CN102186588B - 氧化催化剂的制备方法及由该方法制备的催化剂 - Google Patents

氧化催化剂的制备方法及由该方法制备的催化剂 Download PDF

Info

Publication number
CN102186588B
CN102186588B CN2009801411906A CN200980141190A CN102186588B CN 102186588 B CN102186588 B CN 102186588B CN 2009801411906 A CN2009801411906 A CN 2009801411906A CN 200980141190 A CN200980141190 A CN 200980141190A CN 102186588 B CN102186588 B CN 102186588B
Authority
CN
China
Prior art keywords
catalyst
ceo
metal
gold
oxidation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009801411906A
Other languages
English (en)
Other versions
CN102186588A (zh
Inventor
弗拉迪米尔·马托林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlova Univerzita v Praze
Original Assignee
Karlova Univerzita v Praze
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlova Univerzita v Praze filed Critical Karlova Univerzita v Praze
Publication of CN102186588A publication Critical patent/CN102186588A/zh
Application granted granted Critical
Publication of CN102186588B publication Critical patent/CN102186588B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/347Ionic or cathodic spraying; Electric discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种氧化催化剂,其包括氧化铈和选自金和铂的金属,所述氧化催化剂通过将氧化铈和金属从靶溅射到基底来制备,其中所述氧化铈和金属材料在氩气气氛下从至少一个靶同时溅射到基底以形成包括分散的金属原子的氧化铈层。通过该方法制备特定的Au-CeO2和Pt-CeO2催化剂。

Description

氧化催化剂的制备方法及由该方法制备的催化剂
技术领域
本发明涉及一种制备氧化催化剂的方法,所述氧化催化剂包括氧化铈和选自金、铂、钯、锡、钌、镍的金属,所述方法将氧化铈和金属从靶溅射到基底。另外,本发明还涉及通过该方法制备的催化剂。
背景技术
基于氧化铈(CeO2)和金属的氧化催化剂已经在非专利文献和专利文献中被报道过。
Fu等人发表在Science(2003)的文献描述了CeO2-Au催化剂用于水与一氧化碳反应得到二氧化碳和氢气作为产物的反应的催化活性。这是用烃重整制造氢气和在直接甲醇燃料电池(DMFC)中的甲醇和乙醇的氧化的关键反应。在该文献中使用通过金共沉淀和扩散到CeO2表面的常规技术制备的粉末形式的CeO2-Au催化体系。
EP1724012A1专利申请描述了基于金沉积在晶体CeO2上的催化剂,平均基本粒径为5-20nm,以及这种微晶聚集体的尺寸为20-100nm。
EP1920831A2专利申请描述了用于氧化柴油发动机废气中的固体颗粒的催化剂,所述催化剂基于两种金属氧化物的组合,其中一种金属是铈,另一种为Ga、Mn、Fe、Co、Ni、Cu、Yt、Zr、Mo、Ag、La、Pr、Nd或Au。具有预期组成的催化材料通过从液体溶液中沉淀制备。
其他关于利用CeO2和另一种金属的组合的氧化催化剂的几个专利申请有:EP1676625A1、EP1683574A1、EP1787719A2、EP1889651A1、EP1852181A1和WO2005/100249A1。在这些申请中,催化剂通过例如从溶液中沉淀的常规方法制备。
一些催化材料是通过溅射制备的。在该技术中,薄层由通过高能粒子(通常氩气)从靶散射的颗粒(原子、分子)流沉积在基底上。发表在Sputter Deposition,AVS Education Committee Book Series,Vol.2(2003)ISBN 0-7354-0105-5上的W.D.Westwood的工作描述了全程溅射技术。在大多数情况下,使用称为磁控管的装置进行溅射。
EP0682982A2专利申请描述如何通过在单片氧化物基底上沉积基本金属的中间层来增强催化活性金属的粘合性。基本金属是来自稀土族金属元素或者是锰。催化活性的贵金属(该情况下为铂)沉积在该层的顶部。
上述催化剂的主要缺点为或者催化活性太低,或者贵金属(主要为金和铂)含量太高。另外,含CeO2和贵金属的粉末催化剂的缺点是CeO2中分散的活性金属太低。前述催化剂的其他共同的缺点是抗中毒性低。
目前已知的制备金属-CeO2催化剂的技术无法制备活性足以用于例如在直接燃料电池中氧化甲烷或乙烷的催化剂。
过量使用贵金属导致这种催化剂制造成本的增加。大量生产具有高贵金属含量的催化剂也加重了环境的负担。
发明内容
本发明的目的是提供显示与目前已知催化材料相当或更高催化活性同时需要相当低含量的贵金属的催化剂。本发明的另一个目的是提供用于氢气燃料电池的高活性催化剂,其特征在于对于一氧化碳的存在的高耐受性,例如工业上生产的氢气中含有痕量的CO,要将其除去非常昂贵。本发明的再一个目的是提供应用于通过重整内燃机废气中水与一氧化碳反应产生氢气的过程,以及应用于催化多个其他化学反应的催化剂。
可通过制备含有氧化铈和选自金和铂的金属的氧化催化剂的方法实现本发明的目的和克服所述缺陷,所述方法通过将氧化铈和金属从靶溅射到基底,其中所述氧化铈和金属从至少一个靶同时溅射到基底以形成包括所述金属的分散原子的氧化铈层。
或者所述氧化铈从一个靶而所述金属材料从另一个靶溅射到所述基底。这对溅射过程提供改善的控制,从而获得具体所需的结构和催化剂的特性。
所述方法允许氧化铈薄层在基底上的生长过程中连续掺杂金属原子,金属以原子水平分散在氧化铈层中,并且导致金属以离子形式存在。
另外,通过该方法,获得金属原子与氧化铈之间相互作用,其高催化活性和高抗催化中毒性,例如,对于燃料电池内反应过程中存在的氢气中的一氧化碳的高耐受性。下列描述参考根据本发明制备的金或铂/CeO2基催化剂的各种具体实施方案。
一种Au-CeO2催化剂,其中金以1-20nm尺寸的簇的形式分散在氧化铈层的表面上。在该特定的实施方案中,催化剂的表面活性由此大大改善。
一种Au-CeO2催化剂,其包括含量为催化剂中金的总量的25至99重量%的Au+1和Au+3阳离子形式的金。这种催化剂表现出在催化剂的薄层的表面和内部都增强的催化活性。这种增强是催化剂中存在的金的离子特性的结果。
一种Au-CeO2催化剂,其包括含量为Au-CeO2层中的总原子的量的以重量计0.01至4原子%的Au+1和Au+3阳离子形式的金。在这种情况下,Au+1和Au+3阳离子相对于催化剂中材料的总量的原子浓度保持在4原子%以下,同时尽管制造催化剂过程中金的消耗大大减少,催化活性仍然很高。
一种Pt-CeO2催化剂,其包括含量为催化剂中铂的总量的30至100重量%的Pt+2和Pt+4阳离子形式的铂。
由于离子形式的铂的高浓度的存在,获得对于一些化学反应的催化活性的高选择性,例如,在直接氢燃料质子交换燃料电池中进行的反应。
一种Pt-CeO2催化剂,其包括含量为Pt-CeO2层中的总原子的量的以重量计0.01至4原子%的Pt+2和Pt+4阳离子形式的铂。如上所述金基催化剂情况类似,催化活性仍然很高,即使制造催化剂过程中铂的消耗大大减少,催化活性仍然很高。
附图说明
通过下列附图详细描述本发明:
图1a-是具有单个复合靶的溅射装置(磁控管)的截面图;
图1b-是具有两个单靶的两个磁控管的截面图;
图2-是氧化铈层中的金属原子的图形表示;
图3-是氧化铈中的金属原子的另一个图形表示;
图4a-是不掺杂金的催化剂的表面形貌的显微图像;
图4b-是Au-CeO2催化剂的表面形貌的显微图像;
图4c-是示出Au-CeO2催化剂的厚度的显微图像;
图5-是Pt-CeO2催化剂的表面形貌的显微图像;
图6-是燃料电池的截面图;
图7-表示对于Pt/Ru参考催化剂,燃料电池的比功率输出的曲线;
图8-表示对于Pt-CeO2催化剂,样品H,燃料电池的比功率输出的曲线;
图9示出Au-CeO2催化剂的光电子能谱(XPS);
图10示出Pt-CeO2催化剂的光电子能谱(XPS);
图11-表示对于Au-CeO2催化剂-样品甲醇,燃料电池的比功率输出的曲线。
具体实施方式
实施例1
在图1a和图1b中示出称为磁控管的溅射装置的截面图,所述装置用于进行高频率溅射氧化物和金属。
图1a中所示磁控管包括由CeO2板10和置于CeO2板10上的金属材料12组成的所谓复合靶。金属材料可采取导线形式并且可使用选自Au和Pt的任意金属作为金属材料。
通过氩气离子由靶10、12溅射的原子流19沉积在例如硅胶板的基底14上,以逐渐形成催化剂薄层。磁控管与高频交流电源16相连。磁力线用曲线18表示。溅射在0.6Pa的非常低的氩气压力下进行。在CeO2薄层在基底14上沉积和生长的过程中,连续用给定金属原子掺杂薄层,从而均匀分散到CeO2层内。如果用至少一种前述金属元素掺杂,这种薄层显示实验证实的高催化效率。图1b示出含有具有各自靶的两个磁控管的溅射装置的替代实施方案。左侧磁控管具有CeO2板10靶,右侧磁控管具有金属材料12靶,其设计为掺杂在基底14上形成的催化剂CeO2层。
在掺杂金的情况下,催化剂的活性用由光电子能谱(XPS)测量检测的Au+1和Au+3离子的存在来指示。在目前已知的催化材料中,不存在或者存在可忽略浓度的金阳离子。在图2和3中,示出根据本发明含有分散于氧化铈层中的金离子的催化剂薄层的图形表示。金原子22、23、24或阳离子分别通过高频溅射分散到氧化铈CeO2层21中。XPS测试(下文将详细描述)显示金原子以金属和离子形式分布。由于金原子22能够在氧化铈层中扩散,这些原子趋于在以1-20nm尺寸的簇的形式在表面上分散。这些簇44在通过扫描电子显微镜获得的图4b中的催化剂薄层的显微图像中清晰可见。在它们的表面上,金以原子形式Au0的原子24存在。在簇内部,在原子Au0壳之下,离子金以Au+1阳离子23形式存在,同时,催化剂的薄层中分散的金以Au+3阳离子22的形式存在。
在掺杂铂的情况下,催化剂的活性用由光电子能谱(XPS)测量检测的Pt+2和Pt+4离子的存在来指示。实际上100%的铂以离子形式存在;光谱测量没有证明存在任何金属铂Pt0。由于铂不如金在CeO2中容易迁移,铂簇的形成不如金的情况下显著。
上述催化剂的催化特性通过将催化剂结合到直接燃料电池来检测。图6中描述了具有催化剂的燃料电池的方案。确定燃料电池催化系统的效率的基本量是阳极表面的比功率输出,以mW/cm2计。
具有Au-CeO2催化剂的燃料电池以甲醇作为燃料显示非常高的比功率输出。如果甲醇用作燃料,以金属-CeO2催化剂催化,在燃料电池中运行下列化学反应:
阳极:CH3OH+H2O→CO2+6H++6e-
阴极:(3/2)O2+6H++6e-→3H2O
相反,具有Pt-CeO2催化剂的燃料电池不显示对甲醇非常高的比功率输出,但是在以氢气为燃料时显示非常高的比功率输出。这是因为甲醇分子与在催化剂薄层的表面上分散的金原子23、24 Au1+反应-参见图2。当使用铂时,金属原子向表面的迁移不是很显著。由于大的甲醇分子不能扩散到催化剂的Pt-CeO2薄层中,上述反应进行得非常缓慢。而以氢气作为燃料,以金属-CeO2催化剂催化,在燃料电池中运行下列化学反应:
阳极:H2→2H++2e-
阴极:4H++4e-+O2→2H2O
氢燃料的Pt-CeO2燃料电池显示特殊的电流特性。这是由于小的氢原子可易于穿透催化剂薄层,从而在Pt+2和Pt+4离子释放的电子存在下反应,如上一个反应方案中所述的阳极。氢原子通过在催化剂表面上的H2分子解离而产生。
根据本发明的催化剂通过以下方式制备:CeO2薄层的沉积和它们与金属(Au或Pt)的同时掺杂利用磁控管通过上述非反应性高频磁控管溅射技术进行。磁控管的设置方案示于图1。
实施例2
在该对比实施例中,溅射纯CeO2,而在第二和第三实施例中,用金掺杂CeO2的沉积层。由直径为5.08cm并与由硅制成的基底14间隔90mm放置的的圆形CeO2板10靶,对磁控管施加80W的功率来进行溅射。溅射在恒压0.6Pa的氩气氛下完成,基底保持在室温。催化剂薄层的生长速度为1nm/分钟。选择沉积时间以获得预期厚度的催化剂薄层,通常为20-60分钟。图4a示出CeO2薄层(无Au掺杂)的上视图42。
实施例3
Au导线形式的金属材料12(1mm直径,10mm长)以径向置于CeO2靶上。在实施方案1中,仅单个Au导线置于靶上。在实施方案2中,两个相同的上述Au导线置于靶上。沉积条件与实施例2中完全相同。
用不同实验技术分析实施方案1和2中获得的含有掺杂金的CeO2薄层的催化剂,并估算它们在燃料电池中的催化活性。
通过扫描电子显微镜研究催化剂薄层的表面形态和厚度。在图4中,示出了三种催化剂层的视图:图4c示出实施方案2中获得的催化剂薄层的截面图41。图4b示出同一薄层的上视图42。以扫描电子显微镜测量图4c中的薄层的厚度为65nm。CeO2薄层表面的多晶结构由上视图42显而易见。在催化剂的表面上,形成图2中示意性说明的金原子23、24的簇44。金簇的形成是由分散到CeO2层内的金原子向表面迁移的趋势所驱使的。
Au-CeO2催化剂的特性通过光电子能谱进行研究,其活性在利用甲醇作为燃料的燃料电池即所谓的直接甲醇燃料电池中验证。在图9中,示出Au-CeO2催化剂的Au 4f电子能级的光电子能谱(XPS)。谱图由2个双峰Au 4f5/2-Au 4f7/2组成,表示金的化学状态为-Au+和Au3+
实施例4
图6描述了用于测量实施例3的Au-CeO2催化剂特性的燃料电池的示意图。其是具有常用的交换质子的″Nafion″薄膜67的燃料电池(质子膜交换燃料电池PEM)。
示出下列组件:阳极61、阴极62、燃料入口63、多余燃料排出口64、氧气进口65和未使用氧气和水蒸气的废气口66。阳极催化剂沉积在微孔性的GDL(Toray碳纸,teflonated)从而与膜67相接触。测量板69之间的电压和电流。用包括过氧化氢、稀硫酸和水煮沸的标准过程处理Nafion膜67。以标准方法制备燃料电池阴极62,即用Nafion溶液混合的碳基底上的Pt粉末沉积在微孔GDL(Toray碳纸,teflonated)上。催化剂的层上的铂含量为5mg/cm2
甲醇用作燃料并以设置为30ml/分钟的流速供应到阳极61。阴极62以设置为30ml/分钟的流速和氧气一起进料。在23摄氏度的温度下测量,燃料和氧气在大气压力下供应。图11示出极化V-I曲线,其中图的x轴表示电压、左边y轴表示电流和右边的y轴表示燃料电池的输出功率。电压曲线标记为110,功率曲线标记为120。燃料电池中的催化剂的总面积为1cm2。该特定催化剂获得的最大功率密度130为0.67mW/cm2
实施例5
对于Pt-CeO2材料,进行两个不同实施方案。通过使用与实施例2和3相同的磁控管进行溅射。溅射条件也与实施例2和3中的那些相同。在实施方案3中,导线形状的单铂(Pt)金属材料12(0.5mm直径,10mm长)以径向置于CeO2板10靶,参见图1b。在实施方案4中,具有相同直径的两个相同Pt导线置于靶上。
用光电子能谱分析实施方案3和4中获得的含有掺杂铂的CeO2薄层的催化剂,并估算它们在燃料电池中的催化活性。
在图5中,示出了实施方案4中获得的沉积在以碳纳米管覆盖的燃料电池的微孔GDL(Toray碳纸,teflonated)上的催化剂的表面。通过扫描电子显微镜获得图像。
在图10中,示出Pt-CeO2催化剂的光电子能谱(XPS)。从谱图分析可以看出铂原子以离子形式Pt+2和Pt+4存在。
以下是应用于燃料电池中的实施方案3和4的催化剂的特性。与实施例2和3类似,使用具有质子交换膜的燃料电池,参见图6。但是,在这种情况下,氢气用作供应到阳极61的燃料,流速设在30.0ml/分钟。供应到阴极62的氧气流速设为30.0ml/分钟。
图8示出实施方案4中获得的Pt-CeO2的极化V-I曲线(如上所述)。燃料电池中的催化剂的总面积为1cm2。输出电压曲线标记为81,输出功率曲线标记为82。实施例5的催化剂获得的最大功率密度83为12.3mW/cm2。催化剂上铂的含量为约2.5×10-4mg/cm2。该值由Pt-CeO2层的厚度及其密度计算。基于上述值,单位质量的铂的最大输出功率测量为70W/mg(Pt)。
实施例6
测量参考值-实施方案5。为了获得参考值,在上述燃料电池中用市售催化剂阳极上PtRu(50%Pt,50%Ru)和阴极上Pt/C进行实施方案5,与之前实施方案中所用的相同。催化剂活性在与实施例5中相同的条件下进行评估。图7示出来自实验6的PtRu参考催化剂的极化V-I曲线。用该催化剂获得的最大功率密度73为196mW/cm2。催化剂中单位质量的铂的最大输出功率测量为39.2W/mg(Pt/Ru)。这是使用标准PtRu(阳极)和Pt/C(阴极)催化剂的具有质子交换膜的燃料电池的典型文献值。以这种方式,证实了燃料电池的校准标准功能。
本发明的实施例2至5显示用上述方法制备的基于金属-CeO2薄层材料的高催化活性。通过使用新的Pt-CeO2催化剂,相对于1mg的Pt的燃料电池的比输出功率与标准催化剂相比增强了约3个数量级。在氢气燃料的燃料电池的情况下,期望本发明的催化剂具有对氢气中一氧化碳含量的耐受性。
工业应用性
本发明的方法和催化剂可主要用于燃料电池中,用于通过水与一氧化碳的反应生成氢,用于重整内燃机的废气,并用于催化其他化学反应,上述催化剂包括氧化铈层和选自金和铂的至少一种金属。

Claims (4)

1.一种氧化催化剂,包括含有氧化铈的层和选自金和铂的金属,所述氧化催化剂通过包括以下步骤的方法制备:
利用非反应性高频磁控管技术通过将所述氧化铈从靶溅射到基底来形成氧化铈的层,并同时和持续通过从同一个靶或另一个靶溅射从而用所述金属的原子掺杂该层,直至金属阳离子的含量为在所述层中原子总量的以重量计0.01至4原子%。
2.根据权利要求1所述的氧化催化剂,所述氧化催化剂包括含量为所述催化剂中金的总量的25至99重量%的Au+1和Au+3阳离子形式的金。
3.根据权利要求1所述的氧化催化剂,所述氧化催化剂包括含量为催化剂中铂的总量的30至100重量%的Pt+2和Pt+4阳离子形式的铂。
4.根据权利要求2所述的氧化催化剂,其中金以1-20nm尺寸的簇的形式分散在所述氧化铈层的所述表面上。
CN2009801411906A 2008-10-17 2009-10-16 氧化催化剂的制备方法及由该方法制备的催化剂 Expired - Fee Related CN102186588B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CZPV2008-630 2008-10-17
CZ20080630A CZ301720B6 (cs) 2008-10-17 2008-10-17 Katalyzátor na bázi kov-CeO2 pro použití obzvlášte v palivových cláncích a zpusob jeho prípravy
PCT/CZ2009/000122 WO2010043189A2 (en) 2008-10-17 2009-10-16 Method for preparing oxidation catalyst and catalysts prepared by the method

Publications (2)

Publication Number Publication Date
CN102186588A CN102186588A (zh) 2011-09-14
CN102186588B true CN102186588B (zh) 2013-09-18

Family

ID=42060365

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801411906A Expired - Fee Related CN102186588B (zh) 2008-10-17 2009-10-16 氧化催化剂的制备方法及由该方法制备的催化剂

Country Status (8)

Country Link
US (1) US8435921B2 (zh)
EP (1) EP2349564B1 (zh)
JP (1) JP5214032B2 (zh)
KR (1) KR101331108B1 (zh)
CN (1) CN102186588B (zh)
CZ (1) CZ301720B6 (zh)
EA (1) EA019445B1 (zh)
WO (1) WO2010043189A2 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6334411B2 (ja) 2011-12-21 2018-05-30 スリーエム イノベイティブ プロパティズ カンパニー 触媒システム
JP5943280B2 (ja) * 2012-06-12 2016-07-05 公立大学法人首都大学東京 金クラスター触媒及びその製造方法
CZ2013350A3 (cs) * 2013-05-13 2014-02-19 Univerzita Jana Evangelisty Purkyně V Ústí Nad Labem Použití oxidu ceričitého k rozkladu organofosforečných sloučenin
US10159960B2 (en) * 2016-10-25 2018-12-25 GM Global Technology Operations LLC Catalysts with atomically dispersed platinum group metal complexes
CZ309118B6 (cs) * 2018-09-30 2022-02-09 Univerzita Karlova Způsob výroby membrány s vlákennou strukturou, membrána vyrobená tímto způsobem a její použití
CN109735817B (zh) * 2019-02-27 2020-10-13 杜铁路 一种具有催化特性的贵金属/氧化物复合薄膜及制备方法
KR102283280B1 (ko) 2019-05-15 2021-07-29 서울과학기술대학교 산학협력단 연료 전지 및 이의 제조 방법과 촉매 전극
CN110745856B (zh) * 2019-11-27 2022-06-14 云南大学 一种纳米粒状氧化铈复合钌铂钯氧化物的制备方法
US11784337B2 (en) * 2020-09-28 2023-10-10 Hyzon Motors Inc. Membrane electrode assembly with enhanced start-up and shut-down durability
CN116370625A (zh) * 2023-03-14 2023-07-04 浙江大学 一种哑铃状的金-氧化铈纳米材料的制备方法及其产品和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892254A (en) * 1997-02-27 1999-04-06 Samsung Electronics Co., Ltd. Integrated circuit capacitors including barrier layers having grain boundary filling material
US20030004054A1 (en) * 2001-06-29 2003-01-02 Miho Ito Catalyst particles and method of manufacturing the same
EP1724012A1 (en) * 2005-05-21 2006-11-22 Degussa AG Catalyst containing gold on ceria-manganes oxide

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691958B2 (ja) * 1991-12-06 1994-11-16 工業技術院長 一酸化炭素又は二酸化炭素の水素化反応用触媒
NZ333157A (en) * 1996-05-28 1999-06-29 Anglo American Res Lab Pty Ltd Oxidation catalyst containing gold, a transition metal oxide and titanium oxide optionally with molybdenum oxide on a zirconium oxide and/or cerium oxide support
BG62687B1 (bg) * 1997-05-15 2000-05-31 "Ламан-Консулт"Оод Златен катализатор за окисление на въглероден оксид и въглеводороди, редуциране на азотни оксиди иразлагане на озон
US6749892B2 (en) * 2000-03-22 2004-06-15 Samsung Electronics Co., Ltd. Method for fabricating membrane-electrode assembly and fuel cell adopting the membrane-electrode assembly
RU2197039C2 (ru) * 2000-11-10 2003-01-20 Государственное унитарное предприятие Государственный научный центр РФ Физико-энергетический институт им. акад. А.И. Лейпунского Твердооксидный топливный элемент и способ его изготовления
FR2866249B1 (fr) * 2004-02-18 2006-12-15 Rhodia Acetow Gmbh Composition a base d'or et d'oxyde de cerium, procede de preparation et utilisation comme catalyseur, notamment pour l'oxydation du monoxyde de carbone
US20070184322A1 (en) * 2004-06-30 2007-08-09 Hong Huang Membrane electrode assembly in solid oxide fuel cells
JP2006043654A (ja) * 2004-08-09 2006-02-16 Toyota Motor Corp 排ガス浄化触媒及びその製造方法
US8058202B2 (en) * 2005-01-04 2011-11-15 3M Innovative Properties Company Heterogeneous, composite, carbonaceous catalyst system and methods that use catalytically active gold
US7829035B2 (en) * 2006-01-19 2010-11-09 Massachusetts Institute Of Technology Oxidation catalyst
RU2386194C1 (ru) * 2006-02-15 2010-04-10 3М Инновейтив Пропертиз Компани Избирательное окисление окиси углерода относительно водорода с помощью каталитически активного золота

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892254A (en) * 1997-02-27 1999-04-06 Samsung Electronics Co., Ltd. Integrated circuit capacitors including barrier layers having grain boundary filling material
US20030004054A1 (en) * 2001-06-29 2003-01-02 Miho Ito Catalyst particles and method of manufacturing the same
EP1724012A1 (en) * 2005-05-21 2006-11-22 Degussa AG Catalyst containing gold on ceria-manganes oxide

Also Published As

Publication number Publication date
EA019445B1 (ru) 2014-03-31
JP5214032B2 (ja) 2013-06-19
CZ2008630A3 (cs) 2010-06-02
KR20110082047A (ko) 2011-07-15
US20110257004A1 (en) 2011-10-20
EP2349564B1 (en) 2016-12-14
EA201170581A1 (ru) 2012-01-30
CN102186588A (zh) 2011-09-14
EP2349564A2 (en) 2011-08-03
KR101331108B1 (ko) 2013-11-19
CZ301720B6 (cs) 2010-06-02
WO2010043189A3 (en) 2010-11-04
WO2010043189A4 (en) 2011-01-06
JP2012505735A (ja) 2012-03-08
WO2010043189A2 (en) 2010-04-22
US8435921B2 (en) 2013-05-07

Similar Documents

Publication Publication Date Title
CN102186588B (zh) 氧化催化剂的制备方法及由该方法制备的催化剂
Chen et al. A robust fuel cell operated on nearly dry methane at 500° C enabled by synergistic thermal catalysis and electrocatalysis
Lu et al. Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte
Cheng et al. Electrocatalysts by atomic layer deposition for fuel cell applications
Scibioh et al. Pt-CeO2/C anode catalyst for direct methanol fuel cells
Colmenares et al. Ethanol oxidation on novel, carbon supported Pt alloy catalysts—Model studies under defined diffusion conditions
Zhou et al. Pt-based anode catalysts for direct ethanol fuel cells
Choi et al. Bimetallic Pt–Ru nanowire network for anode material in a direct-methanol fuel cell
Lee et al. Effect of Mo addition on the electrocatalytic activity of Pt–Sn–Mo/C for direct ethanol fuel cells
Wang et al. Synthesis and electrochemical study of Pt-based nanoporous materials
JP2001085020A (ja) 燃料電池用電極触媒
Xu et al. One-pot synthesis of Pt/CeO2/C catalyst for enhancing the SO2 electrooxidation
Xu et al. Facile fabrication and electrocatalytic activity of Pt0. 9Pd0. 1 alloy film catalysts
Karuppasamy et al. Low-and high-index faceted pd nanocrystals embedded in various oxygen-deficient WO x nanostructures for electrocatalytic oxidation of alcohol (EOA) and carbon monoxide (CO)
TWI474547B (zh) 電催化觸媒及包含其之燃料電池
Pinheiro et al. Hybrid palladium-ceria nanorod electrocatalysts applications in oxygen reduction and ethanol oxidation reactions in alkaline media
US6663998B2 (en) Anode catalyst materials for use in fuel cells
Li et al. Heterogeneous fcc-Pt/hcp-PtBi thick-edge nanoplates with enhanced activity for formic acid oxidation
JP5428109B2 (ja) 燃料電池
Qiu et al. Atomically Dispersed CrOX on Pd Metallene for CO-Resistant Methanol Oxidation
Jadali et al. The supported forest-like structure of PtSn as an effective deterrent for acetaldehyde formation during the electrocatalytic oxidation of ethanol
Yasutake et al. Ru-core Ir-shell electrocatalysts deposited on a surface-modified Ti-based porous transport layer for polymer electrolyte membrane water electrolysis
JP5146105B2 (ja) 固体高分子型燃料電池用触媒
Tessier et al. PtML/Pd/C core-shell electrocatalysts for the ORR in PEMFCs
Shi et al. Nanostructured Pt-NiFe Oxide Catalyst for Hydrogen Evolution Reaction in Alkaline Electrolyte Membrane Water Electrolyzers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130918

Termination date: 20181016

CF01 Termination of patent right due to non-payment of annual fee