CN102185305B - High Reliability Power Clamp ESD Protection Circuit - Google Patents
High Reliability Power Clamp ESD Protection Circuit Download PDFInfo
- Publication number
- CN102185305B CN102185305B CN201110129544.4A CN201110129544A CN102185305B CN 102185305 B CN102185305 B CN 102185305B CN 201110129544 A CN201110129544 A CN 201110129544A CN 102185305 B CN102185305 B CN 102185305B
- Authority
- CN
- China
- Prior art keywords
- transistor
- protection circuit
- esd protection
- pmos transistor
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 claims description 44
- 230000004044 response Effects 0.000 claims description 14
- 230000003068 static effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 13
- 230000008859 change Effects 0.000 description 8
- 238000001514 detection method Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000000803 paradoxical effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
技术领域 technical field
本发明涉及集成电路芯片静电放电(Electronic Static Discharge,ESD)保护技术领域,特别涉及一种高可靠性电源钳位ESD保护电路。The invention relates to the field of integrated circuit chip electrostatic discharge (Electronic Static Discharge, ESD) protection technology, in particular to a high-reliability power clamp ESD protection circuit.
背景技术 Background technique
在集成电路芯片制造、封装、测试、运输以及使用的过程之中,存在着多种不同的静电放电模式,当这些静电电荷积累在MOS晶体管的栅极上时,由于MOS晶体管的栅电容很小,这些静电电荷会形成很大的等效栅压,导致器件或者电路的失效,这便是ESD问题。伴随着集成电路特征尺寸按比例缩小的规律,栅氧化层做得越来越薄,这样导致了ESD保护问题在纳米尺度的器件和电路设计之中变得越发的困难和重要。In the process of integrated circuit chip manufacturing, packaging, testing, transportation and use, there are many different electrostatic discharge modes. When these electrostatic charges accumulate on the gate of the MOS transistor, due to the small gate capacitance of the MOS transistor , These electrostatic charges will form a large equivalent gate voltage, resulting in the failure of the device or circuit, which is the ESD problem. Along with the scaling down of integrated circuit feature size, the gate oxide layer is made thinner and thinner, which makes ESD protection more difficult and important in nanometer-scale device and circuit design.
集成电路的芯片主要通过输入管脚、输出管脚、电源管脚以及接地管脚与外界相联系,输入输出管脚通常会有相应的ESD保护电路模块。芯片的核心功能模块一般会置于电源管脚和接地管脚之间,所以,一个可靠的电源钳位ESD保护电路是保证芯片功能模块不受到ESD损伤的关键。已有的电源钳位ESD保护电路通常是基于这样一个思路:用一个电阻-电容(R-C)滤波结构作为ESD探测电路,当探测到ESD脉冲时,滤波结构给出一个信号来打开钳位晶体管,然后由钳位晶体管释放掉ESD电荷。An integrated circuit chip is mainly connected with the outside world through input pins, output pins, power pins and ground pins, and the input and output pins usually have corresponding ESD protection circuit modules. The core function module of the chip is generally placed between the power pin and the ground pin. Therefore, a reliable power clamp ESD protection circuit is the key to ensure that the chip function module is not damaged by ESD. Existing power supply clamp ESD protection circuit is usually based on such an idea: use a resistance-capacitance (R-C) filter structure as the ESD detection circuit, when detecting ESD pulse, the filter structure provides a signal to open the clamp transistor, The ESD charge is then released by the clamp transistor.
图1所示为目前电源钳位ESD保护电路的一个经典例子,图中的Mbig为钳位晶体管。当一个快速上升的ESD脉冲来临的时候,通过适当R-C时间常数的设置,使得R和C的交点的电压无法立即跟随电源管脚Vdd上拉,这样R和C的交点在ESD脉冲来临的前一段特定时间内为低电平,这个低电平通过一级反相器传导到Mbig的栅极,使得Mbig的栅极为高电平,于是Mbig被打开以释放ESD脉冲积累的电荷。当R-C时间常数过去之后,R和C的交点的电压跟上了Vdd的变化而成为高电平,这个高电平被反相到Mbig的栅极,于是Mbig被关断,结束ESD保护过程。在正常上电的情况下,Vdd的电压以一个相对较慢的速度上拉,这时R和C的交点一直跟随Vdd的电压变化,使得Mbig不被打开,在正常工作的情况下不消耗额外的电源功耗。Figure 1 shows a classic example of the current power supply clamp ESD protection circuit, Mbig in the figure is a clamp transistor. When a fast-rising ESD pulse comes, through the appropriate setting of the R-C time constant, the voltage at the intersection of R and C cannot be pulled up immediately following the power supply pin Vdd, so that the intersection of R and C is in the period before the ESD pulse comes It is at a low level for a certain period of time, and this low level is conducted to the gate of Mbig through a first-stage inverter, so that the gate of Mbig is at a high level, so Mbig is turned on to release the charge accumulated by the ESD pulse. When the R-C time constant has elapsed, the voltage at the intersection of R and C keeps up with the change of Vdd and becomes a high level. This high level is reversed to the gate of Mbig, so Mbig is turned off, ending the ESD protection process. In the case of normal power-on, the voltage of Vdd is pulled up at a relatively slow speed. At this time, the intersection of R and C has been following the voltage change of Vdd, so that Mbig is not turned on, and no extra power is consumed under normal working conditions. power consumption.
图1所示的电路尽管从逻辑上看是没有问题的,但是随着器件尺寸的缩小,其ESD保护性能的可靠性面临巨大的挑战。集成电路特征尺寸的不断缩小必然要求ESD保护模块的R-C部分要尽量做小,由于Mbig的栅压是在R-C时间常数过去之后才被拉低,R-C时间常数的减小就会导致Mbig开启时间的缩短,这样有可能导致ESD电荷释放不完全从而造成内部电路的损伤。另外一个方面,对于快速上升的正常上电电压,希望钳位晶体管不被打开,即ESD保护电路不被误触发,那么防误触发能力强的ESD保护电路也要求把R-C时间常数做得很小,这同样会与钳位晶体管足够长的开启时间相矛盾。Although the circuit shown in Figure 1 is logically correct, the reliability of its ESD protection performance faces enormous challenges as the size of the device shrinks. The continuous reduction of the feature size of integrated circuits will inevitably require the R-C part of the ESD protection module to be as small as possible. Since the gate voltage of Mbig is pulled down after the R-C time constant has passed, the reduction of the R-C time constant will lead to a decrease in the turn-on time of Mbig. shortening, which may lead to incomplete release of ESD charges and damage to internal circuits. On the other hand, for the fast-rising normal power-on voltage, it is hoped that the clamping transistor will not be turned on, that is, the ESD protection circuit will not be triggered by mistake, so the ESD protection circuit with strong anti-false trigger capability also requires the R-C time constant to be made very small , which would also contradict the sufficiently long turn-on time of the clamp transistor.
发明内容 Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
本发明要解决的技术问题是:如何在ESD保护电路中电容-电阻模块的时间常数很小的情况下,使钳位晶体管有足够长的开启时间。The technical problem to be solved by the invention is: how to make the clamping transistor have a sufficiently long turn-on time under the condition that the time constant of the capacitance-resistance module in the ESD protection circuit is very small.
(二)技术方案(2) Technical solution
为解决上述技术问题,本发明提供了一种高可靠性电源钳位ESD保护电路,其特征在于,包括:依次连接的电容-电阻模块、钳位晶体管开启模块、以及钳位晶体管,还包括:钳位晶体管关断模块,分别与所述电容-电阻模块和钳位晶体管连接;In order to solve the above technical problems, the present invention provides a high reliability power supply clamp ESD protection circuit, which is characterized in that it includes: a capacitor-resistor module connected in sequence, a clamp transistor opening module, and a clamp transistor, and also includes: The clamping transistor shutdown module is connected to the capacitor-resistor module and the clamping transistor respectively;
所述电容-电阻模块,用于识别所述高可靠性电源钳位ESD保护电路的电源管脚Vdd的脉冲是否为静电放电脉冲,若是,则发送第一响应信号至所述钳位晶体管开启模块,在经过所述电容-电阻模块的时间常数后,发送第二响应信号至所述钳位晶体管关断模块;The capacitor-resistor module is used to identify whether the pulse of the power supply pin Vdd of the high-reliability power supply clamp ESD protection circuit is an electrostatic discharge pulse, and if so, send a first response signal to the clamp transistor opening module , sending a second response signal to the clamping transistor shutdown module after the time constant of the capacitor-resistor module has passed;
所述钳位晶体管开启模块,用于根据所述第一响应信号启动所述钳位晶体管;The clamping transistor enabling module is configured to activate the clamping transistor according to the first response signal;
所述钳位晶体管关断模块,用于根据所述第二响应信号关断所述钳位晶体管;The clamping transistor turn-off module is configured to turn off the clamping transistor according to the second response signal;
所述钳位晶体管,用于在启动时,释放所述静电放电脉冲带来的静电电荷。The clamping transistor is used for releasing the electrostatic charge brought by the electrostatic discharge pulse when starting.
其中,所述电容-电阻模块包括:串联连接的电容C1和电阻R1,所述电容C1与所述高可靠性电源钳位ESD保护电路的电源管脚Vdd连接,所述电阻R1接地。Wherein, the capacitor-resistor module includes: a capacitor C1 and a resistor R1 connected in series, the capacitor C1 is connected to the power pin Vdd of the high-reliability power clamp ESD protection circuit, and the resistor R1 is grounded.
其中,所述钳位晶体管为NMOS晶体管Mbig1,所述NMOS晶体管Mbig1的漏极与所述高可靠性电源钳位ESD保护电路的电源管脚Vdd连接,所述NMOS晶体管Mbig1的源极接地。Wherein, the clamping transistor is an NMOS transistor Mbig1, the drain of the NMOS transistor Mbig1 is connected to the power supply pin Vdd of the high-reliability power supply clamping ESD protection circuit, and the source of the NMOS transistor Mbig1 is grounded.
其中,所述钳位晶体管开启模块包括:PMOS晶体管Mp1-1、Mp1-2、Mp2、以及NMOS晶体管Mn1,所述PMOS晶体管Mp1-1的栅极与所述电容C1和电阻R1的交点连接,所述PMOS晶体管Mp1-1的源极与所述PMOS晶体管Mp1-2的漏极和栅极分别连接,所述PMOS晶体管Mp1-2的源极与所述高可靠性电源钳位ESD保护电路的电源管脚Vdd连接,所述PMOS晶体管Mp1-1的漏极分别与所述NMOS晶体管Mn1的漏极和所述PMOS晶体管Mp2的栅极连接,所述NMOS晶体管Mn1的栅极与所述高可靠性电源钳位ESD保护电路的电源管脚Vdd连接,所述NMOS晶体管Mn1的源极接地,所述PMOS晶体管Mp2的源极与所述高可靠性电源钳位ESD保护电路的电源管脚Vdd连接,所述PMOS晶体管Mp2的漏极与所述NMOS晶体管Mbig1的栅极连接。Wherein, the clamping transistor opening module includes: PMOS transistors Mp1-1, Mp1-2, Mp2, and NMOS transistor Mn1, the gate of the PMOS transistor Mp1-1 is connected to the intersection of the capacitor C1 and the resistor R1, The source of the PMOS transistor Mp1-1 is connected to the drain and the gate of the PMOS transistor Mp1-2 respectively, and the source of the PMOS transistor Mp1-2 is connected to the high reliability power clamp ESD protection circuit. The power supply pin Vdd is connected, the drain of the PMOS transistor Mp1-1 is respectively connected to the drain of the NMOS transistor Mn1 and the gate of the PMOS transistor Mp2, and the gate of the NMOS transistor Mn1 is connected to the high reliability The power pin Vdd of the permanent power clamp ESD protection circuit is connected, the source of the NMOS transistor Mn1 is grounded, and the source of the PMOS transistor Mp2 is connected to the power pin Vdd of the high reliability power clamp ESD protection circuit. , the drain of the PMOS transistor Mp2 is connected to the gate of the NMOS transistor Mbig1.
其中,所述钳位晶体管关断模块包括:PMOS晶体管Mp3、Mp4、Mp5、NMOS晶体管Mn3、Mn2、以及电容C2、C3,所述PMOS晶体管Mp4的栅极与所述电容C1和电阻R1的交点连接,所述PMOS晶体管Mp4的源极与所述高可靠性电源钳位ESD保护电路的电源管脚Vdd连接,所述PMOS晶体管Mp4的漏极与电容C2的一端连接,所述电容C2的另一端接地,所述PMOS晶体管Mp4与电容C2的交点分别与所述PMOS晶体管Mp3的栅极和所述NMOS晶体管Mn3的栅极连接,所述PMOS晶体管Mp3的漏极和所述NMOS晶体管Mn3的漏极连接,所述PMOS晶体管Mp3的源极与所述高可靠性电源钳位ESD保护电路的电源管脚Vdd连接,所述NMOS晶体管Mn3的源极接地,所述PMOS晶体管Mp3的漏极和NMOS晶体管Mn3的漏极的交点与所述PMOS晶体管Mp5的栅极连接,所述PMOS晶体管Mp5的源极与所述高可靠性电源钳位ESD保护电路的电源管脚Vdd连接,所述PMOS晶体管Mp5的漏极与所述电容C3的一端连接,所述电容C3的另一端接地,所述PMOS晶体管Mp5与电容C3的交点与所述NMOS晶体管Mn2的栅极连接,所述NMOS晶体管Mn2的源极接地,所述NMOS晶体管Mn2的漏极与所述NMOS晶体管Mbig1的栅极连接。Wherein, the clamping transistor turn-off module includes: PMOS transistors Mp3, Mp4, Mp5, NMOS transistors Mn3, Mn2, and capacitors C2, C3, the intersection of the gate of the PMOS transistor Mp4 and the capacitor C1 and resistor R1 connected, the source of the PMOS transistor Mp4 is connected to the power supply pin Vdd of the high-reliability power clamp ESD protection circuit, the drain of the PMOS transistor Mp4 is connected to one end of the capacitor C2, and the other end of the capacitor C2 One end is grounded, the intersection of the PMOS transistor Mp4 and the capacitor C2 is respectively connected to the gate of the PMOS transistor Mp3 and the gate of the NMOS transistor Mn3, and the drain of the PMOS transistor Mp3 is connected to the drain of the NMOS transistor Mn3 pole connection, the source of the PMOS transistor Mp3 is connected to the power supply pin Vdd of the high-reliability power clamp ESD protection circuit, the source of the NMOS transistor Mn3 is grounded, and the drain of the PMOS transistor Mp3 is connected to the NMOS The intersection point of the drain of the transistor Mn3 is connected with the gate of the PMOS transistor Mp5, and the source of the PMOS transistor Mp5 is connected with the power supply pin Vdd of the high-reliability power clamp ESD protection circuit, and the PMOS transistor Mp5 The drain of the capacitor C3 is connected to one end of the capacitor C3, the other end of the capacitor C3 is grounded, the intersection of the PMOS transistor Mp5 and the capacitor C3 is connected to the gate of the NMOS transistor Mn2, and the source of the NMOS transistor Mn2 grounded, and the drain of the NMOS transistor Mn2 is connected to the gate of the NMOS transistor Mbig1.
(三)有益效果(3) Beneficial effects
本发明通过将控制钳位晶体管开启和关断的电路结构分开,使得在ESD保护电路中电容-电阻模块的时间常数很小的情况下,钳位晶体管有足够长的开启时间。The invention separates the circuit structure for controlling the turn-on and turn-off of the clamp transistor, so that the clamp transistor has a sufficiently long turn-on time when the time constant of the capacitor-resistance module in the ESD protection circuit is small.
附图说明 Description of drawings
图1是传统的电源钳位ESD保护电路的具体电路结构示意图;Fig. 1 is the specific circuit structure schematic diagram of traditional power supply clamp ESD protection circuit;
图2是按照本发明一种实施方式的高可靠性电源钳位ESD保护电路的电路原理图;Fig. 2 is a schematic circuit diagram of a high-reliability power clamp ESD protection circuit according to an embodiment of the present invention;
图3是图2所示的高可靠性电源钳位ESD保护电路的具体电路结构图;Fig. 3 is the specific circuit structure diagram of the high-reliability power clamp ESD protection circuit shown in Fig. 2;
图4是对图1所示的现有技术的电源钳位ESD保护电路的R-C加反相器结构施加一个ESD脉冲之后,Hspice仿真所得到的R-C加反相器结构输出节点的电压变化示意图;Fig. 4 is after adding an ESD pulse to the R-C of the power supply clamp ESD protection circuit of the prior art shown in Fig. 1 and adding an ESD pulse, the R-C obtained by Hspice simulation adds the schematic diagram of the voltage change of the output node of the inverter structure;
图5是对图2所示的高可靠性电源钳位ESD保护电路的电容-电阻模块施加一个与图4相同的ESD脉冲后,Hspice仿真所得到的电容-电阻模块输出节点的电压变化示意图;Figure 5 is a schematic diagram of the voltage change at the output node of the capacitor-resistor module obtained by Hspice simulation after applying an ESD pulse identical to that of Figure 4 to the capacitor-resistor module of the high-reliability power supply clamp ESD protection circuit shown in Figure 2;
图6是图2所示的高可靠性电源钳位ESD保护电路施加一个ESD脉冲后,Mp1-1的栅极电压和Mp2的栅极电压变化示意图;6 is a schematic diagram of changes in the gate voltage of Mp1-1 and the gate voltage of Mp2 after the high-reliability power clamp ESD protection circuit shown in FIG. 2 applies an ESD pulse;
图7是图1所示的传统的电源钳位ESD保护电路施加一个ESD脉冲后,钳位晶体管的栅极电压变化示意图;FIG. 7 is a schematic diagram of changes in the gate voltage of the clamp transistor after the traditional power supply clamp ESD protection circuit shown in FIG. 1 applies an ESD pulse;
图8是图2所示的高可靠性电源钳位ESD保护电路施加一个ESD脉冲后,钳位晶体管的栅极电压变化示意图。FIG. 8 is a schematic diagram of changes in the gate voltage of the clamp transistor after an ESD pulse is applied by the high-reliability power supply clamp ESD protection circuit shown in FIG. 2 .
具体实施方式 Detailed ways
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention.
本发明的核心思想是:把控制钳位晶体管开启和关断的电路结构分开,这样探测电路部分的R、C大小设置就可以从做小时间常数以防误触发,又要做大时间常数以得到足够的钳位晶体管开启时间这样一个矛盾的选择之中脱离出来。在本发明提出的电路中,探测电路的C-R结构基本上只对钳位晶体管的开启起决定性作用,而钳位晶体管的关断则由C-R时间常数加上两级R-C的时间延迟来控制,这样就可以通过做大钳位晶体管关断电路中R-C的时间延迟来削弱探测电路C-R时间常数对钳位晶体管关断的控制作用,从而给C-R时间常数做小的空间。The core idea of the present invention is: separate the circuit structure for controlling the opening and closing of the clamping transistor, so that the R and C sizes of the detection circuit part can be set from a small time constant to prevent false triggering, and a large time constant to prevent false triggering. Get out of the paradoxical choice of getting enough clamp transistor turn-on time. In the circuit proposed by the present invention, the C-R structure of the detection circuit basically only plays a decisive role in the opening of the clamping transistor, and the closing of the clamping transistor is controlled by the time delay of the C-R time constant plus the two-stage R-C, like this The control effect of the C-R time constant of the detection circuit on the turn-off of the clamp transistor can be weakened by enlarging the time delay of R-C in the clamp transistor turn-off circuit, thereby making a small space for the C-R time constant.
图2是按照本发明一种实施方式的高可靠性电源钳位ESD保护电路的电路原理图,包括:依次连接的电容-电阻模块1、钳位晶体管开启模块2、以及钳位晶体管4,还包括:钳位晶体管关断模块3,分别与所述电容-电阻模块1和钳位晶体管4连接;2 is a schematic circuit diagram of a high-reliability power supply clamp ESD protection circuit according to an embodiment of the present invention, including: a capacitor-
所述电容-电阻模块1,用于识别所述高可靠性电源钳位ESD保护电路的电源管脚Vdd的脉冲是否为静电放电脉冲,若是,则发送第一响应信号至所述钳位晶体管开启模块2,在经过所述电容-电阻模块1的时间常数后,发送第二响应信号至所述钳位晶体管关断模块3;The capacitor-
所述钳位晶体管开启模块2,用于根据所述第一响应信号启动所述钳位晶体管4;The clamping
所述钳位晶体管关断模块3,用于根据所述第二响应信号关断所述钳位晶体管4;The clamping transistor turn-
所述钳位晶体管4,用于在启动时,释放所述静电放电脉冲带来的静电电荷。The
如图3所示,所述电容-电阻模块1包括:串联连接的电容C1和电阻R1,所述电容C1与所述高可靠性电源钳位ESD保护电路的电源管脚Vdd连接,所述电阻R1接地。As shown in Figure 3, the capacitor-
所述钳位晶体管4为NMOS晶体管Mbig1,所述NMOS晶体管Mbig1的漏极与所述高可靠性电源钳位ESD保护电路的电源管脚Vdd连接,所述NMOS晶体管Mbig1的源极接地。The
所述钳位晶体管开启模块2包括:PMOS晶体管Mp1-1、Mp1-2、Mp2、以及NMOS晶体管Mn1,所述PMOS晶体管Mp1-1的栅极与所述电容C1和电阻R1的交点连接,所述PMOS晶体管Mp1-1的源极与所述PMOS晶体管Mp1-2的漏极和栅极分别连接,所述PMOS晶体管Mp1-2的源极与所述高可靠性电源钳位ESD保护电路的电源管脚Vdd连接,所述PMOS晶体管Mp1-1的漏极分别与所述NMOS晶体管Mn1的漏极和所述PMOS晶体管Mp2的栅极连接,所述NMOS晶体管Mn1的栅极与所述高可靠性电源钳位ESD保护电路的电源管脚Vdd连接,所述NMOS晶体管Mn1的源极接地,所述PMOS晶体管Mp2的源极与所述高可靠性电源钳位ESD保护电路的电源管脚Vdd连接,所述PMOS晶体管Mp2的漏极与所述NMOS晶体管Mbig1的栅极连接。The clamping
所述钳位晶体管关断模块3包括:PMOS晶体管Mp3、Mp4、Mp5、NMOS晶体管Mn3、Mn2、以及电容C2、C3,所述PMOS晶体管Mp4的栅极与所述电容C1和电阻R1的交点连接,所述PMOS晶体管Mp4的源极与所述高可靠性电源钳位ESD保护电路的电源管脚Vdd连接,所述PMOS晶体管Mp4的漏极与电容C2的一端连接,所述电容C2的另一端接地,所述PMOS晶体管Mp4与电容C2的交点分别与所述PMOS晶体管Mp3的栅极和所述NMOS晶体管Mn3的栅极连接,所述PMOS晶体管Mp3的漏极和所述NMOS晶体管Mn3的漏极连接,所述PMOS晶体管Mp3的源极与所述高可靠性电源钳位ESD保护电路的电源管脚Vdd连接,所述NMOS晶体管Mn3的源极接地,所述PMOS晶体管Mp3的漏极和NMOS晶体管Mn3的漏极的交点与所述PMOS晶体管Mp5的栅极连接,所述PMOS晶体管Mp5的源极与所述高可靠性电源钳位ESD保护电路的电源管脚Vdd连接,所述PMOS晶体管Mp5的漏极与所述电容C3的一端连接,所述电容C3的另一端接地,所述PMOS晶体管Mp5与电容C3的交点与所述NMOS晶体管Mn2的栅极连接,所述NMOS晶体管Mn2的源极接地,所述NMOS晶体管Mn2的漏极与所述NMOS晶体管Mbig1的栅极连接。The clamp transistor turn-
本实施方式的高可靠性电源钳位ESD保护电路相对于传统ESD保护电路的第一个改进之处就是用电容-电阻(C-R)结构来代替R-C加反相器结构作为ESD脉冲的探测电路。从逻辑上说,R-C加反相器结构与C-R结构在ESD脉冲之下输出的电压曲线变化趋势基本一样,二者的区别在于R-C加反相器结构在ESD脉冲之下输出的电压有一个较快的下降斜率,而C-R结构输出的电压则下降较为缓慢。这是因为传统的反相器都存在一个逻辑阈值电压,理想情况下,逻辑阈值电压附近反相器的输入-输出电压特性曲线斜率无穷大,实际应用中,斜率不会是无穷大,但也是一个相对很大的值,而C-R结构输出电压的下降快慢则取决于C-R自身的时间常数。这样在相同的电阻、电容大小设置下,C-R结构就比R-C加反相器结构更晚达到一个特定的低电平。用Hspice进行仿真,图4所示为R-C加反相器结构在一个特定ESD脉冲下R-C加反相器结构输出节点(即Mp的漏极)的电压变化示意图,图5为电容-电阻模块1与图4大小相同的电阻、电容设置下,施加与图4相同的ESD脉冲时电容-电阻模块1输出节点(即R1和C1交点)的电压变化示意图,对比图4和图5,二者下降斜率的区别可知,本实施方式的电容-电阻模块1使得钳位晶体管开启时间比传统ESD保护电路长。The first improvement of the high-reliability power supply clamp ESD protection circuit of this embodiment compared with the traditional ESD protection circuit is that the capacitor-resistor (C-R) structure is used instead of the R-C plus inverter structure as the ESD pulse detection circuit. Logically, the output voltage curves of the R-C plus inverter structure and the C-R structure under the ESD pulse are basically the same. The difference between the two is that the output voltage of the R-C plus inverter structure under the ESD pulse has a relatively The falling slope is fast, while the output voltage of the C-R structure drops slowly. This is because traditional inverters have a logic threshold voltage. Ideally, the slope of the input-output voltage characteristic curve of an inverter near the logic threshold voltage is infinite. In practical applications, the slope will not be infinite, but it is also a relative The value is very large, and the drop speed of the output voltage of the C-R structure depends on the time constant of the C-R itself. In this way, under the same resistance and capacitance settings, the C-R structure reaches a specific low level later than the R-C plus inverter structure. Use Hspice for simulation. Figure 4 shows the schematic diagram of the voltage change of the output node (that is, the drain of Mp) of the R-C plus inverter structure under a specific ESD pulse. Figure 5 shows the capacitor-
本实施方式的高可靠性电源钳位ESD保护电路的工作原理为:当一个上升时间为纳秒或者数十纳秒量级的ESD脉冲加到电源管脚Vdd时,所述电容C1和电阻R1的交点的电压会跟随本实施方式中高可靠性电源钳位ESD保护电路的电源管脚Vdd较快达到一个高电平值(即上述第一响应信号),这时PMOS晶体管Mp1-1关断,PMOS晶体管Mp2的栅极被NMOS晶体管Mn1下拉到低电平,然后PMOS晶体管Mp2开启,把钳位晶体管Mbig1的栅极电压拉到高电平,钳位晶体管Mbig1启动,Mbig1开始释放所述静电放电脉冲带来的静电电荷。The working principle of the high-reliability power supply clamp ESD protection circuit in this embodiment is: when an ESD pulse with a rise time of nanoseconds or tens of nanoseconds is applied to the power supply pin Vdd, the capacitor C1 and the resistor R1 The voltage at the intersection point will follow the power supply pin Vdd of the high-reliability power clamp ESD protection circuit in this embodiment and reach a high level value (that is, the above-mentioned first response signal), at this time, the PMOS transistor Mp1-1 is turned off, The gate of the PMOS transistor Mp2 is pulled down to a low level by the NMOS transistor Mn1, then the PMOS transistor Mp2 is turned on, and the gate voltage of the clamping transistor Mbig1 is pulled to a high level, the clamping transistor Mbig1 is started, and Mbig1 starts to discharge the electrostatic discharge Electrostatic charges from pulses.
接下来所述电容C1和电阻R1的交点的电压会以一个由C-R时间常数决定的斜率下降,理想的情况下,所述电容C1和电阻R1的交点的电压下降到Vdd-2|Vthp|,之后,Mp1-1和Mp1-2就会开启,把PMOS晶体管Mp2的栅极电压上拉,使得Mp2关断,在忽略漏电流的情况下,此时钳位晶体管Mbig1的栅电压会悬浮在之前的Vdd水平,故Mbig1会继续开启,其中,Vthp表示PMOS晶体管的阈值电压。Next, the voltage at the intersection of the capacitor C1 and the resistor R1 will drop with a slope determined by the C-R time constant. Ideally, the voltage at the intersection of the capacitor C1 and the resistor R1 will drop to Vdd-2|Vthp|, After that, Mp1-1 and Mp1-2 will be turned on, and the gate voltage of the PMOS transistor Mp2 will be pulled up, so that Mp2 will be turned off. In the case of ignoring the leakage current, the gate voltage of the clamping transistor Mbig1 will be suspended at the previous Vdd level, so Mbig1 will continue to turn on, wherein, Vthp represents the threshold voltage of the PMOS transistor.
在所述电容C1和电阻R1的交点的电压下降到Vdd-|Vthp|(即上述第二响应信号)时,PMOS晶体管Mp4进入开启状态,把Mp4的漏极电压拉高。由于PMOS晶体管Mp4和电容C2组成了一个等效的R-C延迟结构,所以Mp4的漏极电压的上拉存在一个相应的R-C时间延迟。这个时间延迟过后,Mp4的漏极电压达到一个较高的水平,通过Mp3和Mn3组成的反相器,使得Mp5的栅极电压变为低电平,然后Mp5导通,经过由Mp5和电容C3决定的时间延迟,Mn2的栅极电压被上拉为高电平,这样Mn2导通,把钳位晶体管Mbig1的栅极电压拉低,使其关断,结束释放ESD脉冲的动作。When the voltage at the intersection of the capacitor C1 and the resistor R1 drops to Vdd−|Vthp| (that is, the second response signal), the PMOS transistor Mp4 enters an on state, and the drain voltage of Mp4 is pulled up. Since the PMOS transistor Mp4 and the capacitor C2 form an equivalent R-C delay structure, there is a corresponding R-C time delay in pulling up the drain voltage of Mp4. After this time delay, the drain voltage of Mp4 reaches a higher level, through the inverter composed of Mp3 and Mn3, the gate voltage of Mp5 becomes low level, and then Mp5 is turned on, passing through the inverter composed of Mp5 and capacitor C3 After a determined time delay, the gate voltage of Mn2 is pulled up to a high level, so that Mn2 is turned on, and the gate voltage of the clamping transistor Mbig1 is pulled down to turn it off, ending the action of releasing the ESD pulse.
Mp2关断之后与Mn2开启之前的这段时间内,在理想情况下,钳位晶体管Mbig1的栅极电压悬浮于Mp2关断时刻的本实施方式中高可靠性电源钳位ESD保护电路的电源管脚Vdd的状态,这样就避免了由于Mbig1释放ESD脉冲过程中由本实施方式中高可靠性电源钳位ESD保护电路的电源管脚Vdd电压下降导致的Mbig1泄放能力减弱的现象。During the period after Mp2 is turned off and before Mn2 is turned on, ideally, the gate voltage of the clamping transistor Mbig1 is suspended at the moment when Mp2 is turned off. In this embodiment, the high-reliability power supply clamps the power supply pin of the ESD protection circuit. Vdd state, thus avoiding the weakening of the Mbig1 discharge capability due to the voltage drop of the power supply pin Vdd of the high-reliability power supply clamping the ESD protection circuit in this embodiment during the process of Mbig1 releasing the ESD pulse.
值得说明的一点是:钳位晶体管开启模块里面用到的反相器与传统反相器有所差别,这个反相器对于延长Mbig的开启时间有两方面的作用:一、用栅极接电源管脚Vdd的晶体管Mn1作一个电流源,Mn1会一直处于导通状态,这样即便是Mp1-1和Mp1-2已经完全开启,也无法把Mp2的栅极电压完全上拉到与电源管脚Vdd相等的高电平,于是Mp2就比没有Mn1作电流源的情况下有稍强的导电能力,故而Mn2需要更多的时间才能把Mbig1的栅极的电平下拉到Mbig1的阈值电压以下,导致Mbig1更长的开启时间。二、用栅极与漏极短接的晶体管Mp1-2作Mp1-1的负载管,使得Mp1-1的开启条件变为:所述电容C1和电阻R1的交点的电压下降到Vdd-2|Vthp|以后。比之于不用Mp1-2作负载管下Vdd-|Vthp|的开启条件,所述电容C1和电阻R1的交点自然需要一个更长的时间来达到一个更低的电平,于是也导致Mbig1开启时间的延长。图6为Hspice的仿真结果,Mp2的栅极电压(图中的“V2”)是在Mp1-1的栅极电压(图中的“V1”)下降到360mV左右(与Vdd-2|Vthp|近似相等)才开始明显上拉,同时Mp2的栅极电压上拉幅度为665mV左右,而不是1V(这里所施加ESD脉冲的幅度为1V)。当然,要想上述改进了的反相器实现正确的逻辑功能,管子的相对尺寸很重要,这里Mn1的尺寸要比Mp1-1和Mp1-2的尺寸设置得小很多。It is worth noting that the inverter used in the clamp transistor turn-on module is different from the traditional inverter. This inverter has two functions for prolonging the turn-on time of Mbig: 1. Connect the gate to the power supply The transistor Mn1 of the pin Vdd is used as a current source, and Mn1 will always be in the conduction state, so even if Mp1-1 and Mp1-2 are fully turned on, the gate voltage of Mp2 cannot be completely pulled up to the power supply pin Vdd Equal high level, so Mp2 has a slightly stronger conductivity than that without Mn1 as a current source, so Mn2 needs more time to pull down the level of the gate of Mbig1 to below the threshold voltage of Mbig1, resulting in Mbig1 longer on time. 2. Use the transistor Mp1-2 with the gate and drain short-circuited as the load tube of Mp1-1, so that the turn-on condition of Mp1-1 becomes: the voltage at the intersection of the capacitor C1 and the resistor R1 drops to Vdd-2| Vthp|Later. Compared with the turn-on condition of Vdd-|Vthp| without Mp1-2 as the load tube, the intersection of the capacitor C1 and the resistor R1 naturally takes a longer time to reach a lower level, which also causes Mbig1 to turn on extension of time. Figure 6 shows the simulation results of Hspice. The gate voltage of Mp2 ("V2" in the figure) drops to about 360mV (with Vdd-2|Vthp| Approximately equal) began to pull up obviously, and the pull-up range of the gate voltage of Mp2 was about 665mV, instead of 1V (the amplitude of the ESD pulse applied here was 1V). Of course, in order for the above-mentioned improved inverter to realize the correct logic function, the relative size of the tubes is very important. Here, the size of Mn1 is much smaller than that of Mp1-1 and Mp1-2.
正常上电的情况下,电源管脚Vdd以一个较慢的斜率被上拉,这样C1积累的电荷能够被R1及时的释放掉,于是所述电容C1和电阻R1的交点一直处于一个较低的电平值,使得Mp2的栅极始终处于高电平状态,于是Mp2不导通,使得Mn2的栅极电压无法上拉,这种情况下,Mbig1不会被触发,保证了正确的工作逻辑。In the case of normal power-on, the power supply pin Vdd is pulled up with a slow slope, so that the charge accumulated in C1 can be released by R1 in time, so the intersection point of the capacitor C1 and the resistor R1 is always at a lower level. The level value makes the gate of Mp2 always in a high level state, so Mp2 is not turned on, so that the gate voltage of Mn2 cannot be pulled up. In this case, Mbig1 will not be triggered, ensuring the correct working logic.
为了便于量化钳位晶体管的开启时间,以0.7V作为钳位晶体管的阈值电压,图7是图1所示的传统的电源钳位ESD保护电路施加一个ESD脉冲后,钳位晶体管的栅极电压变化示意图;图8是图2所示的高可靠性电源钳位ESD保护电路施加一个ESD脉冲后,钳位晶体管的栅极电压变化示意图;可以看出图1所示的传统的电源钳位ESD保护电路中钳位晶体管开启时间为64.8ns,图2所示的高可靠性电源钳位ESD保护电路中电路钳位晶体管开启时间为608.9ns,在同样大小的电容和电阻以及同样的ESD脉冲下,通过本实施方式的高可靠性电源钳位ESD保护电路得到了9倍多于传统ESD保护电路的钳位晶体管开启时间,这无疑给了纳米尺度电路设计更大的把R、C时间常数做小的裕度,R、C时间常数做得越小,电路对于快速上电的正常充电电压免疫能力就越强,这正好解决了前面提到的纳米尺度下ESD保护性能可靠性的问题。In order to quantify the turn-on time of the clamp transistor, 0.7V is used as the threshold voltage of the clamp transistor. Figure 7 shows the gate voltage of the clamp transistor after an ESD pulse is applied to the traditional power supply clamp ESD protection circuit shown in Figure 1 Change schematic diagram; Figure 8 is a schematic diagram of the gate voltage change of the clamp transistor after the high-reliability power clamp ESD protection circuit shown in Figure 2 applies an ESD pulse; it can be seen that the traditional power clamp ESD shown in Figure 1 The turn-on time of the clamp transistor in the protection circuit is 64.8ns. The turn-on time of the clamp transistor in the high-reliability power supply clamp ESD protection circuit shown in Figure 2 is 608.9ns. Under the same capacitance and resistance and the same ESD pulse Through the high-reliability power supply clamp ESD protection circuit of this embodiment, the clamp transistor turn-on time of 9 times more than that of the traditional ESD protection circuit is obtained, which undoubtedly gives nanoscale circuit design greater control over the R and C time constants. With a small margin, the smaller the R and C time constants, the stronger the immunity of the circuit to the normal charging voltage of fast power-on, which just solves the problem of reliability of ESD protection performance at the nanometer scale mentioned above.
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。The above embodiments are only used to illustrate the present invention, but not to limit the present invention. Those of ordinary skill in the relevant technical field can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, all Equivalent technical solutions also belong to the category of the present invention, and the scope of patent protection of the present invention should be defined by the claims.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110129544.4A CN102185305B (en) | 2011-05-18 | 2011-05-18 | High Reliability Power Clamp ESD Protection Circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110129544.4A CN102185305B (en) | 2011-05-18 | 2011-05-18 | High Reliability Power Clamp ESD Protection Circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102185305A CN102185305A (en) | 2011-09-14 |
CN102185305B true CN102185305B (en) | 2014-02-26 |
Family
ID=44571398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110129544.4A Active CN102185305B (en) | 2011-05-18 | 2011-05-18 | High Reliability Power Clamp ESD Protection Circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102185305B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103001205A (en) * | 2012-11-02 | 2013-03-27 | 长沙景嘉微电子股份有限公司 | Electrostatic protection circuit applied to power supply pin |
CN103001200B (en) * | 2012-12-14 | 2015-04-22 | 北京大学 | Multiple RC triggered power supply clamp electro-static discharge (ESD) protective circuit |
CN103078305B (en) * | 2013-01-09 | 2015-02-04 | 北京大学 | Anti-false-triggering power supply clamp ESD (Electro-Static Discharge) protection circuit |
CN105680433B (en) * | 2016-03-24 | 2018-01-26 | 北京大学 | A kind of ESD power clamp protection circuit |
CN109752612B (en) * | 2018-12-29 | 2021-03-16 | 西安紫光国芯半导体有限公司 | Simulation circuit and method of chip ESD protection circuit |
CN110912098B (en) * | 2019-11-25 | 2021-08-24 | 南京尔芯电子有限公司 | Circuit for preventing electrostatic discharge ESD protection from causing leakage current under power-off |
CN112104044B (en) * | 2020-09-22 | 2021-12-24 | 中国科学院微电子研究所 | Off-chip high voltage isolation circuit for fast charging interface |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5978192A (en) * | 1997-11-05 | 1999-11-02 | Harris Corporation | Schmitt trigger-configured ESD protection circuit |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7102864B2 (en) * | 2004-06-14 | 2006-09-05 | King Billion Electronics Co., Ltd. | Latch-up-free ESD protection circuit using SCR |
US20090040671A1 (en) * | 2007-08-10 | 2009-02-12 | Skyworks Solutions, Inc. | Power clamp for on-chip ESD protection |
-
2011
- 2011-05-18 CN CN201110129544.4A patent/CN102185305B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5978192A (en) * | 1997-11-05 | 1999-11-02 | Harris Corporation | Schmitt trigger-configured ESD protection circuit |
Also Published As
Publication number | Publication date |
---|---|
CN102185305A (en) | 2011-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102185305B (en) | High Reliability Power Clamp ESD Protection Circuit | |
CN103248033B (en) | Transient and DC synchronous triggering type power supply clamping ESD protection circuit | |
CN105680433B (en) | A kind of ESD power clamp protection circuit | |
CN108494234B (en) | Floating power rail suitable for GaN high-speed gate drive circuit | |
CN103107528B (en) | Power clamping electrostatic discharge protection circuit | |
CN102170118B (en) | Power supply clamping position ESD (electronic static discharge) protecting circuit | |
CN107272856B (en) | Low power reset circuit | |
CN102882497B (en) | Low-power-consumption high-reliability electrification resetting circuit | |
US8649137B2 (en) | Semiconductor device and method of forming same for ESD protection | |
CN103078305B (en) | Anti-false-triggering power supply clamp ESD (Electro-Static Discharge) protection circuit | |
CN102222891B (en) | Power clamping ESD (electro-static discharge) protection circuit utilizing current mirror | |
CN102222892A (en) | Low-leakage type power supply clamping ESD (electronic static discharge) protection circuit | |
CN104242286B (en) | A kind of low leakage type power clamp ESD protective circuit | |
CN105470938A (en) | Power supply clamping circuit for prolonging electrostatic discharge time | |
CN104037748B (en) | A kind of anti-breech lock for ESD triggers circuit | |
CN104867910A (en) | Electrostatic discharge protection circuit and semiconductor device | |
CN104242285A (en) | Clamp ESD protection circuit for latch-up prevention type power supply | |
CN106325449B (en) | A kind of power-on-reset circuit with low power consumption | |
CN103401229A (en) | Voltage triggering static discharge clamping circuit with feedback strengthening effect | |
CN111193249A (en) | A clamp circuit that can be used for both electrostatic discharge and surge protection | |
CN112968437B (en) | ESD Protection Circuit and Chip ESD Protection Network | |
CN106533407A (en) | Power on reset circuit | |
CN110518561A (en) | A kind of power clamp ESD protective circuit and integrated circuit structure | |
CN102255304A (en) | ESD (Electro Spark Detector) power clamping circuit | |
CN106602532A (en) | Current limiting circuit, driving method thereof, PMIC protection system and display device protection system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |