccgatcacgattttcccgggtgggtacacgatcgacccgctgccgctgcacctggcgctgaatctcaccgtgcccgacagcagcatcccgatcatcgatgtcccgccgacgccagggttcggcaacaccacggcgaccccgtcgtcggggttcttcaactccggcgccggtggggtgtcggggttcggaaacgtcgggtcgaacctgtcgggctggtggaaccaggcggcgagcgcgctggcggggtcgggatcgggggtgttgaatgtcggcacgctgggctcgggtgtgctcaacgtcggctcgggtgtctcggggatctacaacaccagcgtgttgccgctcgggacgccggcggtgctgtcgggcctcggcaacgtcggccatcagctgtcgggcgtgtctgcggccgggaccgcgttgaaccagatccccatcctcaacatcgggttggcggatgtgggcaacttcaacgtcgggttcggcaacgtcggggacgttaacctgggcgcggccaacctcggtgcgcaaaacctggggctgggcaacgtcggcaccggcaacctcggcttcgccaacgtcggccacggcaatatcggtttcggcaattcgggtctgaccgccggcgcggccggcctgggcaacacggggttcggcaatgccggcagcgccaactatggtttcgccaaccagggcgtgcgcaacatcgggttggccaacaccggcaccggcaacatcgggatcgggctggtgggggacaacctcaccggcatcgggggcctgaactccggtgccggcaatatcggcttgttcaactccggcaccggcaacatcgggttcttcaactccgggaccggcaacttcggcatcggtaactcgggcagcttcaacaccggcatcggcaatagcggaacgggcagcactgggctcttcaatgccggcagcttcaacaccggcgtggccaacgccggcagctacaacaccggcagcttcaatgccggcgacaccaacaccggggggttcaacccgggcaccatcaacaccggctggttcaacaccggccacaccaataccggcatcgccaactcgggcaacgtcggcaccggcgcgttcatgtcgggcaacttcagcaacggcctgttgtggcggggtgatcacgagggcctgttcagcctgttctacagcctcgacgtgccccggatcaccatcgtggacgcccacctcgacggcggcttcggacccgtggtcctcccgcccatcccggtgccggccgttaatgcgcacctgaccggaaacgtcgcgatgggcgcattcaccattccgcagatcgacatccccgcactcaccccaaacatcaccggaagcgccgccttccgcatcgttgtggggtccgtgcgcattccgccggtgagtgtcattgtggagcaaataatcaacgcctcggttggggcggagatgaggatagatcccttcgaaatgtggactcaaggcactaatggccttggtataaccttctattcattcggatcggccgacggttcgccctacgccaccggcccactcgttttcggcgccggcacgagcgacggaagccatctcaccatttccgcgtccagcggggcgtttaccactccgcagctcgaaactggcccgatcacgttgggcttccaggtgcccggcagcgtcaacgcgatcaccctcttccccggtggtttgacgttcccggcgacctcgctgctgaacctggacgtgaccgccggcgccggcggcgtggacatcccggccatcacctggcccgagatcgcggcgagcgccgacggctcggtgtatgtcctcgccagcagcatcccgctgatcaacatcccgcccaccccgggcattgggaacagcaccatcaccccgtcgtcgggcttcttcaacgccggcgcgggcgggggatcgggcttcggcaacttcggcgcgggcacctcgggctggtggaaccaggcgcacaccgcgctggcgggggcgggctcgggttttgccaacgttggcacgctgcattccggtgtgctcaacctgggctcgggtgtctcggggatctacaacaccagcacgctgggggtggggaccccggcgctggtctcaggcctgggcaacgtcggccaccaactgtcggggctgctttccggcgggtccgcggtgaacccggtgaccgttctgaatatcgggttggccaacgtcggcagccacaacgccggtttcggcaatgtcggggaggtcaacctgggcgcggccaacctcggcgcgcacaacctgggcttcggaaatatcggcgccggcaacctggggttcggcaatattggccacggcaatgtcggagtcggcaactcgggtctgaccgcgggcgtgccgggcctgggcaatgtggggttgggcaatgccggcggcaacaactgggggttggccaacgtgggcgtgggcaatatcgggttggccaacaccggcaccggcaacattgggatcgggctgaccggcgactaccagaccggcatcggcggcctaaattccggtgccggcaacctggggttgttcaactccggcgccggcaacgtcgggttcttcaacaccgggaccggcaacttcgggttgttcaactccggcagcttcaacaccggcgtcggcaatagcggaacgggcagcactgggctcttcaatgccggcagtttcaacaccggtgtggccaacgccggcagctacaacacgggcagcttcaatgtcggtgacaccaacaccgggggcttcaacccgggcagcatcaacaccggctggctcaacgccggcaacgccaacaccggggtggccaacgcgggcaatgtcaacaccggcgccttcgtcaccggcaacttcagcaacggcatcctgtggcgcggcgactaccagggcctggccggcttcgccgtgggctacaccctcccgctgttccccgcggtgggcgccgacgtcagcggcgggatcggcccgattaccgtgctgccgcccatccacatcccgcccattccggtcggcttcgccgcggtcggtggcatcggcccgatcgccatcccggacatctctgttccatccattcacttgggcctcgaccccgccgtccatgtcggctccatcaccgtcaaccccattaccgtcaggaccccgcccgtgctcgtcagttactcccaaggagccgtcaccagcacgtccggaccaacctcagagatttgggtcaagcccagcttcttccccggaatccggatcgcgccctctagcggcgggggtgcaacgtccacgcaaggggcatactttgtggggcccatctccatcccctccggcacggtgaccttcccgggattcaccatccccctcgacccgatcgacatcggcctgccggtgtcgctgaccatcccggggttcaccatcccgggcggcaccctgatccccaccctcccgctgggcctcgcgttgtccaatggcatcccgcccgtcgacatcccggccatcgttctcgaccggatcttgctggacctgcacgccgacaccactatcggcccgatcaacgtcccgatcgccgggttcggcggggcgccgggtttcgggaactcgaccacgctgccgtcgtcgggcttcttcaacaccggagctggcggcggttcgggctttagcaacaccggcgcgggcatgtcgggattgctcaacgcgatgtcggatccgctgctcgggtcggcgtcgggcttcgccaacttcggcacccagctctccggcatcctcaaccgcggcgccggcatctcgggcgtgtacaacaccggcgcgctgggtgttgtcaccgcggccgtcgtctcgggtttcggcaacgtcggccagcaactgtcgggcttgctcttcaccggcgtcgggccctaa
(SEQ ID NO:25)
这些多核苷酸包括编码目标多肽的DNA、cDNA和RNA序列。编码序列中的沉默突变源自于遗传密码的简并性(即冗余性),由此一个以上密码子可以编码同一个氨基酸残基。因此,例如亮氨酸可以由CTT、CTC、CTA、CTG、TTA或TTG编码;丝氨酸可以由TCT、TCC、TCA、TCG、AGT或AGC编码;天冬酰胺可以由AAT或AAC编码;天冬氨酸可以由GAT或GAC编码;半胱氨酸可以由TGT或TGC编码;丙氨酸可以由GCT、GCC、GCA或GCG编码;谷氨酰胺可以由CAA或CAG编码;酪氨酸可以由TAT或TAC编码;异亮氨酸可以由ATT、ATC或ATA编码。显示标准遗传密码的表格可见于各种来源(例如L.Stryer,1988,《生物化学》(第三版)(Biochemistry,3rdEdition),W.H.5 Freeman and Co.,NY)。
编码Mtb多肽的核酸可以通过体外方法克隆或扩增,例如聚合酶链反应(PCR)、连接酶链反应(LCR)、基于转录的扩增系统(TAS)、自动维持序列复制系统(3SR)和Qβ复制酶扩增系统(QB)。例如,编码蛋白的多核苷酸可以使用基于分子的DNA序列的引物,通过cDNA的聚合酶链反应来分离。多种多样的克隆和体外扩增方法对于本技术领域的专业人员来说是熟知的。PCR方法描述在例如美国专利No.4,683,195;Mullis等,Cold Spring Harbor Symp.Quant.Biol.51:263,1987;和Erlich主编的《PCR技术》(PCR Technology),Stockton Press,NY,1989中。也可以通过使用选自所需多核苷酸的序列的探针,在严紧杂交条件下筛选基因组文库或cDNA文库来分离多核苷酸。
编码Mtb多肽的多核苷酸包括合并到载体中、自主复制型质粒或病毒中、或原核生物或真核生物的基因组DNA中、或作为不依赖于其他序列的独立分子(例如cDNA)存在的重组DNA。本发明的核苷酸可以是核糖核苷酸、脱氧核糖核苷酸或任一种核苷酸的修饰形式。术语包括单链和双链形式的DNA。
在一个实施方案中,使用了用于在酵母例如酿酒酵母(S.cerevisiae)或乳酸克鲁维酵母(Kluyveromyces lactis)中表达的载体。已知有几种启动子可用于酵母表达系统中,例如组成型启动子细胞质膜H+-ATPase(PMA1)、甘油醛-3-磷酸脱氢酶(GPD)、磷酸甘油酸激酶-1(PGK1)、醇脱氢酶-1(ADH1)和多向耐药性泵(PDR5)。此外,可以使用诱导型启动子,例如GAL1-10(由半乳糖诱导)、PHO5(由细胞外低无机磷酸盐诱导)和串联的热休克HSE元件(由温度升高到37℃诱导)。对可滴定的诱导剂做出响应指导可变的表达的启动子包括甲硫氨酸响应性MET3和MET25启动子和铜依赖性CUP1启动子。任何这些启动子可以被克隆到多拷贝(2μ)或单拷贝(CEN)质粒中,以对表达水平提供额外水平的控制。质粒可以包含用于在酵母中筛选的营养标志物(例如URA3、ADE3、HIS1等)和用于在细菌中繁殖的抗生素抗性(AMP)。用于在乳酸克鲁维酵母(K.lactis)上表达的质粒是已知的,例如pKLAC1。因此,在一个实例中,在细菌中扩增后,可以通过与细菌转化类似的方法将质粒导入相应的酵母营养缺陷型中。
Mtb多肽可以表达在各种酵母菌株中。例如,已经在酵母宿主细胞中同时删除了7个多向耐药性转运蛋白YOR1、SNQ2、PDR5、YCF1、PDR10、PDR11和PDR15以及它们的活化转录因子PDR1和PDR3,使得到的菌株对药物敏感。也可以利用质膜脂类组成改变的酵母菌株,例如在麦角甾醇生物合成缺陷的erg6突变株。对蛋白水解高度敏感的蛋白可以在控制其他液泡水解酶活化的主要液泡肽链内切酶Pep4缺乏的酵母中表达。如果相应的无效突变体不能存活,可以利用在带有基因的温度敏感性(ts)等位基因的菌株中的异源表达。
也可以制备编码本文公开的Mtb多肽的病毒载体。已经构建了许多病毒载体,包括多瘤病毒、SV40(Madzak等,1992,J.Gen.Virol.,73:15331536)、腺病毒(Berkner,1992,Cur.Top.Microbiol.Immunol.,158:39-6;Berliner等,1988,Bio Techniques,6:616-629;Gorziglia等,1992,J.Virol.,66:4407-4412;Quantin等,1992,Proc.Nad.Acad.Sci.USA,89:2581-2584;Rosenfeld等,1992,Cell,68:143-155;Wilkinson等,1992,Nucl.Acids Res.,20:2233-2239;Stratford-Perricaudet等,1990,Hum.Gene Ther.,1:241-256)、痘苗病毒(Mackett等,1992,Biotechnology,24:495-499)、腺相关病毒(Muzyczka,1992,Curr.Top.Microbiol.Immunol.,158:91-123;On等,1990,Gene,89:279-282)、疱疹病毒包括HSV和EBV(Margolskee,1992,Curr.Top.Microbiol.Immunol.,158:67-90;Johnson等,1992,J.Virol.,66:29522965;Fink等,1992,Hum.Gene Ther.3:11-19;Breakfield等,1987,Mol.Neurobiol.,1:337-371;Fresse等,1990,Biochem.Pharmacol.,40:2189-2199)、辛德比斯病毒(H.Herweijer等,1995,Human Gene Therapy 6:1161-1167;美国专利No.5,091,309和美国专利No.5,2217,879)、甲病毒(S.Schlesinger,1993,Trends Biotechnol.11:18-22;I.Frolov等,1996,Proc.Natl.Acad.Sci.USA 93:11371-11377)和鸟类的反转录病毒(Brandyopadhyay等,1984,Mol.Cell Biol.,4:749-754;Petropouplos等,1992,J.Virol.,66:3391-3397)、鼠类的反转录病毒(Miller,1992,Curr.Top.Microbiol.Immunol.,158:1-24;Miller等,1985,Mol.Cell Biol.,5:431-437;Sorge等,1984,Mol.Cell Biol.,4:1730-1737;Mann等,1985,J.Virol.,54:401-407)以及人类来源的反转录病毒(Page等,1990,J.Virol.,64:5370-5276;Buchschalcher等,1992,J.Virol.,66:2731-2739)。杆状病毒(苜蓿银纹夜蛾多核多角体病毒;AcMNPV)载体在本技术领域中也是已知的,并可以从商业来源获得(例如PharMingen,San Diego,Calif.;Protein Sciences Corp.,Meriden,Conn.;Stratagene,La Jolla,Calif.)。
编码Mtb多肽的病毒载体、例如痘病毒载体,包括至少一个与编码Mtb多肽的核酸序列可操作连接的表达控制元件。表达控制元件插入到病毒载体中以控制和调节核酸序列的表达。在这些载体中使用的表达控制元件的实例包括但不限于lac系统、λ噬菌体的操纵基因和启动子区、酵母启动子和源自多瘤病毒、腺病毒、反转录病毒或SV40的启动子。其他操纵元件包括但不限于前导序列、终止密码子、多聚腺苷化信号以及对于编码Mtb多肽的核酸序列在宿主系统中的适当转录和随后的翻译所必需的任何其他序列。表达载体可以包含对于含有核酸序列的表达载体在宿主系统中的转移和随后的复制所必需的其他元件。这样的元件的实例包括但不限于复制原点和选择性标志物。本技术领域的专业人员还应该理解,这样的载体可以使用常规方法容易地构建(Ausubel等,(1987)《分子生物学现代方法》(Current Protocols in Molecular Biology),John Wiley and Sons,New York,N.Y)并可以商购。
编码Mtb多肽的DNA序列可以通过将DNA转移到适合的宿主细胞中进行体外表达。细胞可以是原核或真核细胞。术语还包括对象宿主细胞的任何后代。应该理解,因为在复制期间可能发生突变,所有后代可以不与亲代细胞一致。稳定转移——意味着外来DNA在宿主中连续维持——的方法,在本技术领域中是公知的。
正如上面指出的,编码Mtb的多核苷酸序列可以与表达控制序列可操作连接。连接上与编码序列可操作连接的表达控制序列,以便在与表达控制序列相容的条件下实现编码序列的表达。表达控制序列包括但不限于适合的启动子、增强子、转录终止子、蛋白编码基因前面的起始密码子(即ATG)、内含子的剪接信号、该基因的正确阅读框的维持以允许mRNA的正确翻译,以及终止密码子。
宿主细胞可以包括微生物、酵母、昆虫和哺乳动物宿主细胞。在原核生物中表达具有真核或病毒序列的DNA序列的方法,在本技术领域中是公知的。适合的宿主细胞的非限制性实例包括细菌、古菌、昆虫、真菌(例如酵母)、分枝杆菌(例如耻垢分枝杆菌(M.smegmatis))、植物和动物细胞(例如哺乳动物细胞,例如人类)。使用的示例性细胞包括大肠埃希氏菌(Escherichia coli)、枯草芽孢杆菌(Bacillus subtilis)、酿酒酵母(Saccharomyces cerevisiae)、鼠伤寒沙门氏菌(Salmonella typhimurium)、SF9细胞、C129细胞、293细胞、链孢霉(Neurospora)和永生化的哺乳动物骨髓瘤和淋巴样细胞系。用于在培养物中繁殖哺乳动物细胞的技术是众所周知的(参见Jakoby和Pastan主编,1979,《细胞培养》(Cell Culture),在第58卷的“酶学方法”中(Methods in Enzymology,volume 58),Academic Press,Inc.,Harcourt Brace Jovanovich,N.Y.)。常用的哺乳动物宿主细胞系的实例是VERO和HeLa细胞、CHO细胞以及WI38、BHK和COS细胞系,但也可以使用其他细胞系,例如被设计用于提供更高表达所需糖基化模式或其他特点的细胞。正如上面讨论的,用于转化酵母细胞的技术,例如聚乙二醇转化、原生质体转化和基因枪,在本技术领域中也是已知的(参见Gietz和Woods,Methods in Enzymology 350:87-96,2002)。
使用重组DNA转化宿主细胞可以通过本技术领域的专业人员熟知的常规技术来进行。当宿主是原核生物、例如但不限于大肠杆菌时,可以使用本技术领域公知的程序,从指数生长期后收获并在随后通过CaCl2方法处理的细胞制备能够摄入DNA的感受态细胞。可选地,可以使用MgCl2或RbCl。如果需要,转化也可以在形成宿主细胞的原生质体后或通过电穿孔进行。
当宿主是真核生物时,可以使用DNA转染方法例如磷酸钙共沉淀、常规机械程序例如将包裹在脂质体中的质粒、或病毒载体进行微注射、电穿孔、插入。真核细胞也可以用编码Mtb多肽的多核苷酸序列和编码选择性表型的第二种外源DNA分子例如单纯性疱疹病毒胸腺嘧啶激酶基因进行共转染。另一种方法是使用真核病毒载体例如猿猴病毒40(SV40)或牛乳头瘤病毒瞬时感染或转化真核细胞并表达蛋白(参见例如《真核病毒载体》(Eukaryotic Viral Vectors),Cold Spring Harbor Laboratory,Gluzman主编,1982)。
存在许许多多适合用于本公开的多肽的其他分析方案。上面描述的目的仅仅是示例性的。
通过下面非限制性的实施例对本公开进行了说明。
实施例
对于许多感染来说,完整的CD8应答表现为抗原进入MHC-I加工途径、肽和/或非肽类抗原与MHC-I分子结合、和这些结构被T细胞识别。最终,出现相对有限的病原体特异性T细胞亚群。尽管许多公认的CD4Mtb抗原已有记载(Reed等,Microbes Infect 7:922-931,2005)(ESAT-6、CFP10、Ag85等),但关于被人类CD8+T细胞识别的共同Mtb抗原的了解惊人地少。大部分已被鉴定的CD8表位通过对所选的与Ia类MHC分子(在大多数情况下是HLA-A2)高亲和性结合的Mtb多肽进行测试来确定(参见例如Lalvani,Microbes Infect 7:922-931,1998)。但在几乎所有这些情况中,在Mtb感染个体中的这些T细胞的离体频率是低的或不能检测到的,表明这些特异性不能代表免疫优势应答。相反,在使用T细胞确定所选Mtb抗原中包含的表位的有限案例中,已经证实了高的离体频率(参见Lewinsohn等,Am J Respir Crit Care Med 166:843-848,2002),表明以T细胞为中心的方法可以鉴定免疫优势表位。此外,在Mtb感染的人中,已经以高频率检测到针对某些代表良好的CD4抗原(CFP10、ESAT-6、Ag85和Mtb39)的Mtb抗原的CD8T细胞应答。因此,使用代表几种已知CD4Mtb抗原的重叠合成肽的有限文库,来确定在患有活动性结核病(TB)和潜伏性结核病感染(LTBI)的人以及未感染对象中针对这些抗原的CD8应答的量值。此外,使用一组Mtb特异性CD8+T细胞克隆来确定这些抗原中被识别的最小表位,并确定这些新的表位对离体Mtb特异性CD8应答的贡献。
实施例1
材料与方法
人类对象。未感染个体被定义为结合菌素皮试(TST)阴性并且没有Mtb感染的已知风险因素的健康个体。LTBI个体被定义为具有阳性TST但是没有活动性TB的症状和体征的健康人。在所有活动性TB病例中,肺TB由郡TB控制中心(TB Controller of the county)诊断,并通过痰液结核分枝杆菌培养阳性来证实。从通过静脉穿刺或单采血液成分法获得的全血分离外周血单核细胞(PBMC)。
培养基与试剂。培养基由添加有10%胎牛血清(FBS;Bio Whittaker)、5X 10-5M 2ME(Sigma-Aldrich)和2mM谷氨酰胺(GIBCOBRL)的RPMI 1640构成。对于Mtb反应性T细胞克隆的生长和分析来说,在RPMI 1640中增补有10%人类血清。Mtb菌株H37Rv从美国典型培养物保藏中心(American Type Culture Collection(Rockville,MD))获得,并按照以前的描述制备(Lewinsohn等,J Immunol165:925-930,2000)。肽由Genemed Synthesis,Inc公司(San Francisco,CA)合成。由代表Mtb蛋白的具有11个氨基酸(aa)重叠的15聚体构成的合成肽合并物,被证明是强有力的CD4抗原。合成了代表CFP-10(Berthet等,Microbiology 144:3195-3203,1998;Dillon等,J Clin Microbiol 38:3285-3290,2000)、ESAT-6(Sorenson等,Infect Immun63:1710-1717,1995)、Mtb39a(两种合并物,A &B,参比)(Dillon等,Infect Immun 67:2941-2950,1999)、Mtb8.4(Coler等,J Immunol161:2356-2364,1998)、Mtb 9.9(Alderson等,J Exp Med 191:551-560,2000)(Coler等,J Immunol 161:2356-2364,1998)、Mtb 9.9(Alderson等,J Exp Med 191:551-560,2000)、EsxG(Rosenkrands等,Electrophoresis 21:3740-3756,2002)、19kDa抗原(Collins等,J Gen Microbiol 136:1429-1436,1990)、抗原85b(Borremans等,Infect Immun57:3123-3130,1989)(两种合并物,A&B,参比)的肽合并物。将肽重悬浮在DMSO中,并将多达50种肽合并在一个合并物中,使合并物中的每种肽浓度为1mg/ml。将肽合并物储存在-80℃下。
细胞系和T细胞克隆。EBV转化的B细胞系LCL从细胞系9B5-8(美国典型培养物保藏中心(American Type Culture Collection))的上清液产生或从国家骨髓捐献计划(National Marrow Donor Program(NMDP;Minneapolis,MN))获得。LCL通过按照以前的描述连续传代来维持((Heinzel等,J Exp Med 196:1473-1481,2002)。,使用Mtb感染的DC作为APC和以前描述的有限稀释克隆方法(Lewinsohn等,J Immunol 165:925-930,2000),从患有LTBI或活动性结核病的个体分离Mtb特异性T细胞克隆。简单来说,按照制造商的说明书(Miltenyi Biotec,Auburn CA)使用CD4抗体包被的珠子进行阴性筛选、然后使用CD8抗体包被的磁性珠进行阳性筛选,或通过流式细胞术,从PBMC分离CD8+T细胞。在这种情况下,将CD4-PE(BD Biosciences,目录号555347)阴性、CD8-APC(BD Biosciences,目录号555369)阳性的细胞(纯度>99%)储存在Becton Dickenson LSR II上。在1X 105个如下所述产生的辐照过的自体Mtb感染的DC、和rIL-2(5ng/ml)的存在下,将T细胞以各种浓度接种在由200μl增补有10%人类血清的RPMI 1640构成的细胞培养基中。使用ELISPOT以及Mtb感染的DC作为APC来源,对在10-14天之间表现出生长的孔评估Mtb特异性。对保留了Mtb特异性的T细胞通过FACS针对αβT细胞受体表达和CD8表达进行进一步表型鉴定,并按照下面的描述进行扩增。使用来自Beckman Coulter的IOTest Beta Mark试剂盒确定Vβ的用法。
T细胞克隆的扩增。为了扩增CD8+T细胞克隆,使用了以前描述的利用抗CD3mAb刺激的快速扩增方案(Heinzel等,J Exp Med196:1473-1481,2002)。
外周血DC的产生和感染。制备了单核细胞衍生的DC(Heinzel等,同上;Romani等,J Exp Med 180:83-93,1994)。为了产生Mtb感染的DC,将细胞(1X 106个)在存在Mtb的情况下培养过夜(感染复数[MOI]=50∶1)。18小时后,收获细胞并将其重悬浮在RPMI/10%人类血清中。
MHC结合分析。利用MHC-肽结合分析测量肽配体抑制放射性标记的肽与纯化的MHC分子结合的能力,并已经在别处详细描述(Sidney等,1999.《免疫学现代方法》中的18.3单元“通过凝胶过滤测量MHC/肽的相互作用(UNIT 18.3 Measurement of MHC/peptide interactions by gel filtration.In Current Protocols in Immunology),Coligan等主编,John Wiley & Sons,Inc.,1996)。简单来说,将纯化的MHC分子、测试肽和放射性标记的探针肽在存在人类B2-微球蛋白的蛋白酶抑制剂混合物的情况下,在室温下温育。在温育两天后,通过将MHC/肽复合物捕获在W6/32抗体(抗HLA A、B和C抗体)或B 123.2(抗HLA B、C和一些A的抗体)包被的板上,并使用微量闪烁计数器测量每分钟的结合计数(cpm),来测定放射性标记的肽与相应的I类MHC分子的结合。对于竞争性分析来说,计算对放射性标记肽的结合产生50%抑制的肽浓度。将肽典型在覆盖100,000倍剂量范围的6个不同浓度下,在三次或以上独立分析中进行测试。在所使用的条件下,当[标记物]<[MHC]并且IC50≥[MHC]时,测量到的IC50值是真实Kd值的合理的近似值。
IFN-γELISPOT分析方法。IFN-γELISPOT分析法按照以前的描述进行(Beckman等,J Immunol 157:2795-2803,1996)。为了测定对Mtb感染或Mtb抗原作出响应的CD4+或CD8+T细胞的离体频率,将使用磁性珠(Miltenyi  Biotec,Auburn CA)从PBMC阳性筛选到的CD4+或CD8+T细胞作为响应性T细胞源,在四种不同细胞浓度下进行双份测试。使用自体DC(20,000个细胞/孔)作为APC,将DC用Mtb感染或用肽合并物(每种肽的终浓度为5μg/ml)脉冲,然后加入到分析中。对于使用T细胞克隆的分析来说,将T细胞(1000或5000个细胞/孔)与自体LCL(20,000个细胞/孔)在存在或不存在抗原的情况下温育。
数据分析:为了测定抗原特异性T细胞的离体频率,将每个双份测定的每个孔的斑点平均数对每个孔的响应性细胞数量进行作图。使用线性回归分析确定直线的斜率,其表示抗原特异性T细胞的频率。如果斑点数量的二项式概率(Lewinshon等,Microbes Infect 8:2587-2598,2006)与实验和对照分析明显不同,则分析被认为是阳性的,即反映了被引发的T细胞应答的存在。为了确定不同组之间离体T细胞频率的差异,使用了Wilcoxon/Kruskal-Wallis分析。
实施例2
确定免疫优势的Mtb特异性CD8+抗原
为了确定免疫优势的Mtb特异性CD8+抗原并确定这些应答是否来自于Mtb感染,使用了来自未感染、有LTBI或有Mtb活动性感染的供体的CD8+T细胞。应答直接离体测定,或使用通过在Mtb感染的自体DC上有限稀释克隆(Lewinsohn等,J Immunol 165:925-930,2000)获得的CD8+T细胞克隆进行测定。因为知道的优势CD4+Mtb抗原多,因此选择了一组这些公认的抗原进行进一步评估。它们是:Mtb39、CFP10和Mtb8.4、Mtb9.9、ESAT-6、Ag85b、19kDa和EsxG。为了避免使用预测的HLA结合特异性的肽所引入的偏差,合成了代表目标蛋白的重叠肽(15aa,重叠11aa)(Lewinshon等,J Immunol 166:439-446,2001)。
为了精确测定CD8+T细胞的离体效应细胞效率,使用了线性回归分析。如图1中所示,在IFN-γELISPOT分析中,在一定的CD8+T细胞数量范围内将磁性珠纯化的CD8+T细胞针对肽脉冲过的DC进行测试。如下所述进行阳性分析的确定,并且如果是阳性的,使用线性回归测定抗原特异性频率。
评估了未感染对象(n=14)、有LTBI的对象(n=20)和患有活动性TB的对象(n=12)对一组Mtb CD4+T细胞抗原以及对Mtb感染的DC的CD8+应答。所有被测试的对象都对Mtb感染的DC具有强烈的CD8+T细胞应答,并且在患有活动性TB的个体中与有LTBI的个体相比强度更高(p=0.01;图2,表I)。但是,发现CD8+T细胞对Mtb抗原组的应答几乎专门出现在Mtb感染的个体中,因为对于10种抗原中的7种来说,在应答的强度(图2)和阳性分析的比例(表I)两方面,注意到了未感染和Mtb感染的个体之间的统计学显著的差异。
表I、对已知TB抗原的CD8+T细胞应答
Figure BPA00001331533600831
a在本文中定义的阳性分析
但是,在患有活动性TB和LTBI的个体之间CD8+T细胞应答的差异不是统计学差异。尽管针对许多被测试的抗原观察到了强的CD8+T细胞应答,但同样可以注意到几个具有强的Mtb指导的CD8+T细胞应答的对象对许多被测试的抗原没有可证实的应答。
这些离体频率数据证实了对许多已知Mtb抗原的高频应答的存在,但是没有阐明目标基因中的限制性等位基因、最小表位或优势等级。为了解决这个问题,使用Mtb感染的DC进行了人类CD8+T细胞的有限稀释克隆(参见Lewinsohn等,J Immunol 166:439-446,2001),并产生了两组经典的和非经典的HLA限制的CD8+T细胞克隆。使用代表已知CD4+抗原的肽合并物,可以在一半以上的克隆中确定HLA-Ia限制的克隆的抗原特异性(表II)。
表H、许多CD8+T细胞克隆识别已知CD4+T细胞抗原
Figure BPA00001331533600841
针对源自于患有活动性TB的对象的单一代表性克隆D466D6详细证明了这种方法。如图3A中所示,针对用一组肽合并物脉冲的自体DC对克隆进行测试,清楚地将抗原特异性确定为CFP10。然后针对构成CFP10合并物的每种15聚体肽对克隆进行测试,发现表位包含在CFP101-15中(图3B),然后合成了每种可能的8、9、10和11个氨基酸的肽并测试反应性,发现抗原活性位于2-11位氨基酸之间(图3C)。同样地,针对与供体共有至少一个HLA类型的类淋巴母细胞系(LCL)对每个克隆进行了测试(图3D)。共有B4501和C1601的自体LCL和IHW 9058LCL,向克隆呈递表位,将B4501和C1601二者鉴定为可能的限制性等位基因。但是,C1601+D433LCL不呈递表位,消除了C1601作为候选限制性等位基因。因此,D466D6受到HLA-B4501的限制。正如图4中通过在宽浓度范围内测试每种似真表位所证实的,对于D466D6来说最小表位被确定为CFP102-10。在补充的图中对于每个克隆提供了支持最小表位的指派的实验数据。抗原特异性、最小表位和HLA限制性等位基因的概括显示在表III中。出乎意料的是,除了一种之外,所有其他T细胞克隆都受HLA-B等位基因的限制。此外,观察到少数表位长度为9个氨基酸。
表III、鉴定到的表位的概括
Figure BPA00001331533600851
Figure BPA00001331533600861
因为每个个体CD8+T细胞克隆是基于Mtb感染的DC的生长获得的,因此离体确定了鉴定到的抗原和表位是否反映了免疫优势表位。采取了两种独立的方法,第一种确定应答是否以高频出现,第二种确定对抗原的总应答中有多少比例由表位造成。为了确定离体效应细胞频率,如图1中所述,使用源自于分离T细胞克隆的供体的自体DC和磁性珠纯化的CD8+T细胞,测试每个表位。效应细胞频率的概括显示在表III中。对于大多数情况来说,表位反映出高频应答,并因此可以被当作通过暴露于Mtb而引发的应答。值得注意的是,从四个供体分离到的T细胞克隆识别CFP10。为了确定所定义的表位是否反映了相当部分的针对目标抗原的总应答,测试了来自三个具有足够可用的外周血单核细胞(PBMC)的供体的磁性珠纯化的CD8+T细胞对每种个体15聚体肽、肽合并物和代表最小表位的肽的反应性。正如在图5中所证实的,最小表位、含有最小表位的15聚体肽和肽合并物的离体频率是明显一致的。这些数据表明,对于每个供体来说已经明显建立起优势等级,并且它反映在原始克隆中。最后,正如在表III中指出的,经常鉴定到特异性相同的子代克隆,该结果可以根据免疫优势等级预测到。使用TCR Vβ染色证实了子代克隆之间的克隆关系。有趣的是,在两个案例中,一致的最小表位和HLA限制由两个相异克隆所代表(表III)。
因为针对Mtb的人类CD8+T细胞应答的许多工作依赖于使用HLA预测算法,因此当确定了每个表位时,应该询问表位是否已通过这些方法预测到。这些表位很多没有很强的等级关系。这可能突出这些算法在使用时的局限性。为了通过实验解决这个问题,测定了在定义最小表位的过程中合成的每个肽针对一组人类HLA分子的IC50。在表III中显示了对于具有同族限制性等位基因的最小表位的IC50。数据证明了T细胞表位与HLA强烈结合,并且在T细胞表位数据与HLA结合数据之间显示出高度一致性。
数据证实,在Mtb感染的人中CD8+T细胞应答的频率与许多常见病毒感染例如痘苗、流感和CMV感染后观察到的相当。所有作图的表位,除了一个之外,都受到HLA-B分子的限制。数据表明,通过使用T细胞驱动方法来鉴定表位,可以在Mtb感染的人中确定优势表位。
实施例3
针对基因组肽文库筛选T细胞克隆
针对基因组肽文库,筛选了不识别已知Mtb抗原肽合并物(Rv3875、Rv3874、Rv1886c、Rv0287、Rv3763、Rv1174c、Rv1196、Rv1793、Rv2346c、Rv1037c、Rv3619c和Rv1198)之一的经典限制性和非经典限制性T细胞克隆(参见上面表II)。该肽文库代表了389个基因,代表Mtb基因组的约10%。对于每种基因产物来说,所述肽是15聚体,有11个氨基酸重叠。各个合成了50nmol每种肽,然后在96孔板格式中合并成777个50种肽的合并物(9块板)。在9块板的每块上,包含了5个空白孔和一个不相关的肽合并物SIV gag的孔。为了针对基因组肽文库筛选克隆,将克隆首先扩增,并针对Mtb感染的DC进行测试,以确保来自该特定扩增的每个克隆在ELISPOT分析中产生强有力的Mtb特异性信号。然后将最多6个T细胞克隆合并。为了进行筛选,将T细胞克隆(每个克隆5,000个细胞/孔)、自体DC(20,000个细胞/孔)、IL-2(0.5ng/ml)和肽合并物(每种肽5ug/ml)在ELISPOT分析中在37℃下温育过夜。每种合并物只进行一个技术性重复,因为每个孔5000个T细胞与肽抗原产生了压倒性的阳性结果,获得了明确的结果。针对基因组肽文库筛选了6个来自D504的经典克隆,导致发现了新的表位。该表位来自于包括EsxJ、EsxW、EsxK和EsxP的四种蛋白的家族。这些蛋白具有98%的同源性,并且差别只有3个氨基酸。该家族存在第五个成员EsxM(Rv1792),其没有包含在基因组肽文库中。
针对这些肽合并物的各个15聚体来筛选克隆。所有6个经典的克隆都识别EsxJ 21-35。这是EsxJ与该家族的其他四个成员一致的区域。接下来,从该15聚体制备了9、10和11聚体的肽,并针对每个克隆进行筛选。最小表位被确定为是EsxJ 24-34。此外,发现HLA限制性是B5701。
实施例4
针对基因组肽文库的附加筛选T细胞克隆
针对上面描述的基因组肽文库筛选了来自D432B的11个经典克隆。对于两个克隆确定了抗原,导致鉴定到两个新的表位PE_PGRS4247-55和PE953-67。确定了一个克隆的最小表位是PE_PGRS4247-55,并发现HLA限制性是B3514。另一个克隆的最小表位还未确定,但是包含在15聚体的PE953-67中。发现该克隆的HLA限制性是B3905。
表IV、来自基因组肽文库筛选的新表位的详细情况。
Figure BPA00001331533600881
括号中是识别来自每个供体的表位的克隆数量。*这是具有几乎一致的序列的蛋白家族。该家族由Rv1038c、Rv1197、Rv2347、Rv3620c组成。
表V、完成的克隆筛选的概括。
Figure BPA00001331533600891
*来自D454的经典克隆在重新扩增后不识别Mtb,并且没有针对文库进行筛选。
**来自426和431的经典克隆一起进行筛选,所以在这两个克隆之间只存在一个阳性孔。
实施例5
针对基因组肽文库筛选离体CD8+T细胞
针对上面描述的基因组肽文库筛选来自LTBI供体D610(东南亚人)的CD8+T细胞。每块基因组肽文库板进行双份筛选,每次筛选总共18块ELISPOT板。CD8+T细胞从冷冻保存的PBMC通过使用磁性珠分离的CD8+筛选来制备。得到的细胞群体含有≥96%的CD8+T细胞。向ELISPOT板中的肽(每种肽的终浓度为5ug/ml)加入CD8+T细胞(250,000个细胞/孔)、自体DC(20,000细胞个/孔)和IL-2(0.5ng/ml)。在每块板上包括5个培养基对照孔。对于每块板来说,从该板的每个孔中减去这5个孔的平均值,以在板之间进行归一化。然后对每个板上的每个技术性重复进行计分。如果斑点形成单位(SFU)减去培养基孔的平均值大于或等于10,并且SFU大于或等于培养基平均值的两倍,则将孔计分为阳性(Hudgens等,J.Immunol.Methods 288:19-34,2004)。该供体对包含EsxJ、EsxW、EsxK和EsxP的四种肽的孔发生应答。然后针对来自这些肽合并物的每种15聚体筛选CD8+T细胞,并发现只对EsxJ 21-35——在上面的实施例3中描述的EsxJ、EsxW、EsxK和EsxP的相同区域——作出应答。
将7个其他供体针对基因组肽文库进行筛选。最高的10个应答详细描述在表7中。用黄色突出的四种肽合并物包含来自仅仅一个基因的肽。这四个基因含有四个新的表位。
表V、来自7个供体的肽合并物筛选的最高的10个应答。斑点形成单位是针对250,000个CD8+T细胞的。
Figure BPA00001331533600901
实施例6
使用CD8+T细胞检测在儿童中诊断TB
该结果证明了使用CD8+T细胞在儿童中诊断TB的出人意料的灵敏性和特异性。
方法
参加者和程序:将来自乌干达Kampala的不同征募点的参加者征募在两个临床研究组中。对于健康的暴露者(HE)组,与成年人家庭接触的儿童(年龄小于15岁)使用AFB涂片阳性来评估,将培养验证的肺TB征募在乌干达Kampala的前瞻性群组研究中。简单来说,在成年家庭成员寻求TB护理后进行征募。在研究入选时,在标准化表格上收集详细的人口统计和临床信息,提供活动性TB的症状的标准化筛查调查问卷,并进行体检和前胸X光照相(CXR)。在研究入选时记录所有儿童的体重和身高。通过将个体的体重指数(BMI)与WHO儿童生长标准进行比较来确定营养状况,其中BMI Z-分值为-3或更低被定义为严重营养不良。采用Mantoux方法,使用5个单位的纯化蛋白衍生物(Pasteur Méríeux Connaught,Swiftwater,PA)进行结核菌素皮试(TST)。试验由护士或训练有素的医务人员执行,并在放置48-72小时内读数。使用WHO标准(WHO 2006)定义阳性试验,其中对于严重营养不良的儿童来说硬结大于5mm被认为是阳性,对于其余儿童来说硬结大于10mm被认为是阳性。可以获得所有研究参加者的TST结果。通过ELISA对18个月以上的所有儿童进行了HIV测试;对于年龄小于18个月的儿童只在生物学双亲被发现是HIV阳性时才进行HIV测试。在征募时或在6到24个月的观察期中具有活动性TB相关症状的儿童,接受研究医生的全面临床和诊断评估,包括重复的CXR以及至少一个胃吸出物样品的分枝杆菌涂片和培养。样本通过常规方法处理,经历荧光团染色以检测AFB,并培养在Loewenstein-Jensen培养基上以及Middlebrook 7H9肉汤中。对所有分枝杆菌培养物的AFB生长进行8周的监测。微生物学家对参加者的TB分类和TST试验的结果是不知情的。只包含在6个月后没有发生活动性TB的儿童。具有既往或当前TB史的儿童或免疫抑制(接受皮质类固醇或患有HIV)的儿童被排除。获得了书面知情同意书。
对于确诊的+可能(CP)的TB组来说,征募了满足WHO确诊的或可能的TB标准(表1;WHO 1983)的急性患病儿童(≤10岁)。对具有TB的症状和体征的住院儿童(疑似TB,WHO 1983),如果超过两岁就使用全面临床评价、CXR、TST和HIV酶联免疫吸附分析(ELISA)进行评估,或者如果小于18个月就使用HIV聚合酶链反应(PCR)进行评估。TST的执行和解释与HE儿童的完全相同。根据该评估的结果,征募满足可能的TB标准的儿童。在标准化表格上前瞻性收集详细的人口统计和临床信息,并在两个月的随访时由研究医生对存活儿童进行评估。与对HE儿童完全相同,记录儿童的体重和身高,并评估营养状态。征募的儿童进行一份诱导的痰液样品的分枝杆菌涂片和培养。在某些情况下获得淋巴结吸出物,用于病理和/或分枝杆菌涂片和培养。根据两个月的随访,儿童接受确诊的TB、可能的TB或无TB的最终认定。未患TB的儿童被排除在分析之外。指派TB分类的研究人员对于ELISPOT测试的结果是不知情的。在研究征募之前,从每个儿童的双亲或监护人获得了采用当地语言的书面知情同意书。
在研究征募时,在进行TST之前,从所有儿童抽取1-2cc/kg(最多20cc)血液。通过标准方法分离外周血单核细胞(PBMC),并将其低温保存。
培养基和试剂:培养基由增补有10%人类血清、5X 10-5M 2ME(Sigma-Aldrich)和2mM谷氨酰胺(GIBCO BRL)的RPMI 1640构成。肽由Genemed Synthesis公司合成。合成了有11个氨基酸(aa)重叠的代表Mtb特异性蛋白、CFP-10和ESAT-6的15聚体构成的单一合成肽合并物。将肽重悬浮在DMSO中,并将43种肽合并成一个合并物,使得合并物中每种肽的浓度为1mg/ml。将肽合并物储存在8℃。
IFN-γELISPOT分析:按照以前的描述(2)进行过夜的IFN-γELISPOT分析。分析在低温保存的PBMC上进行。在TBRU的赞助下,PBMC的制备、低温保存和IFN-γELISPOT分析在乌干达Kampala的联合临床研究中心(Joint Clinical Research Center(JCRC))免疫学实验室进行。为了确定ESAT-6/CFP-10特异性CD4+T细胞的频率,使用全PBMC作为响应性T细胞来源。为了确定ESAT-6/CFP-10特异性CD8+T细胞的频率,使用从PBMC中用CD4和CD56磁性珠(Miltenyi Biotec)的组合阴性筛选到的CD8+T细胞作为响应性T细胞来源。尽管已发现用肽脉冲的单核细胞产生的树突状细胞(DC)是离体计数CD8+T细胞效应细胞的最灵敏的抗原呈递细胞(3),但它需要足够的PBMC来产生DC。对于这些研究来说,可用的血液量排除了这种方法。因此,使用了磁性珠贫化以允许使用内源单核细胞作为抗原呈递细胞。在初步实验中,CD4贫化产生了高背景,其可以通过同时贫化CD56+NK细胞来消除。当与使用DC进行直接比较时,这种方法在计数抗原特异性CD8+T细胞的效率方面约为80%。流式细胞分析显示,CD4污染率<2%,并且CD8纯度>85%。其余细胞主要由单核细胞和B细胞构成。使用250,000个细胞/孔的PBMC(CD4+T细胞分析)或CD4/CD56贫化的PBMC(CD8+T细胞分析),并使用肽合并物作为抗原来源(每种肽的终浓度为5μg/ml),来进行IFN-γELISPOT。在每个分析中包含阴性和阳性对照,其分别由含有细胞并且不含抗原、或不含抗原但是包含植物血细胞凝集素(PHA,10lg/ml;EMDBioscience)的孔构成。所有测定进行两份平行样。在某些情况下,进行三份无抗原(培养基)的平行对照。
为了测定抗原特异性T细胞的离体频率,对于每个两份平行样的每个孔测定斑点形成单位(SFU)的平均数,并与培养基对照中的SFU平均数进行比较。为了解释技术性平行样中孔与孔之间的可变性,计算了培养基对照的标准偏差。阳性ELISPOT分析被定义为其中抗原特异性应答高于背景对照至少两个标准偏差的分析。如果满足这个标准,减去背景以确定抗原特异性应答。阳性PHA应答被定义为每个孔≥30SFU。
研究设计和统计分析:进行了横向研究用于比较来自基线抽出血液的CD4+和CD8+T细胞应答,并对两个临床研究组——患有CP-TB的儿童或HE儿童进行比较。在第一次分析中,独立于CP-TB组对HE研究组进行研究,以研究年龄对发生Mtb特异性T细胞应答的影响。对于这种分析来说,研究了所有≤15岁的儿童。接下来,为了将CP-TB与HE研究组进行比较,只从HE组中选择≤10岁的儿童以调整群组中内在的年龄差异,这是因为CP-TB研究组只招募到年龄≤10。
将ELISPOT分析数据(SFU)从Excel(Microsoft CORP,Redmond,WA,USA)输入到SAS数据文件中,所有分析使用SAS 9.1版(SASInstitute Inc,Cary,NC,USA)进行。HE与CP-TB以及确诊的TB(C-TB)之间的基线单变量比较,对于连续变量来说使用students t检验进行,对于分类变量来说使用卡方检验(或当指定时使用fishers精确检验)来进行。同样地,通过临床研究组进行的阳性ELISPOT分析的频率的分类比较,使用卡方检验进行评估。使用用于连续变量的非参数分析(wilcoxon秩和检验)比较高于背景的SFU。灵敏度被计算为来自单独的CP-TB组或C-TB组的可解释的分析总数中阳性分析的数量。特异性被计算为HE组中可解释的分析总数中阴性分析的数量。
为了研究与CP-TB有关的因素,对几个模型进行了评估,以研究在对可能的混杂协变量进行调整时,阳性ELISPOT分析对与临床研究组的关联性的影响。就此而言,按照CD8ELISPOT分析、CD4ELISPOT分析、年龄(0-5、5-10岁)、营养状态(BMI)和TST结果的解释,将处于CP-TB临床研究组中相对于HE组中的几率建立模型。首先,将单独的CD8和CD4ELISPOT预测值在下列模型中进行检查:(1)log几率(临床研究组)=α+β1(+CD8ELISPOT/-CD8ELISPOT)+β2(年龄)+β3(ZBMI)+β4(TST);(2)log几率(临床研究组)=α+β1(+CD4ELISPOT/-CD4ELISPOT)+β2(年龄)+β3(ZBMI)+β4(TST)。在两种模型中,参比的临床研究组是HE组。将CD8和CD4ELISPOT分析的预测值在同一个模型中进行评估。对此而言,对下列模型进行拟合:log几率(临床研究组)=α+β1(CD8ELISPOT)+β2(CD4ELISPOT)+β3(年龄)+β4(ZBMI)+β5(TST),其中参比临床研究组仍然是HE组。然后在所有模型上进行向后逻辑回归以增加模型拟合。
结果
为了研究年龄对HE儿童中CD4+和CD8+T细胞应答的影响,评估了129位年龄≤15岁的家庭接触儿童(图9a)。排除包括了20位在基线征募后6个月内发生TB的儿童和5位被发现是HIV阳性的儿童。因此,对104位年龄≤15岁的家庭接触儿童进行了ELISPOT分析,并且在最终分析中包含了98个PBMC ELISPOT分析和79个CD8ELISPOT分析。为了比较HE群组和CP-TB群组(≤10岁)之间的CD4+和CD8+T细胞应答,只包含了来自年龄≤10岁的HE儿童的ELISPOT分析数据。对于该比较性分析来说,包含了在62位HE儿童上进行的ELISPOT分析(图9a)。对于CP TB组来说,评估了101位疑似TB的HIV阴性儿童(表VI)的资格。其中,征募了96位有确诊的或可能的TB的儿童并进行了CD4和CD8ELISPOTS,分别有82个PBMCELISPOT和87个CD8ELISPOTS分析是可解释的,并包含在最终分析中(图9b)。在健康的TB暴露儿童、有确诊的或可能的TB的儿童和有确诊的TB的儿童之间,可解释的样品的数量之间没有显著差异。。
表VI
在临床研究组(HE(≤10岁)和CP-TB)中征募的所有儿童的临床特征和比较显示在表VII中。
表VII、HE和CP-TB研究组的基线特征。对于连续变量报道的p值使用students t检验(ζ)Satterthwaite不等方差来计算。对于分类数据(TST和性别)的p值使用卡方方法来计算
Figure BPA00001331533600961
患有CP-TB的儿童与HE群组相比更加营养不良(p<0.001)并略微年幼些(0.01)。在HE和CP-TB儿童中,阳性TST的频率是相当的。有确诊的TB的儿童(C-TB)与HE儿童(p<0.001)和有可能的TB的儿童(P-TB,p=0.01)相比更加营养不良,但是在年龄、性别或TST结果方面与HE儿童或有P-TB的儿童没有差异。只有在HE(≤10岁)和CP-TB组临床研究组中征募的有可解释的ELISPOT结果的儿童的基线临床特征(年龄、性别、BMI和TST状态),与所有征募儿童的特征没有差异。
首先,为了比较在儿童中随时间获得的Mtb特异性T细胞应答,在HE群组中分析了Mtb特异性T细胞应答的强度,并将<5岁的儿童与5≤15岁的儿童进行了比较。在两个年龄组中都观察到了强大的CD4+T细胞应答,但是在年龄<5岁的儿童中与少儿相比,CD8+T细胞应答降低(p=0.055,图10)。这些数据证实了在幼儿中缺乏CD8+T细胞应答。
接下来,在HE儿童与患有TB的儿童之间比较了Mtb特异性T细胞应答。与HE群组相比,在患有确诊的TB的儿童中(C-TB群组,p=0.001,图3a)和在所有患有TB的儿童中(CP-TB群组,p=0.008),阳性CD8ELISPOT分析的比例较高。阳性CD4(PBMC)ELISPOT分析的比例在C-TB群组中比HE群组中更高(p=0.02,图3a),但是在CP-TB与HE群组之间相当(p=0.14)。然后通过年龄分层,对HE、C-TB和CP-TB群组进行了比较。与来自所有儿童的分析结果相似,当只将HE儿童与患有TB的年龄小于5岁的儿童进行比较时,阳性CD8ELISPOT分析的比例在患有确诊的TB的儿童(C-TB群组,p=0.009,图11b)中和在所有患有TB的儿童(CP-TB群组)中较高。但是,当只考虑<5岁的儿童时,在所有群组之间阳性CD4(PBMC)ELISPOT分析的比例相当(图11b)。在5≤10岁的儿童中,阳性CD8和CD4(PBMC)ELISPOT分析的比例在CP-TB群组中比HE群组中高,但是在C-TB与HE群组之间相当。
尽管CD4和CD8ELISPOT分析鉴定TB的测试性能的评估受到群组规模小的限制,但仍进行了阳性ELISPOT分析的灵敏度和特异性的探索性分析,其中使用C-TB作为黄金标准TB群组和HE群组分别用于计算灵敏度和特异性。在年龄≤5岁的儿童中,CD4和CD8ELISPOT分析的灵敏度是相当的(分别是C-TB为56%(CI 0.30-0.78),C-TB为47%(CI 0.24-0.71)。但是,CD8ELISPOT分析比CD4ELISPOT分析更具特异性(分别是88%CI 0.68-0.97和62%CI 0.44-0.78)。
在5>10岁的儿童中,CD4和CD8ELISPOT分析的灵敏度和特异性相似(灵敏度,CD4100%[(CI 0.47-1.0)],CD8,86%[(CI 0.0.42-0.99)];特异性,CD463%[CI 0.40-0.82],CD870%[CI 0.45-0.88])。然后会提问哪些变量可能影响和/或混淆跨年龄层的阳性或阴性ELISPOT。进行了逻辑回归分析以便为与CP-TB相关的协变量建立模型,并包括了CD8和CD4ELISPOT、年龄、营养状况(Z值/BMI)和基线TST状态。对于前两个模型来说,独立地为阳性CD8和CD4ELISPOT的协变量建立模型,然后一起迭代在表VIII的第三个模型中。
Figure BPA00001331533600981
表VIII:ELISPOT分析结果的多变量逻辑回归分析*
*按照模型1-3中显示的各种协变量对有确诊的或可能的TB的log几率建立模型。在模型1中,在有阳性CD8ELISPOT的儿童中有确诊的或可能的TB的几率高3.8倍(Hosmer Lemeshow拟合优度为0.07)。相反,如模型2中所示,CD4ELISPOT与确诊的或可能的TB不相关(Hosmer Lemeshow拟合优度p=0.15)。在包含用于CD8和CD4ELISPOT二者的协变量的模型3中,在有针对模型中的其他协变量调整过的阳性CD8ELISPOT的儿童中,有确诊的或可能的TB的几率高4.7倍(Hosmer Lemeshow拟合优度0.21)。
具有阳性CD8T细胞ELISPOT的儿童与对年龄、BMI和基线TST调整过的健康和暴露过的儿童相比,具有高3.8倍的患CP-TB的几率(p=0.004)。与此相比,具有阳性CD4ELISPOT的儿童不具有更高的患CP-TB的几率。在包含CD8和CD4ELISPOT协变量两者的模型中,在对CD4ELISPOT结果调整后,阳性CD8ELISPOT的存在与患有CP-TB显著相关。为了增加模型的拟合,使用了向后逻辑回归。在该模型中,在针对年龄调整后,在具有阳性CD8ELISPOT的人中患有确诊的或可能的TB的几率是健康暴露组的人的4.6倍(CI 1.8-12.1)(p=0.002)。CD4T细胞ELISPOT不增加模型的总体拟合,并且在向后迭代选择过程中与BMI和TST状态一起被消除(Hosmer Lemeshow拟合优度p=0.68)。
临床研究组之间CD8+和CD4+T细胞应答的强度(图12)。对于年龄≤5岁的儿童来说,在患有TB的儿童中CD8+T细胞应答的强度较大(CP-TB,p=0.01;C-TB,p=0.009),而CD4+T细胞(PBMC)应答在临床组之间相当。同样地,对于年龄在5≤10岁的儿童来说,在HE、CP-TB和C-TB群组之间CD8+和CD4+T细胞应答的强度是相当的。
实施例6
肺外TB的诊断
肺外TB的诊断特别具有挑战性。在患有肺外TB的乌干达儿童中研究了针对ESAT-6和CFP-10的CD8+T细胞应答。在患有肺外TB的儿童中,51%的CD8ELISPOT分析是阳性的。此外,在患有肺外TB的儿童中CD8+T细胞应答的强度与患有胸内TB的儿童相当(图8)。因此,基于CD8T细胞的测试可用于诊断肺外TB。
实施例7
大规模验证性临床试验
A.研究参加者
将年龄<5岁的住院儿童征募在临床试验中。少儿和HIV感染的儿童从研究中排除。研究设计用于比较儿童(n=80可能+确诊的TB;n=~20确诊的TB)与患有非TB的下呼吸道感染的儿童(LRTInotTB)(n=50)群组。胸内TB的最初认定使用WHO用于在儿童中临时诊断TB的准则来进行,并且征募患有可能的胸内TB的儿童。这些准则的概要显示在表1中。具体来说,使用临床病史、TST和CXR的结果进行可能的TB的临时诊断。其他入选标准包括短于一个月的TB治疗。在征募后两个月时,使用临床随访,包括对抗TB治疗的响应和排除其它诊断以及Mtb培养结果,做出确诊的TB、可能的TB或非TB的最终认定。在2个月随访时认定为患有确诊的或可能的TB的儿童将留在总的胸内TB组中。在两个月时未患TB的儿童将从分析中排除。因为能够通过培养证实诊断的TB病例<40%,因此对于研究入选来说不要求Mtb培养验证。但是,对于数据分析来说,胸内TB群组的患有确诊的TB的亚群(培养验证的胸内TB)代表了与LRTI非TB群组的主要比较。LRTI非TB群组被定义为由异常CXR和相容的肺炎症状和体征所确定的患有LRTI的儿童。此外,该群组必须不具有如表中所定义的疑似TB。
Figure BPA00001331533601001
LRTI非TB群组经历与胸内TB群组相同的临床和实验室研究。与群组相似,在2个月时的临床随访被用于作出LRTI非TB的最终认定。如果在任何这些儿童中意外地出现Mtb培养阳性,那么将这些儿童从LRTI非TB组的分析中排除。
对于所提出的研究来说,鉴定年龄<5岁并具有LRTI症状和体征的儿童。了解病史和进行体检,并获得CXR,并对HIV筛选结果进行检查。年龄<18个月的具有阳性HIV ELISA结果的儿童需要HIV PCR试验来证实感染。所有具有阴性HIV血清学的儿童,以及年龄<18个月的具有阳性HIV ELISA但是阴性HIV PCR的儿童,可以包括在研究中。具有阳性HIV血清学的儿童,包括<18个月且没有可用的HIV PCR测试结果或具有阳性HIV PCR测试结果的儿童,从研究中排除。征募对HIV未感染的、年龄<5岁的、满足如上定义的胸内TB或LRTI非TB的标准的儿童。所有受试者经历TST处置和用于AFB涂片和培养的痰液诱导。TST使用纯化的蛋白衍生物(PPD,5TU,Tubersol;Connaught Laboratories,Limited,Toronto,加拿大)和Mantoux方法进行。进行用于AFB涂片和培养的痰液诱导。受试者在征募时抽血,并分离>25X 106个PBMC用于完成所有5种抗原组合的研究。在两个月时,召回受试者进行随访研究就诊。在该次就诊中,对受试者的中期病史和实验室结果进行检查。此时进行对研究群组的最终认定(胸内TB和LRTI非TB)。
B.人口统计、临床和免疫学数据的数据管理
本研究使用CWRU TBRU数据管理基础设施或其他类似的数据管理程序。例如,可以使用提供从远处位点自动数据登入的TELEformTMV5 Elite软件(Cardiff Software,San Marcos California)。简单来说,由乌干达的数据管理者制定数据收集表,并使其格式与TELEformTM软件对接。在遇到患者后,将数据表格的一份拷贝放置在临床图表中,另一份表格被送往当地数据中心,在那里扫描成多页的TIF(标记图像文件格式)图像文件。将这些文件压缩并储存。然后将TIF数据文件读入TELEformTM程序,该程序按照预定的电子模板排列表格并记录数据,然后将数据传送到数据库管理系统中。一旦进入电子数据库后,将数据使用标准程序进行编辑和清理,以标出缺失的数据和超范围的值。从数据中心产生正式的质询,当地数据管理者解决质询、修正数据库并记录变化。电子数据进行备份,例如每天备份。
与本研究相关的人口统计和临床特征包括关于年龄、性别、疾病描述、HIV血清学状态、BCG接种状态、该年龄的体重、该年龄的身高、TST结果和Mtb培养结果的特征。此外,对于所有征募的儿童进行营养评价,并对相对于年龄和身高的体重的z值进行计算。最后,为每个受试者指派独一无二的识别编号,用于数据库中。
C.在患有胸内TB和LTBI非TB的儿童中存在Mtb抗原CD8+T细胞
CD8+T细胞应答使用IFN-γELISPOT分析进行测量,使用CD4和CD56贫化的PBMC作为抗原呈递细胞(APC)和响应性CD8+T细胞的来源。具体来说,在低温保存的PBMC上进行CD8ELISPOT分析。尽管用肽脉冲的DC是离体引发CD8+T细胞应答的最灵敏和特异的手段,但它需要足够的PBMC以产生DC,以及高度纯化的CD8+T细胞。对于这些研究来说,可用的血液量和执行较长期培养(DC)的能力是有限的。一种可选的方法是贫化CD4+T细胞,并使用自体单核细胞作为APC。在初步实验中,PBMC的CD4贫化产生了高背景,其可以通过贫化CD56+NK细胞来消除。当与使用DC直接比较时,这种方法在计数抗原特异性CD8+T细胞的效率方面约为80%。因此,为了测量CD8+T细胞应答,在IFN-γELISPOT分析中使用了用磁性珠贫化CD4CD56细胞的PBMC(250,000个细胞/孔)。代表了双抗原组合的合成肽合并物(15聚体,有11个氨基酸重叠)被用作抗原来源。双抗原组合由用于CFP10/ESAT6、CFP10/EsxJ、CFP10/PPE51、CFP10/CFPF、CFP10/PPE15组合的43、50、72、72和72种肽表示。结果,使用少至一千万个低温保存的PMBC确定了CD8+T细胞对5种CD8抗原组合的应答,这需要1-5ml全血。需要注意的是,对于较年幼儿童需要的血液量较少,这是因为婴儿的血液每1ml全血产生多达一千万个PBMC,而来自少儿和成人的血液每1ml产生1-2百万个PBMC。如果实验孔减去对照(培养基)孔中的SFU大于对照孔的标准偏差的2倍,分析被认为是阳性的。然后将应答的强度表示成SFU/250,000个细胞。作为磁性珠贫化的效能的对照,通过CD4的细胞表面染色并使用流式细胞术分析,测定了污染性CD4+T细胞的百分率。任何ELISPOT分析,如果CD4+T细胞的百分率超过5%,就认为是无效的。
D.在患有胸内TB和LTBI非TB的儿童中存在Mtb抗原CD4+T细胞吗?群组之间相比阳性分析的频率和阳性应答的强度如何?
为了与CD8+T细胞应答进行比较,使用贫化了CD8+T细胞的PBMC作为响应性CD4+T细胞的来源,并使用剩余细胞作为APC进行了CD4+ELISPOT,作为Mtb抗原特异性CD4+T细胞应答的度量。这是与使用PBMC、ESAT6/CFP10肽的.TB、以及IFN-γELISPOT分析非常相似的分析。使用磁性珠贫化了CD8细胞的低温保存PBMC(250,000个细胞/孔)作为CD4+T细胞和单核细胞/APC二者的来源,进行了IFN-γELISPOT。与用于CD8分析相同的合成肽合并物被用作抗原来源。对5种抗原组合的CD4+T细胞应答,可以使用少至3百万个低温保存的PBMC来确定。如果实验孔减去对照(培养基)孔中的SFU大于对照孔的标准偏差的2倍,分析被认为是阳性的。然后将应答的强度表示成SFU/250,000个细胞。作为磁性珠贫化的效能的对照,通过CD8的细胞表面染色并使用流式细胞术分析,测定了污染性CD8+T细胞的百分率。任何ELISPOT分析,如果CD8+T细胞的百分率超过5%,就认为是无效的。
E.在患有胸内TB和LTBI非TB的儿童中TST结果阳性
为了与CD8+T细胞应答进行比较,使用如上所述的标准方法进行了TST。使用WHO标准,阳性TST被定义为对于严重营养不良儿童(Z值>-3)来说硬结≥5mm,对于其余儿童来说硬结≥10mm。
F.统计学考虑:双抗原组合的灵敏度和特异性以及选择用于三种Mtb抗原组合研究(SA 2)的两种组合。
主要终点是CD8+T细胞应答、CD4+T细胞应答和TST结果。CD8+T细胞应答和CD4+T细胞应答使用ELISPOT分析通过产生IFN-γ的T细胞来测量。主要终点是被定义为背景调整过的ELISPOT计数的连续应答。背景调整过的ELISPOT计数按照由我们实验室以前建立的标准(CD8抗原发现计划)来定义。TST结果仅仅作为二元终点来分析。
对于主要终点来说,使用了接受者工作特征(ROC)曲线方法,并估算ROC曲线下的面积(AUC)作为诊断准确性的度量。对于每种抗原组合来说,测试了AUC是否明显高于50%,即是否存在任何诊断实用性的迹象。对于背景调整过的ELISPOT计数确定了最适截止点,以便提供较高的灵敏度同时维持相当的特异性。对于下列一级比较进行了ROC分析:培养证实的胸内TB与LRTI非TB,以及总的胸内TB(可能+确诊的TB)与LRTI非TB。此外,有LTBI的LRTI非TB被定义为LRTI非TB群组中具有阳性TST的受试者。然后对下列二级比较进行了ROC分析:培养证实的胸内TB与有LTBI的LRTI非TB,以及总的胸内TB(可能+确诊的TB)与有LTBI的LRTI非TB。使用疾病状态作为结果,抗原应答结果作为协变量(以及任何其他潜在的混淆因数),建立了逻辑回归模型。抗原应答可以作为二元和连续协变量两者进行评估。所指组合和添加的其他组合一次只包含一个,以评估它们是否显著改进预测。此外,可以执行逐步的程序来选择预测疾病结果的最适的独立抗原组合组。将这些分析的结果针对主要标准进行加权。
80位总胸内TB(可能+确诊的TB)和50位LRTI非TB的样品量,允许检测的AUC增加15%(50%到65%),权(power)为84%,显著性水平为5%。20位培养证实的胸内TB和50位LRTI非TB的样品量,允许检测到AUC增加20%(50%到70%),权为77%,显著性水平为5%。15-20%的增加与上面提出的初步数据一致。
结果:在本文中鉴定的抗原组合(ESAT6/CFP10)在胸内TB组中对CD8+T细胞、CD4+T细胞和TST具有相似的结果,约为50%阳性分析。在LRTI非TB群组中没有检测到针对这些抗原的CD8+T细胞应答。因为其他四种抗原组合除了CFP10之外还含有第二个免疫优势CD8抗原,因此在胸内TB组中,观察到了针对其他CFP10/Mtb抗原组合与针对CFP10/ESAT-6相比,CD8+T细胞分析的频率增加。在LRTI非TB组中没有检测到针对任何被测抗原组合的CD8+T细胞应答。针对所有抗原组合的CD4+T细胞分析和TST在该组的约30%中是阳性。在培养证实的胸内TB群组中,与整个胸内TB群组相比,阳性CD8+和CD4+T细胞应答的比例相近或更高。
实施例8
动物模型
在结核病研究中,小鼠模型已被广泛用于模拟疾病的各个方面。小鼠可以经由各种途径感染,包括静脉内、腹膜内和气管。一种途径是生物体的气溶胶化,用于呼吸感染。将小鼠在小室中暴露于气溶胶(感染整个身体或仅仅感染鼻部)。本发明的剂量可以通过操纵喷雾器中Mtb的浓度或暴露时间来改变。通过气溶胶低剂量感染,例如约50个菌落形成单位(CFU),导致肺中细菌数量缓慢稳定的增加,一般在四周内达到峰值,这与肺中T细胞的峰值数量相符。初始时期被认为是感染的急性阶段。在感染后,存在细菌向纵隔淋巴结的扩散。一般在两到三周之间能够检测到T细胞引发。在约四周后,细菌数量达到稳定,并出现缓慢发展的病理响应。该系统可用于模拟活动性感染。
可以使用本文描述的方法评估目标组合物在动物模型中阻止感染的能力。目标组合物的效率,可以通过测量T细胞应答、例如生物样品中对Mtb多肽作出应答的CD8+或CD4+T细胞的数量来监测。对于这些分析来说,将T细胞(T cells with one)与至少一种分枝杆菌多肽和呈递一种或多种分枝杆菌多肽的抗原呈递细胞相接触。分枝杆菌多肽包括下列所显示的氨基酸序列:(a)SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、EQ ID NO:7、SEQ ID NO:8、SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11或SEQID NO:12所显示的氨基酸序列之一;或(b)SEQ ID NO:1、SEQ IDNO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:7、SEQ ID NO:8、SEQ ID NO:9、SEQ IDNO:10、SEQ ID NO:11或SEQ ID NO:12所显示的至少一种氨基酸序列的至少9到20个连续的氨基酸,其中所述9到20个连续的氨基酸特异性结合I类主要组织相容性复合物(MHC)。确定T细胞是否特异性识别分枝杆菌多肽。特异性识别Mtb多肽的T细胞数量的增加,表明组合物有效。
下面对示例性动物模型进行描述(也参见Repique等,Infec.Immun.70:3318-3323,2002,在此作为附加方案引为参考):
A.短期小鼠模型:
按照适合的方案使用组合物对C57BL/6小鼠进行预防接种,然后使其休息4到6周。将免疫过的小鼠用有毒力的结核分枝杆菌的低剂量气溶胶(50-100CFU)进行感染,并通过在激惹后30天评估活的杆菌数量来评估保护作用。
通过将器官匀浆并以连续的10倍稀释率铺板在7H11琼脂平板上,对小鼠的肺脏和脾脏进行了活菌计数。将平板温育最多达21天,并确定每种器官的菌落形成单位数。
当与PBS处理的小鼠相比时,BCG预防接种的小鼠在其肺脏和脾脏中具有约1Log10的保护作用。
生物样品在给药目标组合物之前和给药目标组合物之后获取。可选地,生物样品从介质处理的动物和目标组合物处理的动物获取。与本文所公开的Mtb多肽结合的T细胞数量的增加,表明组合物有效。
B.短期豚鼠模型
使用包含一种或多种Mtb多肽或编码这些一种或多种多肽的多核苷酸的组合物,对远系繁殖的Hartley豚鼠进行预防接种,然后使其休息8到10周。将免疫过的豚鼠用有毒力的结核分枝杆菌的低剂量气溶胶(10-30CFU)进行感染,并通过在激惹后30天评估活的杆菌数量来评估保护作用。
通过将器官匀浆并以连续的10倍稀释率铺板在7H11琼脂平板上,对豚鼠的肺脏和脾脏进行了活菌计数。将平板温育最多达21天,并确定每种器官的菌落形成单位数。也获取肺脏和脾脏部分用于组织学分析。
当与PBS处理的豚鼠相比时,BCG预防接种的豚鼠在其肺脏和脾脏中具有约2-3Log10的保护作用。此外,当与未接种的动物相比时,BCG预防接种的豚鼠具有轮廓分明肉芽肿。
生物样品在给药目标组合物之前和给药目标组合物之后获取。可选地,生物样品从介质处理的动物和目标组合物处理的动物获取。与本文所公开的Mtb多肽结合的T细胞数量的增加,表明组合物有效。
C.长期豚鼠模型
豚鼠模型与小鼠模型类似,但是实验是开放结果的存活类型,可以持续长达两年。豚鼠发展出与患有活动性结核病(TB)的人类相似的“经典的”肉芽肿,并且当肺组织坏死发展时,它们与人类相似开始减轻体重并死于TB。可以对肺脏和脾脏中的菌落形成单位数进行评估。也可以进行组织学检查以确定肺部牵连和组织破坏的程度。在豚鼠中低剂量气溶胶暴露后,在前三周期间生物体的数量逐渐增加,然后达到平台进入慢性状态。在感染的晚期阶段,出现肺中细菌载量的增加,并且这与病理状况恶化相关。不进行治疗,在感染豚鼠的肺中将出现CD4和CD8T细胞的共同升高。
按照适合的方案使用实验性疫苗对远系繁殖的Hartley豚鼠进行预防接种,然后使其休息8到10周。然后将免疫过的豚鼠用有毒力的结核分枝杆菌的低剂量气溶胶(10-30CFU)进行感染。对豚鼠每周称量体重并每天监测疾病的体征(例如呼吸加快和不能良好生长)。未接种的豚鼠在激惹后20到25周死于感染,而BCG接种的豚鼠在激惹后存活了50到55周。
在尸体剖检时,对肺脏和脾脏的CFU数量和病理程度进行评估。与BCG接种的动物比较实验组合物的相对保护作用。
生物样品在给药目标组合物之前和给药目标组合物之后获取。可选地,生物样品从介质处理的动物和目标组合物处理的动物获取。与本文所公开的Mtb多肽结合的T细胞数量的增加,表明组合物有效。
显然,所描述的方法和组合物的准确细节可以被改变或修改,而不背离所描述的发明的精神。我们对属于权利要求书的范围和精神的所有这样的修改和改变要求权利。

Claims (29)

1.一种用于检测人类对象中结核分枝杆菌(Mycobacterium tuberculosis)的方法,其包含:
从来自疑似患有结核病的人类儿童或来自疑似具有结核分枝杆菌潜伏感染的人类对象的生物样品分离CD8+T细胞;以及
将CD8+T细胞与一种或多种分枝杆菌多肽相接触;
确定CD8+T细胞是否特异性识别分枝杆菌多肽,其中特异性识别分枝杆菌多肽的T细胞的存在检测出对象中的结核分枝杆菌,从而将儿童鉴定为患有结核病,或将对象鉴定为具有结核分枝杆菌潜伏感染。
2.权利要求1的方法,其中儿童的年龄小于5岁,或其中儿童的年龄是5到10岁。
3.权利要求1的方法,其中儿童是婴儿。
4.权利要求1的方法,其中对象疑似具有结核分枝杆菌潜伏感染。
5.权利要求1的方法,其中儿童疑似患有肺结核病。
6.权利要求1到4任一项的方法,其中对象或儿童疑似具有结核分枝杆菌的肺外感染。
7.权利要求6的方法,其中肺外感染包括淋巴结炎、胸膜结核、骨和关节结核、中枢神经系统结核、腹部结核、粟粒性结核或结核性心包炎。
8.权利要求6-7任一项的方法,其中对象是青春期前的少年。
9.权利要求1-8任一项的方法,其中确定CD8+T细胞是否特异性识别分枝杆菌多肽包含测量细胞因子的表达。
10.权利要求9的方法,其中细胞因子是干扰素-γ(IFN-γ)。
11.权利要求10的方法,其中测量IFN-γ的表达使用特异性结合IFN-γ的抗体进行测定。
12.权利要求1-11任一项的方法,其中所述一种或多种分枝杆菌多肽包含下列所显示的氨基酸序列:
(a)SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8、SEQ IDNO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:39或SEQ ID NO:61所显示的氨基酸序列之一;或
(b)SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:7、SEQ IDNO:8、SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:39或SEQ ID NO:61所显示的至少一个氨基酸序列的至少9到20个连续的氨基酸,其中所述9到20个连续的氨基酸特异性结合I类主要组织相容性复合物(MHC);以及
(c)SEQ ID NO:39-83所显示的氨基酸序列之一。
13.权利要求1-11任一项的方法,其中分枝杆菌多肽包含SEQ IDNO:39所显示的氨基酸序列。
14.权利要求1-11任一项的方法,其中分枝杆菌多肽包含SEQ IDNO:61所显示的氨基酸序列。
15.权利要求1-11任一项的方法,其中分枝杆菌多肽包含SEQ IDNO:39所显示的氨基酸序列特异性结合I类主要组织相容性复合物(MHC)的9到20个连续氨基酸。
16.权利要求1-11任一项的方法,其中分枝杆菌多肽包含SEQ IDNO:61所显示的氨基酸序列特异性结合I类主要组织相容性复合物(MHC)的9到20个连续氨基酸。
17.权利要求1-16任一项的方法,其中生物样品是血液、分离的外周血单核细胞、分离的单核细胞、痰液、肺活检样本、淋巴结活检样本、唾液、脑脊液或分离的CD3+T细胞。
18.权利要求1-16任一项的方法,其中将CD8+T细胞在体外与分枝杆菌多肽共同培养。
19.权利要求1-18任一项的方法,其还包括检测针对结核分枝杆菌的迟发型超敏反应。
20.权利要求1-19任一项的方法,其还包括在来自对象的样品中检测分枝杆菌多肽或编码多肽的多核苷酸的存在,其中分枝杆菌多肽包含SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8、SEQ IDNO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、或SEQ ID NO:39-83之一所显示的氨基酸序列之一所示的氨基酸序列。
21.权利要求19的方法,其包含检测分枝杆菌多肽的存在。
22.权利要求21的方法,其中检测分枝杆菌多肽的存在包含使用特异性结合分枝杆菌多肽的抗体。
23.权利要求20的方法,其包含检测多核苷酸的存在。
24.权利要求23的方法,其中确定多核苷酸的存在包含使用聚合酶链反应。
25.一种检测对象中特异性结合分枝杆菌多肽的表达CD8的T细胞的方法,其中对象是儿童、疑似具有潜伏性结核分枝杆菌感染的对象、或疑似具有肺外结核分枝杆菌感染的对象,所述方法包含(A)将从对象分离到的外周血单核细胞与试剂相接触,所述试剂包含
(1)分枝杆菌多肽,其包含SEQ ID NO:1、SEQ ID NO:2、SEQ IDNO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:7、SEQ ID NO:8、SEQ ID NO:9、SEQ ID NO:10、SEQ IDNO:11或SEQ ID NO:12、SEQ ID NO:39、SEQ ID NO:61或SEQ IDNO:39-83任一个所显示的至少一个氨基酸序列的至少9到20个连续的氨基酸,其中所述9到20个连续的氨基酸特异性结合I类主要组织相容性复合物(MHC);
(2)HLA重链多肽和β2-微球蛋白;以及
(3)链亲和素,其中试剂是标记或未标记的;并且
(B)检测与外周血单核细胞结合的试剂的存在,由此检测特异性结合分枝杆菌多肽的表达CD8的T细胞。
26.权利要求25的方法,其还包含对结合试剂的CD8+T细胞的数量进行定量。
27.权利要求25的方法,其中试剂是标记的。
28.权利要求25的方法,其中试剂用荧光团标记。
29.权利要求25的方法,其中对象是儿童,并且其中检测到特异性结合分枝杆菌多肽的表达CD8的T细胞表明所述儿童患有肺结核病。
CN2009801371735A 2008-09-22 2009-09-22 用于检测结核分枝杆菌感染的方法 Pending CN102187224A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US9916208P 2008-09-22 2008-09-22
US61/099,162 2008-09-22
PCT/US2009/057891 WO2010034007A2 (en) 2008-09-22 2009-09-22 Methods for detecting a mycobacterium tuberculosis infection

Publications (1)

Publication Number Publication Date
CN102187224A true CN102187224A (zh) 2011-09-14

Family

ID=41727559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801371735A Pending CN102187224A (zh) 2008-09-22 2009-09-22 用于检测结核分枝杆菌感染的方法

Country Status (8)

Country Link
US (1) US8658350B2 (zh)
EP (2) EP2385371B1 (zh)
JP (1) JP2012503206A (zh)
CN (1) CN102187224A (zh)
AU (1) AU2009294850B2 (zh)
CA (1) CA2732750A1 (zh)
WO (1) WO2010034007A2 (zh)
ZA (1) ZA201101135B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103864907A (zh) * 2012-12-18 2014-06-18 中国医学科学院病原生物学研究所 用于结核病诊断的蛋白以及试剂盒
CN104151411A (zh) * 2013-05-14 2014-11-19 中国医学科学院病原生物学研究所 用于结核病诊断的蛋白以及药物组合物
CN105388300A (zh) * 2015-12-01 2016-03-09 中国医学科学院病原生物学研究所 结核病免疫诊断分子标识及其疫苗用途
CN105572352A (zh) * 2016-02-17 2016-05-11 遵义医学院附属医院 一组结核潜伏感染诊断标志物及其用途
WO2016095273A1 (zh) * 2014-12-17 2016-06-23 广州一代医药科技有限公司 用于检测结核分枝杆菌感染的抗原刺激物、试剂盒及其应用
CN105943048A (zh) * 2016-06-27 2016-09-21 首都医科大学附属北京胸科医院 一种基于核磁共振技术区分结核性脑膜炎和病毒性脑膜炎的方法及其应用
CN107922980A (zh) * 2015-08-06 2018-04-17 豪夫迈·罗氏有限公司 用于检测结核分枝杆菌的组合物和方法
CN114072524A (zh) * 2019-05-21 2022-02-18 Pbd生物技术有限公司 与结核病有关的方法
CN117777259A (zh) * 2024-02-23 2024-03-29 上海科新生物技术股份有限公司 检测结核感染的抗原组合物、试剂盒及其应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4633931B2 (ja) * 1998-11-04 2011-02-16 アイシス イノヴェイション リミテッド 結核診断試験
WO2007106536A2 (en) 2006-03-14 2007-09-20 Oregon Health & Science University Methods for producing an immune response to tuberculosis
PT2879701T (pt) * 2012-08-03 2024-02-12 Access To Advanced Health Inst Composições e métodos para o tratamento de uma infeção ativa por mycobacterium tuberculosis
BR112015011723A2 (pt) * 2012-11-30 2017-07-11 Beckman Coulter Inc triagem de tuberculose com o uso de dados de cpd
EP3092000A1 (en) * 2014-01-09 2016-11-16 Transgene SA Fusion of heterooligomeric mycobacterial antigens
WO2016161435A1 (en) * 2015-04-03 2016-10-06 New York University Peptides of m. tuberculosis for a screening test for hiv positive patients at high-risk for tuberculosis
BR112017028318B1 (pt) 2015-07-02 2024-02-20 Janssen Sciences Ireland Uc Composto antibacteriano, seu uso, processo para sua preparação,produto que o contém, composição farmacêutica e combinação
EP3472158A1 (en) 2016-06-16 2019-04-24 Janssen Sciences Ireland Unlimited Company Heterocyclic compounds as antibacterials
EP3555630B1 (en) 2016-12-14 2023-05-31 Becton, Dickinson and Company Methods and compositions for obtaining a tuberculosis assessment in a subject
EA201991997A1 (ru) 2017-03-01 2020-01-22 Янссен Сайенсиз Айрлэнд Анлимитед Компани Комбинированная терапия
CN108447047A (zh) * 2018-02-11 2018-08-24 深圳市恒扬数据股份有限公司 抗酸杆菌检测方法及装置
AU2020284136A1 (en) * 2019-05-30 2022-01-20 Oregon Health & Science University Methods for detecting a mycobacterium tuberculosis infection
CN111650287B (zh) * 2020-04-16 2022-10-25 广东省结核病控制中心 用于检测活动性肺结核的粪便中小肽及其检测系统
US10973908B1 (en) 2020-05-14 2021-04-13 David Gordon Bermudes Expression of SARS-CoV-2 spike protein receptor binding domain in attenuated salmonella as a vaccine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062893A2 (en) * 2000-02-25 2001-08-30 Corixa Corporation Compounds and methods for diagnosis and immunotherapy of tuberculosis
US20040141985A1 (en) * 1998-12-23 2004-07-22 Isis Innovation Limited Tuberculosis vaccine
WO2007106536A2 (en) * 2006-03-14 2007-09-20 Oregon Health & Science University Methods for producing an immune response to tuberculosis

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444487A (en) 1979-07-02 1984-04-24 Xerox Corporation Multiple-flash fuser
GB8308235D0 (en) 1983-03-25 1983-05-05 Celltech Ltd Polypeptides
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4745055A (en) 1985-05-07 1988-05-17 California Biotechnology Inc. Fused protein for enzyme immunoassay system
US5091309A (en) 1986-01-16 1992-02-25 Washington University Sindbis virus vectors
EP0256654B1 (en) 1986-07-07 1996-09-18 Centocor, Inc. Chimeric murine/human immunoglobulin specific for tumour-associated 17-1A Antigen
GB8626412D0 (en) 1986-11-05 1986-12-03 Clark M R Antibodies
CA1323293C (en) 1987-12-11 1993-10-19 Keith C. Backman Assay using template-dependent nucleic acid probe reorganization
EP0425563B1 (en) 1988-07-20 1996-05-15 David Segev Process for amplifying and detecting nucleic acid sequences
US5217879A (en) 1989-01-12 1993-06-08 Washington University Infectious Sindbis virus vectors
US5219727A (en) 1989-08-21 1993-06-15 Hoffmann-Laroche Inc. Quantitation of nucleic acids using the polymerase chain reaction
US5427930A (en) 1990-01-26 1995-06-27 Abbott Laboratories Amplification of target nucleic acids using gap filling ligase chain reaction
US5061620A (en) 1990-03-30 1991-10-29 Systemix, Inc. Human hematopoietic stem cell
US5359681A (en) 1993-01-11 1994-10-25 University Of Washington Fiber optic sensor and methods and apparatus relating thereto
TW404844B (en) 1993-04-08 2000-09-11 Oxford Biosciences Ltd Needleless syringe
US6991797B2 (en) 1993-07-02 2006-01-31 Statens Serum Institut M. tuberculosis antigens
US5538848A (en) 1994-11-16 1996-07-23 Applied Biosystems Division, Perkin-Elmer Corp. Method for detecting nucleic acid amplification using self-quenching fluorescence probe
US6239116B1 (en) 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
JP3468773B2 (ja) 1994-07-15 2003-11-17 ザ ユニバーシティ オブ アイオワ リサーチ ファウンデーション 免疫調節オリゴヌクレオチド
EP0776376B1 (en) 1994-07-15 2001-11-21 Akzo Nobel N.V. Use of rna polymerase to improve nucleic acid amplification process
US6429199B1 (en) 1994-07-15 2002-08-06 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules for activating dendritic cells
US6207646B1 (en) 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
AT402203B (de) 1995-06-13 1997-03-25 Himmler Gottfried Dipl Ing Dr Verfahren zur transkriptionsfreien amplifizierung von nucleinsäuren
US5716784A (en) 1996-02-05 1998-02-10 The Perkin-Elmer Corporation Fluorescence detection assay for homogeneous PCR hybridization systems
GB9624456D0 (en) 1996-11-25 1997-01-15 Isis Innovation Assay method
WO1998037919A1 (en) 1997-02-28 1998-09-03 University Of Iowa Research Foundation USE OF NUCLEIC ACIDS CONTAINING UNMETHYLATED CpG DINUCLEOTIDE IN THE TREATMENT OF LPS-ASSOCIATED DISORDERS
US6406705B1 (en) 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US6982085B2 (en) 1997-04-02 2006-01-03 Statens Serum Institut TB diagnostic based on antigens from M. tuberculosis
WO1998052581A1 (en) 1997-05-20 1998-11-26 Ottawa Civic Hospital Loeb Research Institute Vectors and methods for immunization or therapeutic protocols
EP1067956B1 (en) 1998-04-03 2007-03-14 University Of Iowa Research Foundation Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines
GB0215710D0 (en) * 2002-07-05 2002-08-14 Isis Innovation Diagnostic method
WO2004099771A1 (en) 2003-05-08 2004-11-18 Statens Serum Institut A new specific epitope based immunological diagnosis of tuberculosis
GB0406271D0 (en) 2004-03-19 2004-04-21 Isis Innovation Diagnostic test
US20050272104A1 (en) 2004-06-07 2005-12-08 Chang Gung University Method for detection of Mycobacterium tuberculosis antigens in biological fluids
US20060024332A1 (en) 2004-08-02 2006-02-02 Waters Wade R Recombinant ESAT-6:CFP-10 fusion protein useful for specific diagnosis of tuberculosis
JP4376211B2 (ja) 2005-06-20 2009-12-02 豊田合成株式会社 自動車用ガラスラン
US8398991B2 (en) 2005-06-22 2013-03-19 Institut Pasteur Modified ESAT-6 molecules and improved vaccine strains of Mycobacterium bovis BCG
EP1867988A1 (en) 2006-06-12 2007-12-19 Centro Biotecnologie Avanzate Cytokine capture assay in high throughput format for determining antigen-specific T-cell responses

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040141985A1 (en) * 1998-12-23 2004-07-22 Isis Innovation Limited Tuberculosis vaccine
WO2001062893A2 (en) * 2000-02-25 2001-08-30 Corixa Corporation Compounds and methods for diagnosis and immunotherapy of tuberculosis
WO2007106536A2 (en) * 2006-03-14 2007-09-20 Oregon Health & Science University Methods for producing an immune response to tuberculosis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DEBORAH A. LEWINSOHN等: "Immunodominant Tuberculosis CD8 Antigens Preferentially Restricted by HLA-B", 《PLOS PATHOGENS》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103864907A (zh) * 2012-12-18 2014-06-18 中国医学科学院病原生物学研究所 用于结核病诊断的蛋白以及试剂盒
CN103864907B (zh) * 2012-12-18 2016-12-28 中国医学科学院病原生物学研究所 用于结核病诊断的蛋白以及试剂盒
CN104151411A (zh) * 2013-05-14 2014-11-19 中国医学科学院病原生物学研究所 用于结核病诊断的蛋白以及药物组合物
WO2016095273A1 (zh) * 2014-12-17 2016-06-23 广州一代医药科技有限公司 用于检测结核分枝杆菌感染的抗原刺激物、试剂盒及其应用
CN107922980A (zh) * 2015-08-06 2018-04-17 豪夫迈·罗氏有限公司 用于检测结核分枝杆菌的组合物和方法
CN107922980B (zh) * 2015-08-06 2021-11-16 豪夫迈·罗氏有限公司 用于检测结核分枝杆菌的组合物和方法
CN105388300A (zh) * 2015-12-01 2016-03-09 中国医学科学院病原生物学研究所 结核病免疫诊断分子标识及其疫苗用途
CN105572352A (zh) * 2016-02-17 2016-05-11 遵义医学院附属医院 一组结核潜伏感染诊断标志物及其用途
CN105572352B (zh) * 2016-02-17 2017-07-28 遵义医学院附属医院 一组结核潜伏感染诊断标志物及其用途
CN105943048B (zh) * 2016-06-27 2018-11-13 首都医科大学附属北京胸科医院 一种基于核磁共振技术区分结核性脑膜炎和病毒性脑膜炎的方法及其应用
CN105943048A (zh) * 2016-06-27 2016-09-21 首都医科大学附属北京胸科医院 一种基于核磁共振技术区分结核性脑膜炎和病毒性脑膜炎的方法及其应用
CN114072524A (zh) * 2019-05-21 2022-02-18 Pbd生物技术有限公司 与结核病有关的方法
CN117777259A (zh) * 2024-02-23 2024-03-29 上海科新生物技术股份有限公司 检测结核感染的抗原组合物、试剂盒及其应用

Also Published As

Publication number Publication date
WO2010034007A2 (en) 2010-03-25
WO2010034007A3 (en) 2010-06-24
US20110183342A1 (en) 2011-07-28
AU2009294850B2 (en) 2015-07-02
EP2385371A2 (en) 2011-11-09
AU2009294850A1 (en) 2010-03-25
EP2353008A2 (en) 2011-08-10
EP2385371A3 (en) 2012-02-29
ZA201101135B (en) 2018-11-28
EP2385371B1 (en) 2014-10-22
JP2012503206A (ja) 2012-02-02
US8658350B2 (en) 2014-02-25
CA2732750A1 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
CN102187224A (zh) 用于检测结核分枝杆菌感染的方法
US9040233B2 (en) Methods for detecting a Mycobacterium tuberculosis infection
AU2021203796B2 (en) Use of amino acid sequences from Mycobacterium tuberculosis or corresponding nucleic acids thereof for diagnosis and prevention of tubercular infection, diagnostic kit and vaccine therefrom
CN102713629A (zh) 用于检测结核分枝杆菌感染的方法
Nayak et al. Identification of novel Mycobacterium tuberculosis CD4 T-cell antigens via high throughput proteome screening

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110914