CN102163363A - Landslide real-time monitoring and warning system - Google Patents

Landslide real-time monitoring and warning system Download PDF

Info

Publication number
CN102163363A
CN102163363A CN 201110086453 CN201110086453A CN102163363A CN 102163363 A CN102163363 A CN 102163363A CN 201110086453 CN201110086453 CN 201110086453 CN 201110086453 A CN201110086453 A CN 201110086453A CN 102163363 A CN102163363 A CN 102163363A
Authority
CN
China
Prior art keywords
vibration
sensor
mountain
master node
node
Prior art date
Application number
CN 201110086453
Other languages
Chinese (zh)
Other versions
CN102163363B (en
Inventor
吴祖亮
孙茜
许东
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Priority to CN 201110086453 priority Critical patent/CN102163363B/en
Publication of CN102163363A publication Critical patent/CN102163363A/en
Application granted granted Critical
Publication of CN102163363B publication Critical patent/CN102163363B/en

Links

Abstract

The invention discloses a landslide real-time monitoring and warning system. The system comprises a main control node and a plurality of sensor nodes; each sensor node comprises a global positioning system (GPS) module, a vibration trigger module, a micro electro mechanical system (MEMS) accelerometer, a memory, an advanced reduced instruction-set computer (RISC) machine (ARM) processor, a wireless transmission module and a power supply module; the main control node consists of a GPS module, a wireless transmission module, a memory, an ARM processor and an alarm; the sensor nodes acquire mountain deformation parameters through the GPS modules, acquire an instantaneous abnormal underground vibration signal through the MEMS accelerometer, and send data to the main control node through the wireless transmission modules; the main control node receives the mountain deformation parameters and the instantaneous abnormal vibration data of the sensor nodes through the wireless transmission modules, comprehensively analyzes the mountain deformation parameters and the instantaneous abnormal vibration data, and sends landslide warning information to the alarm. The system can be used for monitoring the state of a mountain in real time and timely detecting premonition of landslides and has the advantages of flexible deployment and convenience for use.

Description

山体滑坡实时监测与预警系统 Mountain landslide real-time monitoring and early warning system

技术领域 FIELD

[0001] 本发明涉及地质灾害监测领域,尤其是一种山体滑坡实时监测与预警系统。 [0001] The present invention relates to the field of monitoring of geological disasters, especially landslides is a real-time monitoring and early warning systems. 背景技术 Background technique

[0002] 近年来国内外地震、山体滑坡、泥石流等地质灾害频发,尤其是在我国,由于对资源的过度开发,自然环境严重恶化,各种地质灾害对人民的生命、财产安全造成了极大威害。 Geological disasters [0002] In recent years, domestic and foreign earthquakes, landslides, mudslides and other frequently, especially in China, due to over-exploitation of resources, the serious deterioration of the natural environment, geological disasters on people's lives and property caused by the extreme Venus harm. 另外,随着大型水电站、水库、公路、铁路工程等基础设施的不断建设,滑坡、决提、塌陷等破破坏性灾害,也严重影响着这些基础设施的使用安全和寿命。 In addition, with the construction of large hydropower infrastructure, reservoirs, roads, railways and other projects, landslide, we must mention, breaking destructive disasters such as collapse, but also seriously affect the safe use and life of these infrastructures. 据不完全统计,我国每年发生滑坡、泥石流、塌陷等各种地质灾害数万起,能够在灾害发生前做出预警的还不到十分之一,如何对这些地质灾害进行监测和预警,切实保护人民的生命和财产安全,是我国当前面临的一个重要课题。 According to incomplete statistics, China landslides, mudslides, subsidence and other geological disasters occur every year tens of thousands of cases, to be able to make one not very warning before the disaster, monitoring and early warning of how these geological hazards, earnestly protect life and property safety of the people, it is an important issue currently facing our country.

[0003] 目前对滑坡、塌陷等地质灾害的监测和预警通常都是政府行为,需要动员大量的人力、物力,利用大型、昂贵的仪器设备进行监测。 [0003] Currently landslides, subsidence and other geological disasters monitoring and early warning are usually government actions need to mobilize a lot of manpower, material resources, the use of large, expensive monitoring equipment. 主要的监测方法有:宏观异常观测法(如动物异常、地表特明显位移、地陷、地裂、隆起等)、物探法、位移测量法、水位异常分析法、遥感航测法等。 The main monitoring methods: Macro observation method abnormality (e.g., abnormal animals, significantly displaced Laid surface, subsidence, crack, swelling, etc.), geophysical method, displacement measurement, analysis abnormal water level, aerial remote sensing method. 但这些方法存在监测设备体积大、需要专业人员操作等问题,只能对少数的重要区域进行监测,无法推广到广大存在安全隐患的地区,难以满足乡村、企业和个人对地质灾害监测和预警的需求。 However, these methods there is monitoring equipment is bulky, need professionals to operate and other issues, only a small number of key areas to monitor, can not be extended to vast areas of security risk, it is difficult to meet rural businesses and individuals geological disaster monitoring and early warning demand.

[0004] 现有的山体滑坡监测与预警方法和装置都需要通过观察或探测地质结构的变化来预测地质灾害的发生,但是,由于滑坡、塌陷等地质灾害的发生存在很大的偶然性,这些方法和装置只能给出发生滑坡、塌陷等地质灾害的可能性,无法准确预报灾害发生的时间。 Occur [0004] landslides conventional method and apparatus for monitoring and early warning require changes observed by detecting or predicting the geological structure of geological disasters, however, since there is a big chance geological disasters such as landslides, collapse, etc., these methods and the possibility of the device can only be given landslide, subsidence and other geological disasters, the time of the disaster can not be accurately forecast. 因此,亟需一种小型化、低成本、操作简便的滑坡等地质灾害实时监测与预警系统,以解决乡村、企业和个人对滑坡、塌陷等地质灾害监测和预警的需求。 Therefore, geological hazards need a small, low-cost, easy-to landslides and other real-time monitoring and early warning systems to address rural, business and personal needs for geological disaster monitoring and early warning of landslides, collapses and other.

发明内容 SUMMARY

[0005] 本发明的目的在于提供一种能对山体滑坡等地质灾害进行实时监测和预警的系统。 [0005] The object of the present invention is to provide a system for real-time monitoring and early warning of landslides and other geological disasters. 该系统部署和使用方便、监测和预警准确性高,可以为乡村、企业和人体用户提供可靠的滑坡前兆预警。 The system deployment and ease of use, high accuracy monitoring and early warning, can provide a reliable precursor landslide early warning for rural, business and human users.

[0006] 为实现上述发明目的,本发明是由一个主控节点和多个传感器节点组成的传感器网络。 [0006] In order to achieve the above object, the present invention is a sensor network consists of a master node and a plurality of sensor nodes. 传感器节点分布式部署于山体的不同位置(如图2所示),负责采集不同观测点的山体地表形变和振动信号,并通过无线传输方式发送给主控节点;主控节点接收传感器节点的位置信息和地下瞬时振动信号,并对数据进行综合分析,将滑坡预警信息发送给报警器, 发出分级报警信号。 Nodes of a distributed sensor deployed in different positions of the mountain (FIG. 2), is responsible for collecting surface deformation and vibration signals different observation points of the mountain, and sent to the master node through wireless transmission; the master node receives the position sensor node underground transient vibration signals and information, and a comprehensive analysis of the data, and sends the information to the landslide warning alarm, the alarm signal emitted classification.

[0007] 主控节点可以部署在地质结构稳定的位置(如图2所示),主控节点的GPS模块通过接收GPS卫星信号,对自身位置进行解算,并向传感器节点发送差分信号。 [0007] the master node can be deployed in a stable position of the geological structure (Figure 2), GPS module master node receives GPS satellite signals, the resolver position itself by transmitting a differential signal to the sensor node. 传感器节点分布式部署于存在潜在滑坡可能的位置(如图2所示),传感器节点的GPS模块根据GPS卫星信号和主控节点发送的差分信号,解算自身的位置,并传送给主控节点。 Deploying sensor nodes in a distributed potential landslides possible positions (FIG. 2), GPS sensor node module according to the GPS satellite signal and the differential signal transmitted from the master node, the resolver own position and send it to the master node . 主控节点通过无线 Master node through wireless

3方式接收不同传感器节点的位置信息,计算出不同传感器节点与主控节点的相对位置,可以得到山体的地表形变参数,为山体滑坡提供中长期监测与预警信息。 3 receives a different embodiment of the sensor node position information, calculates the relative position of the different sensor nodes and the master node can be obtained surface deformation parameters of the mountain, to provide long-term monitoring and early warning information landslides.

[0008] 传感器节点的振动触发器检测到异常的地下振动时,触发MEMS加速度计采集地下瞬时振动信号,并将振动信号传递到主控节点。 Vibration Trigger [0008] The sensor node detects abnormal vibration of the ground, underground acquisition trigger MEMS accelerometer instantaneous vibration signal, the vibration signal and transmitted to the master node. 主控节点根据GPS模块提供的山体地表形变参数和MEMS加速度计提供的地下瞬时振动信息,计算山体滑坡发生的概率,并启动报警器发出不同等级的报警信号。 The master node underground mountain surface vibration information instantaneous deformation parameters MEMS accelerometer and GPS module to provide a count of the computation of a probability of occurrence of landslides, and activates the alarm emits different levels of an alarm signal.

[0009] 本发明通过检测山体地表形变和地下瞬时振动异常对山体滑坡进行监测和预警。 [0009] The present invention Abnormal landslide monitoring and early warning by detecting surface deformation and subsurface mountain instantaneous vibration. 地表形变能反映出山体的变化状态,预测潜在的山体滑坡灾害;地下瞬时振动异常信号反应了山体的瞬时变动,能准确地检测滑坡前兆,给出实时预警信息。 Surface deformation can reflect changes in the status of the mountain, predict potential landslide hazard; underground abnormal transient vibration signal reflects the instantaneous change in the mountain, can accurately detect precursor landslide, given the real-time early warning information. 与基于地表位移、地下结构和山体倾斜度变化的滑坡检测装置相比,本发明不仅可以提供中长期预警,还可以提供准确的滑坡前兆预警,克服了现有方法和装置预警周期长、时间预测不准确的缺点。 Compared to the landslide surface displacement detecting means, and the change in the inclination of the underground structure based on the mountain, the present invention not only can provide a long-term alarm may also provide an accurate early warning of landslide precursor, a method and apparatus to overcome the existing warning long cycle time prediction inaccurate shortcomings.

附图说明 BRIEF DESCRIPTION

[0010] 图1主控节点和传感器节点间的数据传递 [0010] data transfer between the master node and the sensor node 1 in FIG.

[0011] 图2山体滑坡实时监测和预警系统网络结构与部署示意图 [0011] FIG. 2 landslides time monitoring and warning systems for deployment schematic configuration

[0012] 图3传感器节点电路框图 [0012] FIG circuit block diagram of a sensor node 3

[0013] 图4传感器节点物理结构示意图 [0013] The physical structural diagram of a sensor node 4

[0014] 图5主控节点电路框图 [0014] FIG. 5 a block diagram of the node control circuit

[0015] 图6主控节点物理结构示意图 [0015] FIG 6 schematic physical structure of the master node

具体实施方式 Detailed ways

[0016] 如图2所示,系统由一个主控节点和多个传感器节点组成。 [0016] 2, the system consists of a master node and a plurality of sensor nodes. 主控节点部署在结构稳定的区域,提供观测基点,并作为数据处理中心。 Master node deployed in a stable structure area, provide observation point, and as a data processing center. 传感器节点部署于潜在的滑坡区域,用于监测山体地表的形变和地下的振动异常信号。 Sensor nodes deployed in the region of potential landslides, an abnormality signal for vibrating body surface deformation and subsurface monitoring hill. 传感器节点与主控节点之间通过无线传输方式传递数据和控制信息(如图1所示)。 Between the sensor nodes and the master node transmitting data and control information (shown in FIG. 1) by wireless transmission.

[0017] 传感器节点的电路框图如图3所示,包括GPS模块、振动触发器、MEMS加速度计、存储器、ARM处理器、无线传输模块、电源模块、GPS卫星天线和无线收发天线。 Circuit [0017] The block diagram of a sensor node shown in FIG. 3, including a GPS module, a vibration trigger, the MEMS accelerometer, the memory, the ARM processor, a wireless transmission module, a power module, an antenna and a GPS satellite radio receiving antenna. 其物理结构如图4所示,由金属探针1、基座2、MEMS加速度计3、振动触发器4、传感器板5、处理器板6、无线通信板7、电源管理板8、充电电池9、太阳能电池10、GPS卫星天线11、无线收发天线12 和封装外壳13组成。 Its physical structure shown in Figure 4, a metal probe 1, the base 2, MEMS accelerometers 3, 4 triggers the vibration sensor plate 5, the processor board 6, a wireless communication board 7, the power management board 8, the rechargeable battery 9, the solar cell 10, GPS satellite antenna 11, a wireless transceiver 12 and the antenna housing 13 encapsulating composition. 金属探针1与基座2固联在一起,安装在传感器节点的底部;MEMS加速度计3和振动触发器4固定在基座2上方;传感器节点通过金属探针1埋植在地表岩石或坚实土层中。 Solid metal probe 12 associated with the base and, mounted on the bottom of the sensor node; the MEMS accelerometers 3 and 4 are fixed in a vibration trigger above the base 2; probe sensor node 1 through the implanted metal or solid surface rocks soil. 由于金属探针1、基座2、振动触发器4和MEMS加速度计3固联在一起,中间没有减振环节,具有很大的振动信号传递带宽,因此地下的振动信号通过探针1和基座2,可以被振动触发器4和MEMS传感器3有效接收。 Since the metal probe 1, the base 2, the trigger 4 and the vibrating MEMS accelerometer 3 is fixedly connected together, without any damping part, a vibration signal having a large transmission bandwidth, vibration signals through the probe 1 and the ground-yl Block 2, 4 and flip-flops can be vibrated efficiently MEMS sensor 3 receives. 传感器板5包括GPS模块、振动触发和检测模块,GPS模块通过GPS卫星天线11接收GPS卫星的导航信号,并结合由主控节点发送的GPS差分信号,进行位置解算,获得传感器节点的高精度位置信息;振动触发和检测模块接收由振动触发器4和MEMS传感器3传来的地下振动信号。 Plate 5 comprises a GPS sensor module, and the detection precision vibration trigger module, the GPS module via a GPS satellite antenna receiving GPS satellite navigation signal 11, and combined with GPS differential signal transmitted by the master node performs the position resolver, sensor nodes obtained position information; and a vibration detection module receives the trigger from the trigger 4 and the vibration transmitted MEMS sensor 3 underground vibration signals. 传感器板5将高精度位置信息和振动信号通过接口电路传递到处理器板6进行处理。 The high precision sensor plate 5 and the position information of the vibration signal is passed through an interface circuit board to the processor 6 for processing. 处理器板6将处理后的信号通过无线通信板7由无线收发天线12发送到主控节点。 6 the processor board 7 transmits the processed signals to the master node through the wireless communication antenna 12 by the wireless transceiver board. 电源管理板8负责充电电池9和太阳能电池10的充放电管理,并为传感器板5、处理器板6和无线通信板7供电。 Power management board 8 is responsible for charging and discharging the rechargeable battery 9, and the management of the solar cell 10, and the sensor board 5, the plate 6 and the wireless communication processor board power supply 7. 太阳能电池10负责把太阳能转换成电能,为充电电池9和其它电路板供电。 The solar cell 10 is responsible for converting solar energy into electric energy, charging the battery 9 and the other circuit board power supply. 封装外壳13为传感器提供封装保护。 Encapsulation package housing 13 provides protection for the sensor.

[0018] 主控节点的电路框图如图5所示,包括GPS模块、存储器、ARM处理器、无线传输模块、电源模块、GPS卫星天线、无线收发天线和报警器。 Circuit [0018] The block diagram of the master node shown in FIG. 5, including a GPS module, a memory, the ARM processor, a wireless transmission module, a power module, GPS satellite antenna, receiving antenna and the radio alarm. 其物理结构如图6所示,由金属探针1、基座2、传感器板3、处理器板4、无线通信板5、电源管理板6、充电电池7、太阳能电池8、 GPS卫星天线9、无线收发天线10、报警灯11、蜂鸣器12和封装外壳13组成。 The physical structure shown in Figure 6, a metal probe 1, the base 2, the sensor plate 3, the processor board 4, a wireless communication board 5, power management board 6, a rechargeable battery 7, the solar cell 8, GPS satellite antenna 9 , radio antenna 10, an alarm lamp 11, a buzzer 12 and a housing 13 encapsulating composition. 金属探针1 与基座2固联在一起,安装在传感器节点的底部,传感器节点通过金属探针1埋植在地表岩石或坚实土层中。 Solid metal probe 12 associated with the base and, mounted on the bottom of the sensor node, the sensor node 1 through the metal probe implantable in solid rock or soil surface. 传感器板3包括GPS模块,GPS模块通过GPS卫星天线9接收GPS卫星的导航信号,进行位置解算,获得传感器节点的高精度位置信息,并解算差分信号。 Plate 3 includes a GPS sensor module, the GPS module receives the GPS satellites through the GPS antenna 9 satellite navigation signals, the position resolver, highly accurate position information of the sensor node, and a differential signal resolver. 传感器板3将高精度位置信息和差分信号通过接口电路传递到处理器板4进行处理。 The high precision sensor plate 3 and the position information is processed difference signal 4 is transmitted to the processor through the interface circuit board. 处理器板4将处理后的差分信号通过无线通信板5由无线收发天线10发送到传感器节点。 Differential signal processor board 4 to the sensor node transmits the processed plate 5 by wireless communication antenna 10 by the wireless transceiver. 无线收发天线10接收由每个传感器节点发送的高精度位置信息和地下振动信号,经无线通信板5送到处理器板4进行综合处理,获得山体滑坡的发生概率和时间预测,传递到报警灯11和蜂鸣器12进行分级报警。 Precision ground vibration signals and position information radio receiving antenna 10 transmitted by each sensor node via a wireless communication to the processor board 5 integrated processing board 4, to obtain the probability of occurrence and the time of landslides prediction, is transmitted to the warning lights 11 and the alarm buzzer 12 for classification. 电源管理板6负责充电电池7和太阳能电池8的充放电管理,并为传感器板3、处理器板4、无线通信板5、报警灯11和蜂鸣器12供电。 Power management board 6 is responsible for charging and discharging the rechargeable battery and solar cell 8 7 management, and the sensor plate 3, the processor board 4, a wireless communication board 5, the alarm lamp 11 and the buzzer 12 power. 太阳能电池8负责把太阳能转换成电能,为充电电池7和其它电路板供电。 The solar cell 8 is responsible for converting solar energy into electrical energy, battery charging circuit 7 and the other board. 封装外壳13为传感器提供封装保护。 Encapsulation package housing 13 provides protection for the sensor.

[0019] 本发明利用分布式传感器节点的GPS接收模块采用差分定位方法获得传感器节点和主控节点的高精密位置信息,从而得到山体地表的形变参数;利用MEMS加速度传感器结合振动触发器获得地下的瞬时振动异常信号,可以提供地下地质活动的实时监测数据。 [0019] The present invention utilizes the GPS receiving module using the distributed sensor nodes differential positioning method for obtaining high-precision location information of the sensor node and the master node, whereby the surface deformation parameter mountain; in conjunction with MEMS accelerometer vibration trigger obtained underground transient abnormal vibration signal, the data can provide real-time monitoring of underground geological activity. 通过对这两类信号的融合处理,不仅可以获得山体滑坡预警信息,还可以获得高精度的滑坡预兆时间预测。 By combining these two types of signal processing, not only can get early warning information landslides, also get highly accurate harbinger landslide time prediction.

[0020] 本发明通过监测地表形变参数和地下振动信号,还可应用于地表塌陷、泥石流等地质灾害的监测与预警。 [0020] The present invention, by monitoring parameters of surface deformation and subsurface vibration signals, and also for monitoring and early warning of geological disasters surface subsidence, landslides and the like.

Claims (10)

1. 一种山体滑坡实时监测与预警系统,其特征在于:系统包括一个主控节点和多个传感器节点;传感器节点分布式部署,可监测不同位置的山体形变和地下振动信息;主控节点接收每个传感器节点采集和传送的不同位置的山体形变和地下振动信息,并进行融合处理,得到山体状态和滑坡预警信息。 A landslide Monitoring and warning system, characterized in that: the system comprises a master node and a plurality of sensor nodes; node of a distributed sensor deployed, mountain shape change can be monitored in different positions and ground vibration information; receiving the master node mountain shape becomes different positions of each sensor node and the underground collection and transfer vibration information, and fusion process to give mountain landslides and a warning status information.
2.如权利要求1所述的山体滑坡实时监测与预警系统,其特征在于:装有无线传输模块,可把传感器节点采集的山体表面形变参数和地下瞬时振动信号通过无线方式传送到主控节点,并把主控节点的GPS差分数据传送到传感器节点。 2. mountain landslides according to a real-time monitoring and early warning system of claim, wherein: equipped with a wireless transmission module, the sensor nodes can be collected by surface deformation and subsurface parameter mountain transient vibration signals transmitted wirelessly to the master node , GPS and transmits the difference data to the sensor node is the master node.
3.如权利要求1所述的山体滑坡实时监测与预警系统,其特征在于:采用太阳能电池和充电电池供电,可以全天时、长期无人值守工作。 Mountain landslides according to a real-time monitoring and warning system as claimed in claim 3, characterized in that: the use of solar cells and rechargeable battery, can all-time, long term unattended.
4.如权利要求1所述的传感器节点,其特征在于:装有GPS模块,可以采集山体表面形变参数。 The sensor node as claimed in claim 1, wherein: with the GPS module, can be collected Ausforming mountain surface.
5.如权利要求1所述的传感器节点,其特征在于:装有振动触发器,当振动触发器检测到异常的地下振动时,触发MEMS加速度计采集地下振动信号。 5. The sensor node according to claim 1, wherein: the trigger with vibration, the vibration when the trigger detecting abnormal vibration of the ground, underground acquisition trigger MEMS accelerometer vibration signals.
6.如权利要求1所述的传感器节点,其特征在于:装有MEMS加速度计,可实时采集地下振动信号。 The sensor node of claim 1, wherein: equipped with MEMS accelerometer, vibration signals may be real-time acquisition underground.
7.如权利要求1所述的传感器节点,其特征在于:底部装有探针和基座,MEMS加速度计和振动触发器安置在基座上。 7. The sensor node according to claim 1, wherein: the probe is equipped with a bottom and a base, the MEMS accelerometers and vibration trigger disposed on the base.
8.如权利要求1所述的主控节点,其特征在于:装有ARM处理器,负责对不同传感器节点采集和传送的信号进行融合处理。 8. A master node according to claim 1, wherein: with ARM processor, signals of different sensor nodes responsible for collection and transfer of the fusion process.
9.如权利要求1所述的主控节点,其特征在于:装有GPS模块,可确定主控节点位置, 并向传感器节点发送差分信号。 9. A master node according to claim 1, wherein: with the GPS module, the master node may determine the position, and transmits the differential signal of the sensor node.
10.如权利要求1所述的主控节点,其特征在于:装有报警器,可根据山体状态和滑坡预警信息发出不同级别的报警信号。 10. The master node according to claim 1, wherein: with the alarm may be issued in accordance with different levels of an alarm signal and a warning status information mountain landslides.
CN 201110086453 2011-04-07 2011-04-07 Landslide real-time monitoring and warning system CN102163363B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110086453 CN102163363B (en) 2011-04-07 2011-04-07 Landslide real-time monitoring and warning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110086453 CN102163363B (en) 2011-04-07 2011-04-07 Landslide real-time monitoring and warning system

Publications (2)

Publication Number Publication Date
CN102163363A true CN102163363A (en) 2011-08-24
CN102163363B CN102163363B (en) 2013-01-30

Family

ID=44464570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110086453 CN102163363B (en) 2011-04-07 2011-04-07 Landslide real-time monitoring and warning system

Country Status (1)

Country Link
CN (1) CN102163363B (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426395A (en) * 2011-11-11 2012-04-25 铁道第三勘察设计院集团有限公司 Slip mass volume parameter measuring method based on three-dimensional geologic remote sensing interpretation technology
CN102538742A (en) * 2012-01-09 2012-07-04 中国矿业大学 Deformation measurement and early warning system and method integrating satellite positioning and accelerometer
CN102682574A (en) * 2012-04-27 2012-09-19 中航捷锐(北京)光电技术有限公司 Disaster early-warning system
CN102915629A (en) * 2012-09-29 2013-02-06 中国地质大学(武汉) Landslide monitoring device
CN103035100A (en) * 2012-12-29 2013-04-10 中国船舶重工集团公司第七一○研究所 Landslide wireless network monitoring system based on weak magnetic sensor
CN103176447A (en) * 2012-12-31 2013-06-26 中国地质调查局水文地质环境地质调查中心 Device and system for broadband satellite video remote monitoring of mountain torrents and debris flows
CN103472207A (en) * 2013-09-30 2013-12-25 福州大学 Equivalent looseness measuring method used for mountain landslide early warning
CN103903395A (en) * 2014-03-27 2014-07-02 成都微英威诺环境监控设备有限公司 Low-cost landslide early warning recording device based on MEMS accelerometers
DE202013102692U1 (en) 2013-06-21 2014-07-02 Deutsches Geoforschungszentrum -Gfz Stiftung Des Öffentlichen Rechts Des Landes Brandenburg Seismic measuring system
CN103914950A (en) * 2014-01-30 2014-07-09 蔡景芳 Landslide and debris-flow pre-warning system based on 4G network
CN103942923A (en) * 2014-04-27 2014-07-23 张臣 Road slope retaining engineering safety early-warning system
CN103971490A (en) * 2014-04-27 2014-08-06 张臣 Collapse early-warning system for road slope support engineering
CN103985226A (en) * 2014-04-27 2014-08-13 张臣 Road slope support engineering safety alarm system
CN103996268A (en) * 2014-04-27 2014-08-20 张臣 Road slope supporting engineering security system
CN104143252A (en) * 2014-07-09 2014-11-12 无锡蓝赛科技有限公司 System for real-time monitoring of landslip based on UWB
CN104267441A (en) * 2014-10-10 2015-01-07 中国矿业大学(北京) Real-time forecasting method and warning system for water disaster in front of excavation roadway
CN104715576A (en) * 2014-12-30 2015-06-17 宋禹辰 Landslide GPRS remote wireless monitoring and warning system
WO2014209141A3 (en) * 2014-10-30 2015-09-03 Instytut Technik Innowacyjnych Emag Method and system for assessing a risk of high-energy earth bursts generated by underground mining
CN104952211A (en) * 2014-03-31 2015-09-30 中铁西北科学研究院有限公司深圳南方分院 Debris flow disaster warning method and wireless early warning system thereof
CN105006133A (en) * 2015-08-05 2015-10-28 郑州双杰科技有限公司 System and method for acquiring earth surface deformation data
CN105023395A (en) * 2014-04-29 2015-11-04 天津奥优星通传感技术有限公司 Debris flow monitoring and early warning system
CN105842480A (en) * 2015-12-08 2016-08-10 谢谟文 Sensor for monitoring movement situation of rock and soil mass
CN106033637A (en) * 2015-03-16 2016-10-19 中铁西北科学研究院有限公司深圳南方分院 Cable-free independent long-term working landslide hazard landslide hazard monitoring early warning method and system
CN106574979A (en) * 2014-06-24 2017-04-19 佐治亚州立大学研究基金会 Real-time in-situ sub-surface imaging
CN106683372A (en) * 2016-11-23 2017-05-17 北京无线电计量测试研究所 Underground pipeline sensing signal collecting and positioning device and system
CN107527479A (en) * 2016-06-21 2017-12-29 深圳市爱丰达盛科技有限公司 A kind of method and system of slope monitoring early warning
CN107798827A (en) * 2017-10-24 2018-03-13 延安大学 Landslide early-warning monitoring system and its monitoring method based on Internet of Things
CN107808498A (en) * 2017-12-01 2018-03-16 四川汇源光通信有限公司 A kind of monitoring method of landslide and the monitoring system of application this method
TWI620157B (en) * 2014-03-05 2018-04-01 Nec Corp Disaster response system, disaster response method, disaster detection device, and processing method thereof
CN108122377A (en) * 2017-12-29 2018-06-05 广西三维遥感信息工程技术有限公司 Landslide early warning system based on GIS
CN108122376A (en) * 2017-12-29 2018-06-05 北京国电高科科技有限公司 A kind of seismic monitoring early warning system and method
CN108154650A (en) * 2017-12-29 2018-06-12 广西三维遥感信息工程技术有限公司 The monitoring system of landslide
CN108831111A (en) * 2018-05-15 2018-11-16 福建天成保德环保科技有限公司 Landslide real-time monitoring early warning system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3095629B2 (en) * 1994-08-02 2000-10-10 日本工営株式会社 Landslide detection device
CN2724019Y (en) * 2004-08-13 2005-09-07 武汉科技大学 Earthquake and land slide monitor system based on sound transmitting
CN101393268A (en) * 2008-11-06 2009-03-25 复旦大学 Earthquake early-warning system based on communication optical cable
CN101452629A (en) * 2007-12-07 2009-06-10 武汉大学 Remote monitoring system for disaster of mountain massif coast
US7639158B2 (en) * 2003-05-28 2009-12-29 Nec Corporation Monitoring terminal device
KR20100053830A (en) * 2008-11-13 2010-05-24 주식회사 케이티 Early warning method and system for landslide and rock fall
CN101982841A (en) * 2010-10-14 2011-03-02 四川金立信铁路设备有限公司 Disaster monitoring and prewarning system and monitoring and prewarning method using same
CN202042035U (en) * 2010-12-06 2011-11-16 云南英蝉高新技术有限公司 Early warning system for disasters such as mud-rock flow and landslide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3095629B2 (en) * 1994-08-02 2000-10-10 日本工営株式会社 Landslide detection device
US7639158B2 (en) * 2003-05-28 2009-12-29 Nec Corporation Monitoring terminal device
CN2724019Y (en) * 2004-08-13 2005-09-07 武汉科技大学 Earthquake and land slide monitor system based on sound transmitting
CN101452629A (en) * 2007-12-07 2009-06-10 武汉大学 Remote monitoring system for disaster of mountain massif coast
CN101393268A (en) * 2008-11-06 2009-03-25 复旦大学 Earthquake early-warning system based on communication optical cable
KR20100053830A (en) * 2008-11-13 2010-05-24 주식회사 케이티 Early warning method and system for landslide and rock fall
CN101982841A (en) * 2010-10-14 2011-03-02 四川金立信铁路设备有限公司 Disaster monitoring and prewarning system and monitoring and prewarning method using same
CN202042035U (en) * 2010-12-06 2011-11-16 云南英蝉高新技术有限公司 Early warning system for disasters such as mud-rock flow and landslide

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426395A (en) * 2011-11-11 2012-04-25 铁道第三勘察设计院集团有限公司 Slip mass volume parameter measuring method based on three-dimensional geologic remote sensing interpretation technology
CN102426395B (en) 2011-11-11 2013-03-27 铁道第三勘察设计院集团有限公司 Slip mass volume parameter measuring method based on three-dimensional geologic remote sensing interpretation technology
CN102538742A (en) * 2012-01-09 2012-07-04 中国矿业大学 Deformation measurement and early warning system and method integrating satellite positioning and accelerometer
CN102538742B (en) * 2012-01-09 2015-05-20 中国矿业大学 Deformation measurement and early warning system and method integrating satellite positioning and accelerometer
CN102682574A (en) * 2012-04-27 2012-09-19 中航捷锐(北京)光电技术有限公司 Disaster early-warning system
CN102915629A (en) * 2012-09-29 2013-02-06 中国地质大学(武汉) Landslide monitoring device
CN103035100A (en) * 2012-12-29 2013-04-10 中国船舶重工集团公司第七一○研究所 Landslide wireless network monitoring system based on weak magnetic sensor
CN103176447A (en) * 2012-12-31 2013-06-26 中国地质调查局水文地质环境地质调查中心 Device and system for broadband satellite video remote monitoring of mountain torrents and debris flows
CN103176447B (en) * 2012-12-31 2015-12-23 中国地质调查局水文地质环境地质调查中心 A kind of mountain torrents rubble flow broadband satellite video remote monitoring device and system
DE202013102692U1 (en) 2013-06-21 2014-07-02 Deutsches Geoforschungszentrum -Gfz Stiftung Des Öffentlichen Rechts Des Landes Brandenburg Seismic measuring system
CN103472207A (en) * 2013-09-30 2013-12-25 福州大学 Equivalent looseness measuring method used for mountain landslide early warning
CN103472207B (en) * 2013-09-30 2015-05-20 福州大学 Equivalent looseness measuring method used for mountain landslide early warning
CN103914950A (en) * 2014-01-30 2014-07-09 蔡景芳 Landslide and debris-flow pre-warning system based on 4G network
TWI620157B (en) * 2014-03-05 2018-04-01 Nec Corp Disaster response system, disaster response method, disaster detection device, and processing method thereof
CN103903395A (en) * 2014-03-27 2014-07-02 成都微英威诺环境监控设备有限公司 Low-cost landslide early warning recording device based on MEMS accelerometers
CN104952211A (en) * 2014-03-31 2015-09-30 中铁西北科学研究院有限公司深圳南方分院 Debris flow disaster warning method and wireless early warning system thereof
CN105374168A (en) * 2014-04-27 2016-03-02 张臣 Vibration signal acquisition part of road slope support engineering collapse early warning system
CN103942923A (en) * 2014-04-27 2014-07-23 张臣 Road slope retaining engineering safety early-warning system
CN103942923B (en) * 2014-04-27 2016-09-14 张谦 Slope of highway support engineering safety pre-warning system
CN105469549A (en) * 2014-04-27 2016-04-06 张臣 Landslide early warning system for road slope support engineering
CN105427538A (en) * 2014-04-27 2016-03-23 张臣 Signal acquisition part of highway slope support engineering safety pre-warning system
CN103996268A (en) * 2014-04-27 2014-08-20 张臣 Road slope supporting engineering security system
CN105389950A (en) * 2014-04-27 2016-03-09 张臣 Master control part of road slope support engineering safety alarm system
CN105374166A (en) * 2014-04-27 2016-03-02 张臣 Displacement signal analysis part of road slope support engineering collapse early warning system
CN103985226A (en) * 2014-04-27 2014-08-13 张臣 Road slope support engineering safety alarm system
CN105354991A (en) * 2014-04-27 2016-02-24 张臣 Security alarm system for road slope supporting project
CN105374167A (en) * 2014-04-27 2016-03-02 张臣 Road slope support engineering security early warning system
CN105374165A (en) * 2014-04-27 2016-03-02 张臣 Road slope support engineering security protection system
CN103971490A (en) * 2014-04-27 2014-08-06 张臣 Collapse early-warning system for road slope support engineering
CN105023395A (en) * 2014-04-29 2015-11-04 天津奥优星通传感技术有限公司 Debris flow monitoring and early warning system
CN106574979A (en) * 2014-06-24 2017-04-19 佐治亚州立大学研究基金会 Real-time in-situ sub-surface imaging
CN104143252A (en) * 2014-07-09 2014-11-12 无锡蓝赛科技有限公司 System for real-time monitoring of landslip based on UWB
CN104267441A (en) * 2014-10-10 2015-01-07 中国矿业大学(北京) Real-time forecasting method and warning system for water disaster in front of excavation roadway
WO2014209141A3 (en) * 2014-10-30 2015-09-03 Instytut Technik Innowacyjnych Emag Method and system for assessing a risk of high-energy earth bursts generated by underground mining
CN104715576B (en) * 2014-12-30 2017-05-03 宋禹辰 Landslide GPRS remote wireless monitoring and warning system
CN104715576A (en) * 2014-12-30 2015-06-17 宋禹辰 Landslide GPRS remote wireless monitoring and warning system
CN106033637A (en) * 2015-03-16 2016-10-19 中铁西北科学研究院有限公司深圳南方分院 Cable-free independent long-term working landslide hazard landslide hazard monitoring early warning method and system
CN105006133A (en) * 2015-08-05 2015-10-28 郑州双杰科技有限公司 System and method for acquiring earth surface deformation data
CN105842480B (en) * 2015-12-08 2018-09-25 谢谟文 A kind of sensor for monitoring Rock And Soil state of motion
CN105842480A (en) * 2015-12-08 2016-08-10 谢谟文 Sensor for monitoring movement situation of rock and soil mass
CN107527479A (en) * 2016-06-21 2017-12-29 深圳市爱丰达盛科技有限公司 A kind of method and system of slope monitoring early warning
CN106683372A (en) * 2016-11-23 2017-05-17 北京无线电计量测试研究所 Underground pipeline sensing signal collecting and positioning device and system
CN106683372B (en) * 2016-11-23 2020-01-03 北京无线电计量测试研究所 Underground pipeline sensing signal acquisition positioning device and system
CN107798827A (en) * 2017-10-24 2018-03-13 延安大学 Landslide early-warning monitoring system and its monitoring method based on Internet of Things
CN107808498A (en) * 2017-12-01 2018-03-16 四川汇源光通信有限公司 A kind of monitoring method of landslide and the monitoring system of application this method
CN108122377A (en) * 2017-12-29 2018-06-05 广西三维遥感信息工程技术有限公司 Landslide early warning system based on GIS
CN108122376A (en) * 2017-12-29 2018-06-05 北京国电高科科技有限公司 A kind of seismic monitoring early warning system and method
CN108154650A (en) * 2017-12-29 2018-06-12 广西三维遥感信息工程技术有限公司 The monitoring system of landslide
CN108831111A (en) * 2018-05-15 2018-11-16 福建天成保德环保科技有限公司 Landslide real-time monitoring early warning system

Also Published As

Publication number Publication date
CN102163363B (en) 2013-01-30

Similar Documents

Publication Publication Date Title
Yi et al. Recent research and applications of GPS‐based monitoring technology for high‐rise structures
Ramesh Design, development, and deployment of a wireless sensor network for detection of landslides
Genrich et al. Instantaneous geodetic positioning with 10–50 Hz GPS measurements: Noise characteristics and implications for monitoring networks
Lee et al. Design of a multifunctional wireless sensor for in-situ monitoring of debris flows
CN101477207A (en) Intelligent geological calamity synthetic monitoring system and multi-stage prediction analysis method
CN105209933B (en) Radiation detector assembly and method
Im et al. Summary review of GPS technology for structural health monitoring
Weber et al. An advanced seismic network in the southern Apennines (Italy) for seismicity investigations and experimentation with earthquake early warning
Rosi et al. Landslide monitoring with sensor networks: experiences and lessons learnt from a real-world deployment
Arosio et al. Towards rockfall forecasting through observing deformations and listening to microseismic emissions
CN203204791U (en) Multiparameter landslide and mud-rock flow monitoring early warning system
US20090257309A1 (en) Methods and systems for seismic event detection
CN103728644B (en) A kind of alignment system and localization method
Puglisi et al. New integrated geodetic monitoring system at Stromboli volcano (Italy)
JP2005030843A (en) Earth and sand disaster foreknowing system, region data providing system and earth and sand disaster foreknowing method
CN102608625B (en) Real-time deformation monitoring pre-warning system and real-time deformation monitoring pre-warning method based on inertia-assistance positioning receiver
CN103234519B (en) Land subsidence monitoring and early warning system based on global position system (GPS) and hydrostatic leveling
CN102279410A (en) Real-time monitoring system and method for underground mining activities of mine
JP2010197154A (en) Slope monitoring system
Farina et al. IBIS-M, an innovative radar for monitoring slopes in open-pit mines
Arnhardt et al. Sensor based Landslide Early Warning System-SLEWS. Development of a geoservice infrastructure as basis for early warning systems for landslides by integration of real-time sensors
Zan et al. Landslides early warning monitoring system
CN103115602A (en) Mining subsidence monitoring information mobile acquisition terminal system and acquisition method thereof
CN102163363B (en) Landslide real-time monitoring and warning system
CN102509421B (en) Real-time monitoring and prewarning system for geological disasters

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right