CN102159831A - 包括多个电动机/发电机的发电系统 - Google Patents

包括多个电动机/发电机的发电系统 Download PDF

Info

Publication number
CN102159831A
CN102159831A CN200980136300XA CN200980136300A CN102159831A CN 102159831 A CN102159831 A CN 102159831A CN 200980136300X A CN200980136300X A CN 200980136300XA CN 200980136300 A CN200980136300 A CN 200980136300A CN 102159831 A CN102159831 A CN 102159831A
Authority
CN
China
Prior art keywords
motor
generator
actuation gear
generator equipment
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200980136300XA
Other languages
English (en)
Other versions
CN102159831B (zh
Inventor
A·格勒尼耶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASELOAD ENERGY Inc
Original Assignee
BASELOAD ENERGY Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASELOAD ENERGY Inc filed Critical BASELOAD ENERGY Inc
Publication of CN102159831A publication Critical patent/CN102159831A/zh
Application granted granted Critical
Publication of CN102159831B publication Critical patent/CN102159831B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/11Combinations of wind motors with apparatus storing energy storing electrical energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/18Air and water being simultaneously used as working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/92Mounting on supporting structures or systems on an airbourne structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/40Organic materials
    • F05B2280/4009Polyetherketones, e.g. PEEK
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/10Polyimides, e.g. Aurum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/12Polyetheretherketones, e.g. PEEK
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/20Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members
    • F16H1/22Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19502Pivotally supported
    • Y10T74/19507Windmill turntable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19502Pivotally supported
    • Y10T74/19521Bevel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19642Directly cooperating gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19642Directly cooperating gears
    • Y10T74/19647Parallel axes or shafts
    • Y10T74/19651External type
    • Y10T74/19656Pin teeth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19642Directly cooperating gears
    • Y10T74/1966Intersecting axes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19642Directly cooperating gears
    • Y10T74/1966Intersecting axes
    • Y10T74/19665Bevel gear type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19642Directly cooperating gears
    • Y10T74/19679Spur
    • Y10T74/19684Motor and gearing

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Wind Motors (AREA)

Abstract

一种发电系统,构造成通过用能源转动转子轴而将该能源转换成电能,所述系统包括:耦接到所述转子轴的安装板;耦接到所述转子轴的驱动齿轮,所述驱动齿轮构造成当转子轴运动时运动;以及安装到所述安装板的多个电动机/发电机设备。每个电动机/发电机设备包括构造成与所述驱动齿轮可旋转地耦接的输出轴。每个电动机/发电机设备独立地耦接到所述驱动齿轮以提供多个冗余的发电电动机/发电机设备。

Description

包括多个电动机/发电机的发电系统
背景技术
化石燃料是地球的主要能源。随着地球人口继续增长并随着经济较不发达国家变得工业化,化石燃料的消耗速度很可能超过化石燃料的生产速度。如果以目前的速度继续消耗,这种化石燃料需求上的预期增加会在接下来数十年内耗尽全球的化石燃料储备。
需要从例如太阳能、风能、水能和/或地热能的可再生资源中利用能量,以使对化石燃料的依赖最小化。
发明内容
一个实施例提供一种发电系统,其构造成通过用能源使转子轴转动而将所述能源转化成电力。该系统包括:耦接到所述转子轴的安装板;耦接到所述转子轴的驱动齿轮,所述驱动齿轮构造成当所述转子轴运动时运动;以及安装到所述安装板的多个电动机/发电机设备。每个电动机/发电机设备包括构造成与所述驱动齿轮可旋转地耦接的输出轴。每个电动机/发电机设备独立地耦接到所述驱动齿轮以提供多个冗余的发电电动机/发电机设备。
附图说明
所包括的附图提供了实施例的进一步理解,并且合并在本说明书中而组成本说明书的一部分。该图示出实施例,并与说明书一起起到解释实施例的原理的作用。其它实施例和实施例的许多预期优点将易于被意识到,因为它们通过参照以下详细说明而被更好地理解。附图的元件未必是彼此按比例绘制的。相似的附图标记表示相应的类似部件。
图1A是根据一个实施例的电动机/发电机模块的透视图。
图1B是根据一个实施例的图1A所示模块的电动机/发电机设备的侧视图。
图2是图1A中示出的电动机/发电机模块的透视图,示出该模块的机壳的壳体。
图3是电动机/发电机模块的另一个透视图,示出从机壳的壳体延伸的机身一部分。
图4是沿图2的线4-4所取的电动机/发电机模块的剖视图。
图5是从机壳的壳体并从电动机/发电机模块延伸的机身的伸臂(boom)的顶透视图。
图6是根据一个实施例的电动机/发电机模块的底透视图。
图7是图6中所示电动机/发电机模块的驱动齿轮的透视图,其中所述驱动齿轮包括构造成为电动机/发电机模块提供内部冷却特征的叶片/辐条。
图8是根据一个实施例采用多个电动机/发电机模块的飞行电动机发电机系统的透视图。
图9A和图9B分别是根据一个实施例的发电系统的顶视图和剖视图。
图10A和图10B分别是根据一个实施例的发电系统的顶视图和剖视图。
图11是示意图,示出了为根据一个实施例的电动机/发电机模块提供所需总电压输出的并联成组的一系列电动机。
具体实施方式
在以下具体实施例方式中,参照形成本说明书一部分的附图,在附图中示出了具体实施例,本发明可在所述具体实施例中实施。就这点而言,方向术语,如“顶”、“底”、“前”、“后”、“先导的”、“拖尾的”等,参照所描述的(一幅或多幅)附图的取向而使用。由于这些实施例的部件可定位在多个不同取向,方向术语只是用作解释的目的,而决不是限制。要理解在不背离本公开的范围的情况下,可采用其它实施例,并且可进行结构上或逻辑上的改变。以下具体实施方式教导非限制性意义上的示范实施例。
可理解除非以其他方式特别指出,这里所述的各种示范实施例的特征可相互组合。
在一个实施例中,电动机/发电机的系统可逆地转换成和转换自高功率、低RPM(例如,大扭矩)设备和高功率、高RPM(例如,低扭矩)设备。电动机/发电机的系统构造成通过利用风和/或水流的动能来产生动力,并且在被用作飞行系统时具有应用,即使在相对低的水头时具有水轮,和/或在为混合动力车辆和其它机动系统提供动力时具有应用。
电动机/发电机系统的一个实施例构造成在极锋或亚热带急流中飞行并通过利用风的动能而产生动力。另一方面提供一种电动机/发电机的陆上系统,其构造成通过利用风、水流或地热温度梯度而产生动力。
发电系统的一个实施例构造成通过用能源转动转子轴而将该能源转换成电力。该系统包括耦接到转子轴的安装板、耦接到转子轴并构造成在转动轴运动时运动的驱动齿轮、以及安装到所述安装板的多个电动机/发电机设备,每个电动机/发电机设备包括构造成与驱动齿轮可旋转地耦接的输出轴。每个电动机/发电机设备独立地耦接到驱动齿轮并且不耦接到电动机/发电机设备中的另一个,使得多个电动机/发电机设备提供多个冗余的发电电动机/发电机设备。
在一个实施例中,在系统中设置多个冗余的电动机/发电机,其中电动机/发电机构造成包括如下所述的自动冗余备份特征。
使对化石燃料的依赖性最小化的一个可能的解决方案是如美国专利6,781,254所述的风车风筝(windmill kite),其采用如下所述的发电系统和/或一个或多个电动机/发电机设备。
在风能利用系统中,如下所述的发电系统提供适于耦接到系链的风轮机,以便在高处使用来利用风能。风使得驱动齿轮旋转,驱动齿轮驱动每个电动机/发电机的轴旋转并产生可转化成电力的能量。
在一个实施例中,该系统是可逆的,使得该电动机/发电机作为电动机运转以对驱动齿轮提供动力。对多个电动机供电,它们进而驱动附接到风轮机转子的更大的齿轮。在该逆模式中,消耗而不是产生功率。
图1A是根据一个实施例的发电系统10的透视图。发电系统10(也被称作电动机/发电机模块10)包括耦接到转子轴16的安装板12、相邻于安装板12并同轴地耦接到转子轴16的驱动齿轮14、以及安装到安装板12的多个电动机/发电机设备20,其中每个电动机/发电机设备20包括构造成与驱动齿轮14可旋转地耦接的输出轴24。
在一个实施例中,驱动齿轮14是可旋转的,并构造成随转子轴16运动,而安装板12是静止的并通过轴承绕转子轴16固定。在一个实施例中,驱动齿轮14由链条或其它传动机构耦接到转子轴16并构造成当转子轴16运动时运动。将驱动齿轮14耦接到转子轴16和多个电动机/发电机设备20的其它形式也是可接受的。
一般地,当利用能源时,发电系统10包括转子叶片17或构造成与该能源(例如风)相互作用的其它设备。在一个实施例中,转子叶片17将发电系统10构造成空中发电系统10。利用能源的其它合适设备包括水轮、叶片、磨等。在一个实施例中,可选地设置机壳19(其一部分在图1A中示出)以保护性地封闭安装板12、驱动齿轮14和耦接到安装板12的电动机/发电机设备20。当发电系统10构造成利用高海拔风能时,提供机身21,其一部分在图1A中示出。
通常,电动机/发电机模块10包括例如安装板12(或母板(platter)12)这样的框架以及驱动齿轮14,二者都结合到转子轴16(或主轴16或轴16)。在一个实施例中,轴16由非导电材料形成并构造成将电动机/发电机设备20与母板12电绝缘。在一个实施例中,母板12是圆形或碟形,并由金属(例如铝、不锈钢、钛)、复合材料或适于航空和/或陆地应用的其它材料制造。本领域技术人员会认识到母板12可基于模块10的预期目标而由任何合适材料制造。对于在高海拔处利用能量,在一个实施例中,母板12的直径大约是30英尺。
在一个实施例中,驱动齿轮14与输出轴24摩擦性耦接,并且驱动齿轮14和输出轴24都不包括齿。
在一个实施例中,驱动齿轮14包括齿18,该齿18构造成与输出轴24上设置的齿22啮合。齿18和齿22包括正齿,斜齿,人字齿,行星齿,具有直的、螺旋的或准双曲面齿的伞齿轮,以及蜗齿。在一个实施例中,齿18和输出轴24的齿22包括铝、不锈钢、钛、复合材料或其它合适材料。
在一个实施例中,驱动齿轮14的直径略小于母板12的直径。在其它实施例中,驱动齿轮14的直径大于母板12的直径。
电动机/发电机模块10通常包括绕驱动齿轮14圆周放置的多个电动机/发电机设备20。合适的电动机/发电机设备20包括任何形式的电动机或任何形式的发电机,其具有将电能转换成旋转运动或平移运动或平移旋转运动的第一模式,或具有将这种运动转换成电能的第二模式,或在两个模式下操作,或在第一模式和第二模式之间可逆。电动机/发电机设备包括独立电动机设备,或独立发电机设备,或既包括电动机又包括发电机的设备。
在一个实施例中,多个电动机/发电机设备20构造成比一个大发电机散热更高效地从模块10散热。例如,每个电动机/发电机设备20提供相对小的低质量的电动机/发电机20,其易于消散与发电相关联的热。在一个实施例中,电动机/发电机模块10在超过10000英尺的高海拔运行,在那里局部气温小于大约25华氏度,并且该相对冷的局部环境有利于从相对小的低质量的电动机/发电机20快速散热。
在一个实施例中,每个电动机/发电机设备20沿安装板12的第一侧与相邻的电动机/发电机设备20隔开。在一个实施例中,电动机/发电机设备20的间距被选择为具有沿安装板12外周每纵尺(linear foot)3个电动机/发电机设备20的密度。电动机/发电机设备20的其它间距密度也是可接受的。在一个实施例中,安装板12限定与驱动齿轮14相邻的一侧以及与驱动齿轮14相对的一侧,并且电动机/发电机设备20从安装板12的与驱动齿轮14相对的一侧突出,使得输出轴24从安装板12的与驱动齿轮14相邻的一侧突出。以这种方式,每个电动机/发电机设备20独立地运行并独立地耦接到驱动齿轮14,并且不耦接到多个电动机/发电机设备20的另一个,使得电动机/发电机设备20提供多个冗余的发电电动机发电机。将电动机/发电机设备20耦接到安装板12的其它形式也是可接受的,包括将电动机/发电机设备20和驱动齿轮14安装在安装板12的同一侧。
一般地,驱动齿轮14构造成具有比电动机/发电机设备20的输出轴24的直径更大的直径。当驱动齿轮14旋转时,电动机/发电机设备20的直径较小的输出轴24旋转得远比驱动齿轮14快。在一个实施例中,增加输出轴24的旋转速度(例如,每分钟转数RPM)增加了从电动机/发电机设备20的电压输出。在一个实施例中,驱动齿轮14的直径大约为30英尺,输出轴24的直径大约是1英寸,使得当驱动齿轮14以大约70转每分钟(RPM)旋转时,输出轴24以大约25200 RPM旋转。输出轴24的高转速导致设备20内的磁体和线圈之间高的相对速度,这提供用于产生能量的输出电压。例如,在一个实施例中,驱动齿轮14的直径大约为30英尺,而电动机/发电机设备20的输出轴24的直径大约是6英寸,使得驱动齿轮14绕其轴线每完整旋转一周,输出轴24绕其轴线旋转60次(因此,齿轮比是30英尺比6英寸或60比1)。其他的齿轮比也是可接受的。在一个实施例中,通过改变驱动齿轮14、电动机/发电机设备20的齿轮22或两者来选择齿轮比以优化性能和输出。
在一个示范实施例中,282个五马力(3728瓦)电动机/发电机设备20分布在大约30英尺直径的驱动齿轮14周围。282个电动机/发电机设备20的每一个包括直径1英寸的输出轴24,驱动齿轮14被能源(如风)以大约70 rpm的速度旋转,使得每个电动机/发电机设备20的每个轴24以大约25000 RPM的速度旋转,以产生可转换成电力的大约1 MW的功率。
图1B是根据一个实施例的电动机/发电机设备20的侧视图。电动机/发电机设备20包括绕组盒23,绕组盒23封闭电动机和/或发电机的电线绕组以及合适的电动机部件(未示出),输出轴24从绕组盒23延伸。
在一个实施例中,轴24包括可旋转地耦接到绕组盒23的轴25。使用过程中,所预期的是,电动机/发电机设备20可能会经历可能阻碍轴25转动的轴承故障。在一个实施例中,轴25包括刻痕27,所述刻痕27构造成当绕组盒23内的轴承滞塞或以其它方式变得不能动时选择性地折断轴25。在一个或多个电动机/发电机设备20随时间磨损的情况下,轴25构造成沿刻痕27折断,由此致使电动机/发电机设备20不能操作。在一个实施例中,提供离合器与每个电动机/发电机相连,其中该离合器构造成将卡住的电动机/发电机与驱动齿轮14脱离接合。在一个实施例中,提供螺线管机构与每个电动机/发电机相连,其中该螺线管机构构造成将卡住的电动机/发电机与驱动齿轮14脱离接合。以这种方式,变得不能操作的电动机/发电机设备20将会自动将它本身从发电系统10(图1A)移除以提供自动冗余发电备份系统,其中一个或多个失效的设备20不会阻碍系统10的继续运行。
在一个实施例中,系统10包括过量数目的电动机/发电机设备20,超过计算出用于提供所需功率输出的数目。每个电动机/发电机设备20以少于100%输出(例如,96%输出)运转,使得电动机/发电机设备的总数(包括设备的过量数目)有助于提供100%所需输出。当电动机/发电机设备20被磨损时,不能操作的设备20如上所述自动退出系统10,其余设备以略微增大的输出(例如96.5%)运转以使系统10能够保持在100%的所需输出。
在一个实施例中,多个电动机/发电机设备20设置成包括过量数目N,其中,数目N的额外设备20保持空闲或以其他方式处于“关闭”构造,直到运转的电动机/发电机设备20用坏。当电动机/发电机设备20用坏时,额外的N个设备20之一例如在耦接到系统10(见图1A)的控制器的作用下上线。在一个实施例中,电子控制器耦接到模块10以选择性地将可操作电动机/发电机设备20添加到模块10并选择性地从模块10移除不能操作的电动机/发电机设备20。
在一个实施例中,为单独的电动机/发电机设备20的每一个提供额外的输出轴24n或额外的齿轮22n,以允许在每个单独的电动机发电机上添加简单齿轮系。例如,在单独的电动机/发电机设备20上包括2比1的比率以使得能够将驱动齿轮14的直径减半。
通常,以高压输电以使电力线中的电力损失最小。传送高压电的绝缘线使得实质量的电绝缘成为必要。高级别的电绝缘增加重量,使得高度绝缘的高压发电机不适用于飞行发电机。
在一个实施例中,电动机/发电机模块10包括多个电动机/发电机设备20,其每个构造成以相对低电压操作(例如,在100-1000伏之间),并适当绝缘以使模块10能够在急流中飞行。低压电动机/发电机设备20需要较少的绝缘,从而重量较小。另外,多个电动机/发电机设备20被构造成例如串联地电耦接,使得每个产生大约300伏的大约100个电动机/发电机设备20串联地耦接,以产生提供大约30000伏的模块10。以这种方式,多个低压、低重量电动机/发电机设备20组合以提供高输出电压系统10。
在一个实施例中,系统10包括聚集到构造成在高海拔处发电的高压系统中的多个低压设备。帕邢定律指出,缝隙之间空气的击穿电压是气压和缝隙距离的乘积的非线性函数。这样,较高海拔(具有较低气压)与电力系统中的较低击穿电压相关联。因此,当电力系统在高海拔处运行时,需要额外的电绝缘以克服空气中的击穿电压。由帕邢定律描述的击穿电压现象对于用于绕线发电机中的小直径电线尤其重要。因为所有这些原因,选择电耦接到系统10中的多个轻重量(最小绝缘)低电压电动机/发电机设备20以在高海拔处发电。这些特征有利于系统10具有非常广泛的输入/输出电压性能范围。
图2是模块10的一个实施例的透视图,示出机壳19的内部。在一个实施例中,机壳19包括负载底板30、耦接到转子轴16的上固位器32、下固位器34、在上固位器32和下固位器34之间延伸的多个支撑支柱36、以及耦接在负载底板30和上固位器32之间的支撑板38。一般地,在机壳19上配合壳体或其它外部结构(均未示出)。壳体或外部结构可包括织物壳体或高强度-重量比罩,例如铝面板。
在一个实施例中,负载底板30是安装板12(图1A)。替代性地,负载底板30耦接到安装板12。在一个实施例中,负载底板30包括例如位于上、下铝板之间的HexcelTM。在一个实施例中,上固位器32是耦接到转子轴16的上轴承固位器,以使转子轴能够在上轴承固位器32内旋转。在一个实施例中,下固位器34提供具有高强度-重量比的轻质加强。在一个实施例中,支撑支柱36包括耦接在上固位器32与下固位器34之间的铝7075C通道支柱,板38包括铝板或具有高强度-重量比材料的其它合适的板。
模块10至少在一个构造中构造成飞到高海拔,使得用于机壳19的合适材料包括轻质复合材料、轻质金属材料、复合材料和聚合物材料层压板、以及聚合物和金属材料层压板。
图3是模块10的一个实施例的另一个透视图,示出机身21的一部分。在一个实施例中,机身21包括耦接到机壳19的伸臂40,其中,伸臂40包括上垂直腹板(steer web)42a、与上垂直腹板42a隔开的下垂直腹板42b,其中腹板42a、42b耦接到舱壁43。在一个实施例中,伸臂40包括沿伸臂40长度分布的多区段支撑44。
图4是沿图2的线4-4所取的模块10的一个实施例的剖视图。未示出电动机/发电机设备20(图2)。在一个实施例中,转子16在耦接到转子叶片17(图2)的转子毂45与滑环46之间延伸。在一个实施例中,滑环46提供转子节距伺服电机控制,并耦接到如图4中取向的驱动齿轮14的下端。
图5是模块10的一个实施例的顶透视图。上垂直腹板42a耦接到舱壁43而伸臂40通过一个或多个桁条47耦接到负载底板30(图2)。在一个实施例中,伸臂40从机壳19延伸并构造成对抗转子叶片17的陀螺进动,这使模块10能够相对运动的转子16(图4)倾斜。
图6是根据一个实施例的发电系统50的透视图。系统50包括耦接到转子轴56的安装板52、相邻于安装板52同轴耦接到转子轴56的驱动齿轮54、以及安装到安装板52的多个电动机/发电机设备60,其中,每个电动机/发电机设备60包括构造成与驱动齿轮54可旋转地耦接的输出轴64。
在一个实施例中,驱动齿轮54对系统50提供冷却,并且可旋转并构造成随转子轴56运动,安装板52静止并固定到转子轴56。在一个实施例中,输出轴64与驱动齿轮54摩擦性地耦接,使得驱动齿轮54的运动导致输出轴64的旋转。以与上述类似的方式,选择驱动齿轮54的直径远大于输出轴64的直径,使得驱动齿轮54的旋转导致输出轴64的高RPM旋转。
图7是驱动齿轮54的一个实施例的透视图。在一个实施例中,驱动齿轮54是集成的冷却风扇驱动齿轮54,并包括内周环70、外周环72、以及在内周环70与外周环72之间延伸的叶片74。在一个实施例中,内周环70提供构造成绕转子轴56(图6)耦接的内轴承环。在一个实施例中,外周环72包括弧形构件的多个区段76,区段76由支架78耦接到相邻区段76。提供大约8个区段以限定圆形外环72。叶片74的示范实施例包括但不限于构造成支撑内环70和外环72的风扇叶片(如所示)、轮辐、空气动力学成形叶片、圆形轮辐(不必空气动力学成形),或实心盘。叶片74的其它合适形状也是可接受的。
在一个实施例中,内环70是铸造铝环,每个区段76包括位于铝板之间的50%玻璃填充尼龙填充剂,叶片74由在HexcelTM芯上形成0.125英寸玻璃环氧树脂外皮而形成。在一个实施例中,外环72的外周表面80构造成与输出轴64摩擦性地接合。在一个实施例中,外周表面80是不包括齿的摩擦表面,在另一个实施例中,外周表面80提供多个齿(未示出),其构造成与输出轴64上提供的齿啮合(图6)。合适的齿包括正齿、斜齿、人字齿、行星齿、伞齿、螺旋齿、准双曲面齿和蜗齿。
通常,电动机/发电机设备20指的是具有与驱动齿轮14相互作用的装置的任何形式的电动机或任何形式的发电机。另外,电动机/发电机设备20包括能将旋转运动或平移旋转运动转化成电力的任何设备。旋转运动或转动运动的转换或转化可包括额外的转换器或发电机。由电动机/发电机模块10产生的电能或电力可通过合适的电线26或系链26发送到地,所产生的电力可被用于为电力设备供能或被电化学存储(例如,在通过电解生成氢气的电化学反应中)或其它类型的存储设备用于之后使用。
图8是采用如上所述多个电动机/发电机模块10的飞行发电系统100的一个实施例的透视图。系统100包括由框架102相互连接的四个电动机/发电机模块10,以及附接到框架102并构造成将由模块10产生的电力输送到变电站106或总线106的系链104。在其它实施例中,适当数目(多于4个或小于4个)的电动机/发电机模块10耦接到框架102。
在一个实施例中,系链104被从绞盘108供给并构造成使模块10和框架102能够以类似风筝的方式飞行到急流中,例如在地球表面上方大约10000英尺到大约32000英尺(接近10公里)之间。在一个实施例中,系链104是3英寸粗的导电凯夫拉尔线。在其它实施例中,系链104是编织的钢缆,其构造成导电并使模块10和框架102稳定。系链104的其它合适形式也是可接受的。尽管示出缆形系链,但可理解发电系统100可包括构造成产生地基风能系统的塔或其它地面支撑。
在一个实施例中,发电系统100包括能向地面上的用户中继实时、三维位置信息的全球定位系统(GPS)(未示出)。
实施例提供了包括多个独立且冗余的发电电动机/发电机设备的发电系统。选择电动机/发电机设备的数目以用单独的相对低电压电动机/发电机为系统提供所需输出电压。在一个实施例中,多个电动机/发电机以多种可能的串联和并联组合之一连线以为系统产生多种输出电压。例如,当电动机/发电机数目为N,且每个电动机/发电机产生电压为V,则系统的输出电压选择性地从V(所有电动机/发电机并联连线)变化到N×V(所有电动机/发电机串联连线)。在一个示范实施例中,每个产生大约380伏的适当数目的单独且冗余的发电电动机/发电机设备耦接在一起,以为模块提供大约25000伏的输出。在另一例中,通过采用适当数目的具有小于大约2000伏电压的单独且冗余的电动机/发电机,每个模块的输出可在大约25000到50000伏之间的范围内选择性改变。
对于相对系统的驱动齿轮安装电动机/发电机设备,有多种可能的构造,以下公开其中几个。
图9A是根据一个实施例的发电系统200的顶视图,图9B是其剖视图。系统200包括耦接到框架203的安装板202、耦接到通过框架203连通的转子轴206的驱动齿轮204、以及安装到安装板202的多个可独立操作和冗余的电动机/发电机设备210。转子轴206的旋转使驱动齿轮204旋转,旋转的驱动齿轮204使每个电动机/发电机设备210的输出轴222旋转以产生输出电压和提供电力。在一个实施例中,转子轴206被风旋转,这使得输出轴222旋转以在电动机/发电机设备210内将风转换成电力,以便后续应用于家庭和商业中。
在一个实施例中,安装板202包括第一侧212,第一侧212与相邻于驱动齿轮204主表面216的第二侧214相对。输出轴222从每个电动机/发电机设备210延伸以与驱动齿轮204的周缘224接合。
在一个实施例中,周缘224包括润滑聚合物。例如,在一个实施例中,周缘224形成为绕驱动齿轮204的环形环,提供与输出轴222啮合的齿,并由润滑聚合物形成。合适的润滑聚合物包括可以商标VESPEL®购得的聚醚醚酮(PEEK)或聚酰亚胺,但是其它润滑聚合物也是可接受的。这里所述的系统构造成用于高海拔飞行(25000英尺之上),在这些海拔处,空气温度通常低于零华氏度。其它形式的润滑(如油或石墨)可能会失效而不能正确地在大约-40华氏度的温度时润滑。在一个实施例中,至少周缘224由润滑聚合物(例如PEEK或聚酰亚胺)形成,以确保输出轴222与驱动齿轮204之间啮合界面处的润滑。
线性密度(例如电动机/发电机设备210沿安装板202的安置)根据所需输出电压而选择性地改变。在一个实施例中,驱动齿轮204的直径为大约30英尺,每个输出轴222的直径为大约0.083英尺,电动机/发电机设备210绕安装板202的外周以大约每英尺3个电动机/发电机设备210的线性密度安装。使每个电动机/发电机设备210的尺寸适合于大约380伏的输出,这将系统200构造成提供大约102000伏的总输出电压。其它输出电压的电动机/发电机设备210的其它安置密度也是可接受的。
合适的电动机/发电机设备包括两相交流电设备,三相AC设备,或DC设备。在一个实施例中,电动机/发电机设备210包括无刷永磁电动机,电动机直径在大约0.5英寸与10英寸之间的范围内,功率水平在大约0.5 W到150 kW之间的范围内,并且输出轴222的旋转速度在大约20000到30000 RPM之间的范围内。一个合适的这种电动机/发电机设备是可从加州Simi Valley的AVEOX获得的AVX50BL10无刷电动机。这种筒型电动机/发电机的高度大于筒的直径。筒的直径大致小于10英寸(半径小于5英寸),使得经过线圈的磁体的线速度小于5英寸每秒每RPM。
其它合适的电动机/发电机包括短轴型电动机。一个合适的短轴型电动机是可从印第安纳州印第安纳波利斯Light Engineering Inc.获得的型号M32N1-XXX的系列30电动机。一个合适的短轴型发电机包括额定速度2500 RPM且功率输出12kW的系列30型号G32N1-XXX发电机。短轴型电动机发电机通常比筒型具有更大的直径,使得磁体相对于线圈的线速度大于5英寸每秒每RPM。
图10A是根据一个实施例的发电系统300的顶视图,图10B是其剖视图。系统300包括耦接到框架303的安装板302、耦接到通过框架303连通的转子轴306的驱动齿轮304、以及耦接到安装板302并延伸到驱动齿轮304的多个可独立操作且冗余的电动机/发电机设备310。
在一个实施例中,安装板302和驱动齿轮304位于平面A中,使得安装板302与驱动齿轮304大致共面。电动机/发电机设备310绕安装板302隔开以提供设备310所需的线性密度,其组合而提供系统300的所选电压输出。在一个实施例中,成对的电动机/发电机设备310大致平行于平面A安装。例如,在一个实施例中,驱动齿轮304包括与第二主表面314相对的第一主表面312,一对电动机/发电机设备310安装在安装板302上使得设备310中的第一个与第一主表面312连通并且设备310中的第二个与第二主表面314连通。在一个实施例中,所述成对电动机/发电机设备310大致平行于平面A安装,该对中的每个电动机/发电机设备310相对其匹配者错开(即具有横向偏移)。
在一个实施例中,驱动齿轮304的直径为数英尺,使得当驱动齿轮304旋转时,驱动齿轮304的外周缘有可能会摇晃或可能略微不对准。在一个实施例中,提供安装在安装板302与电动机/发电机设备310之间的冲击吸收或阻尼系统330,以使设备310能移出平面A并使得能够阻尼/调整驱动齿轮304中存在的摇晃。在一个实施例中,冲击吸收系统330包括附接在安装板302与设备310之间的弹簧332,但也可接受其它冲击吸收器。
在一个实施例中,每个电动机/发电机设备310包括输出轴322,输出轴322延伸以与驱动齿轮304的主表面312、314之一接合。在一个实施例中,主表面312、314在外周包括与设置在输出轴322上的驱动齿啮合的驱动齿,并且驱动齿轮304与输出轴322之间的界面包括润滑聚合物324,例如如上所述的PEEK或聚酰亚胺。
图11是为根据一个实施例的电动机/发电机模块10提供所需电压输出的并联成组的一系列电动机/发电机400的框图。在一个示范实施例中,多个电动机/发电机(电动机/发电机a到电动机/发电机n)串联地耦接在一起以为每个模块10(图1)提供电压输出,并且多个这种模块串联地耦接使得模块的每个发电系统100(图8)产生大约1 MW的功率。在一个实施例中,通过以各种组合选择性地连线给定输出电压的多个电动机/发电机(a…n)或成对电动机/发电机而提供系统所需输出电压的灵活性。这样,通过所选连线组合,在不改变每个电动机/发电机的输出电压的情况下,选择性地改变系统的输出电压。在一个示范实施例中,大量低电压电动机/发电机(例如小于约500伏)并联成组并串联连接以从一个模块10提供出大约5000伏,或者较小数量的高电压电动机/发电机(例如,大于约500伏)被串联挂住以从每个模块10提供出大约5000伏,如以下示例所详述。
1
在一个示范实施例中,1 MW模块10(图1)由10个电动机/发电机设备20提供,每个电动机/发电机设备20产生约0.1 MW。在一个示范实施例中,需要提供大约20000伏经系链组件40向下到地面,并且系统100(图8)包括如所示的四个模块10,使得每个模块10构造成产生大约5000伏。通过提供10个电机,每个在大约500伏,所述电机串联挂住,从而实现大约20000伏经系链组件40向下到地面。
2
在一个示范实施例中,选择电动机/发电机设备20以产生大约1000伏而不是500伏。一对对的这些1000伏电动机/发电机并联挂住,5个这种配对串联地挂在一起以从模块10产生出所需的约5000伏。由于采用1000伏电动机/发电机从模块10产生出相同的约10 MW功率,这种方法降低了电流。降低电流使得能采用较小的导线和较小的绕组,这导致较轻的机器。这样,每个模块10拉下一半安培数,但其仍产生同样的大约1 MW的总功率输出。电流减半使得能采用较细导线的较小绕组,这导致模块的重量较轻。
3
在一个示范实施例中,采用三百个“较小”电动机/发电机从四个模块10提供约30000伏经系链组件40向下到地面。从四个模块10产生30000伏向下到地面换算成每个模块10具有大约7500伏输出。来自每个模块的7500伏被平均分割到三百个电动机/发电机上,导致每个电动机/发电机产生大约25伏。将这三百个25伏电动机/发电机串联挂住将会产生每个模块大约7500伏输出以及大约30000伏经系链向下到地面。在一个实施例中,电动机/发电机中的一些是冗余的电动机/发电机,使得即使在飞行期间若干电动机/发电机失效,也仍将有足够数目的电动机/发电机保持运转以产生系统所需和所计算的输出电压。
尽管这里示出和说明了具体实施例,本领域技术人员会理解有大量变化和/或等同实施方式可代替所示和所述具体实施例而不背离本发明的范围。本申请意图涵盖这里所述具体实施例的任何改编或变型。因此,希望本发明只受权利要求及其等同物的限制。

Claims (36)

1.一种发电系统,其构造成通过用能源转动转子轴而将所述能源转换成电力,所述系统包括:
耦接到框架的安装板;
耦接到所述转子轴的驱动齿轮,所述驱动齿轮构造成当所述转子轴运动时运动;以及
安装到所述安装板的多个电动机/发电机设备,每个电动机/发电机设备包括构造成与所述驱动齿轮可旋转地耦接的输出轴,其中,每个电动机/发电机设备独立地耦接到所述驱动齿轮以提供多个冗余的发电电动机/发电机设备,并且其中,所述电动机/发电机设备的至少一部分包括脱离机构,所述脱离机构构造成将所述电动机/发电机与所述驱动齿轮脱离。
2.如权利要求1所述的系统,其中,所述脱离机构包括离合器。
3.如权利要求1所述的系统,其中,所述脱离机构包括螺线管。
4.如权利要求1所述的系统,其中,所述安装板包括第一侧和相对的第二侧,所述第二侧与所述驱动齿轮的主表面相邻,每个输出轴从所述安装板的所述第二侧延伸以与所述驱动齿轮的周缘可旋转地耦接。
5.如权利要求1所述的系统,其中,所述安装板与所述驱动齿轮大致共面,所述多个电动机/发电机设备包括成对的电动机/发电机设备,所述成对的电动机/发电机设备被隔开以包括第一电动机/发电机设备和第二电动机/发电机设备,所述第一电动机/发电机设备安装成大致平行于由所述驱动齿轮限定的平面并具有耦接到所述驱动齿轮的第一主表面的第一输出轴,所述第二电动机/发电机设备安装成大致平行于由所述驱动齿轮限定的平面并具有耦接到所述驱动齿轮的第二主表面的第二输出轴。
6.如权利要求5所述的系统,其中,所述成对的电动机/发电机设备相对于所述驱动齿轮径向耦接,并构造成垂直于由所述驱动齿轮限定的平面运动,使得所述输出轴在所述驱动齿轮摇晃时与所述驱动齿轮保持接合。
7.如权利要求1所述的系统,其中,每个输出轴与所述驱动齿轮在界面处耦接,所述界面包括聚合物。
8.如权利要求7所述的系统,其中,所述驱动齿轮的外周包括聚醚醚酮和聚酰亚胺之一的聚合物润滑剂。
9.如权利要求1所述的系统,其中,所述驱动齿轮包括多个齿,每个电动机/发电机设备的每个输出轴包括构造成与所述驱动齿轮的齿啮合的轴齿。
10.如权利要求1所述的系统,其中,每个电动机/发电机设备是可逆电动机/发电机设备,其构造成为所述驱动齿轮的旋转提供动力。
11.如权利要求1所述的系统,其中,所述系统的输出电压在从V到N乘以V的乘积的范围内,其中,N是安装到所述安装板的电动机/发电机设备的数目,V是每一个所述电动机/发电机设备的电压。
12.如权利要求1所述的系统,其中,所述多个电动机/发电机设备沿所述安装板外围安装以具有大约每英尺三个电动机/发电机设备的线性密度。
13.如权利要求1所述的系统,其中,所述多个电动机/发电机设备包括多个电动机。
14.如权利要求1所述的系统,其中,所述多个电动机/发电机设备包括多个发电机。
15.如权利要求1所述的发电系统,其中,所述能源是风能,并且所述发电系统包括:
耦接到所述转子轴的转子,所述转子构造成当被所述风能旋转时提供升力,从而将所述发电系统的一部分提升到一海拔。
16.一种发电系统,包括:
转子,其构造成当定位在气流中时旋转并在旋转时提供升力;
耦接到所述转子的转子轴;
耦接到所述转子轴并构造成在所述转子轴旋转时旋转的驱动齿轮;以及
多个电动机/发电机设备,每个包括构造成与所述驱动齿轮耦接从而随所述驱动齿轮旋转的输出轴,使得每个耦接的输出轴旋转以使其对应的电动机/发电机设备将气流能量转换成电力,其中,所述电动机/发电机设备的至少一部分包括脱离机构,所述脱离机构构造成将所述电动机/发电机与所述驱动齿轮脱离。
17.如权利要求16所述的系统,其中,所述脱离机构包括离合器。
18.如权利要求16所述的系统,其中,所述脱离机构包括螺线管。
19.如权利要求16所述的系统,其中,每个电动机/发电机设备是可逆电动机/发电机设备,其构造成为所述驱动齿轮的旋转提供动力以使所述转子轴旋转从而使所述转子旋转。
20.如权利要求16所述的系统,其中,每个电动机/发电机设备独立地耦接到所述驱动齿轮以提供多个冗余的发电电动机/发电机设备,使得不能操作的电动机/发电机设备构造成经由所述脱离机构与所述驱动齿轮脱离。
21.如权利要求20所述的系统,其中,所述系统构造成产生所需功率输出,包括以下之一:
所述多个电动机/发电机设备的每一个以第一功率输出水平运转;和
所述多个电动机/发电机设备的剩余数目,包括所述多个电动机/发电机设备的每个减去每个不能操作的电动机/发电机设备,构造成以大于所述第一功率输出水平的第二功率输出水平运转。
22.如权利要求20所述的系统,其中,所述多个电动机/发电机设备的每个构造成选择性地以下列之一运转:
空闲模式;
运行模式;以及
解除耦接的不能操作模式。
23.如权利要求22所述的系统,其中,所述系统构造成在所述多个电动机/发电机设备的一部分处于运行模式并且剩余电动机/发电机设备包括至少一个处于空闲模式的电动机/发电机设备和至少一个处于解除耦接的不能操作模式的电动机/发电机设备的情况下产生所需功率输出。
24.如权利要求16所述的系统,包括高输出电压系统,所述高输出电压系统构造成在每个电动机/发电机设备包括小于约1000伏的低电压设备的情况下输出至少15000伏。
25.如权利要求16所述的系统,其中,每个电动机/发电机设备构造成抵抗在大于约10000英尺的海拔处的空气中的击穿电压并产生电力。
26.一种产生电力的方法,所述方法包括:
相对于气流定位转子以使所述转子旋转;
用旋转的转子使驱动齿轮转动;
将多个电动机/发电机设备独立地耦接到所述驱动齿轮以提供多个冗余的发电电动机/发电机设备;
用所述驱动齿轮使所述多个冗余的发电电动机/发电机设备的每一个上的输出轴转动以产生电力;以及
用相关联的脱离机构将电动机/发电机设备与所述驱动齿轮脱离。
27.如权利要求26所述的方法,包括:
用所述转子将所述多个冗余的发电电动机/发电机设备提升到一海拔。
28.如权利要求26所述的方法,其中,所述脱离机构包括离合器。
29.如权利要求26所述的方法,其中,所述脱离机构包括螺线管。
30.一种发电机系统,包括:
框架;
耦接到所述框架的驱动齿轮;以及
多个发电机,每个发电机构造有输出轴,所述输出轴的直径小于所述驱动齿轮的直径,并且所述输出轴定位成与所述驱动齿轮耦接,其中,由能源导致的所述驱动齿轮的旋转使所述发电机的输出轴旋转,并将所述能源转换成电力,其中,所述多个发电机的至少一部分包括脱离机构,所述脱离机构构造成将所述发电机与所述驱动齿轮脱离。
31.如权利要求30所述的发电机系统,其中,所述多个发电机的每一个构造成独立于所述多个发电机的另一个产生电力。
32.如权利要求30所述的发电机系统,其中,所述驱动齿轮耦接到转子叶片,所述转子叶片将所述发电机系统构造成空中发电机系统。
33.如权利要求30所述的发电机系统,其中,所述驱动齿轮的直径是至少10英尺,所述多个发电机包括相对的成对发电机,所述成对发电机绕所述驱动齿轮的外周径向耦接并构造成限制所述驱动的轴向摇晃运动。
34.一种发电机系统,包括:
框架;
耦接到所述框架的驱动齿轮;以及
多个电动机,每个电动机构造有输出轴,所述输出轴的直径小于所述驱动齿轮的直径,并且所述输出轴定位成与所述驱动齿轮耦接,其中,由所述电动机产生的电力被用于使所述输出轴旋转,并且旋转的输出轴使所述驱动齿轮旋转,并且其中,所述多个电动机的至少一部分包括脱离机构,所述脱离机构构造成将所述电动机与所述驱动齿轮脱离。
35.如权利要求34所述的发电机系统,其中,所述多个电动机的每一个构造成独立于所述多个电动机的另一个产生功率。
36.如权利要求34所述的发电机系统,其中,旋转的输出轴使所述驱动齿轮旋转,旋转的驱动齿轮使耦接到所述驱动齿轮的转子旋转,以使所述系统能产生空气动力升力。
CN200980136300.XA 2008-07-17 2009-07-17 包括多个电动机/发电机的发电系统 Expired - Fee Related CN102159831B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/175416 2008-07-17
US12/175,416 US7675189B2 (en) 2007-07-17 2008-07-17 Power generation system including multiple motors/generators
PCT/US2009/051050 WO2010009431A2 (en) 2008-07-17 2009-07-17 Power generation system including multiple motors/generators

Publications (2)

Publication Number Publication Date
CN102159831A true CN102159831A (zh) 2011-08-17
CN102159831B CN102159831B (zh) 2015-07-15

Family

ID=40264245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980136300.XA Expired - Fee Related CN102159831B (zh) 2008-07-17 2009-07-17 包括多个电动机/发电机的发电系统

Country Status (14)

Country Link
US (3) US7675189B2 (zh)
EP (1) EP2326831B1 (zh)
JP (1) JP5591802B2 (zh)
KR (1) KR20110079610A (zh)
CN (1) CN102159831B (zh)
AU (1) AU2009270766B2 (zh)
BR (1) BRPI0916226A2 (zh)
CA (1) CA2730937A1 (zh)
ES (1) ES2432079T3 (zh)
HK (1) HK1158290A1 (zh)
MX (1) MX2011000677A (zh)
RU (1) RU2536642C2 (zh)
WO (1) WO2010009431A2 (zh)
ZA (1) ZA201103933B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102729800A (zh) * 2012-07-16 2012-10-17 董忠绘 电动汽车驱动轮毂电动机
CN105570321A (zh) * 2014-10-29 2016-05-11 斯凯孚公司 具有能量收集装置的轴承设备
CN109996955A (zh) * 2016-10-19 2019-07-09 安派克斯能源私人有限公司 空中风能产出系统的操作方法及相应的系统
CN110273984A (zh) * 2019-07-22 2019-09-24 国电联合动力技术有限公司 风电机组双输入分流电变桨驱动装置及风电机组

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8453962B2 (en) * 2007-02-16 2013-06-04 Donald Orval Shaw Modular flying vehicle
US20100314886A1 (en) * 2007-05-22 2010-12-16 Lynn Potter Funneled wind turbine aircraft featuring a diffuser
US7675189B2 (en) * 2007-07-17 2010-03-09 Baseload Energy, Inc. Power generation system including multiple motors/generators
US7956482B2 (en) * 2008-01-18 2011-06-07 General Electric Company Speed controlled pitch system
AU2009238195B2 (en) * 2008-04-14 2013-11-14 Wongalea Holdings Pty Ltd Control system for a windmill kite
AU2009270769B2 (en) * 2008-07-18 2014-07-24 Baseload Energy, Inc. Tether handling for airborne electricity generators
US7944077B2 (en) * 2009-01-14 2011-05-17 Amsc Windtec Gmbh Generator, nacelle, and mounting method of a nacelle of a wind energy converter
US20110057453A1 (en) * 2009-02-26 2011-03-10 Bryan William Roberts Tethered airborne wind-driven power generator
US20100219644A1 (en) * 2009-02-27 2010-09-02 Benjamin Tigner Power Generation using High Altitude Traction Rotors
HU227468B1 (en) * 2009-03-16 2011-06-28 Gabor Dr Dobos Flying wind power station
CN102458987B (zh) * 2009-04-06 2015-10-07 天空智慧有限公司 用来举起有效载荷的系统、浮动单元和方法
US20110127775A1 (en) * 2009-05-20 2011-06-02 Bevirt Joeben Airborne Power Generation System With Modular Structural Elements
US8366037B2 (en) * 2009-05-22 2013-02-05 Heliplane, Llc Towable aerovehicle system with automated tow line release
US8373319B1 (en) 2009-09-25 2013-02-12 Jerry Barnes Method and apparatus for a pancake-type motor/generator
US8540183B2 (en) * 2009-12-12 2013-09-24 Heliplane, Llc Aerovehicle system including plurality of autogyro assemblies
US9352832B2 (en) 2010-03-24 2016-05-31 Google Inc. Bridles for stability of a powered kite and a system and method for use of same
US8800931B2 (en) * 2010-03-24 2014-08-12 Google Inc. Planform configuration for stability of a powered kite and a system and method for use of same
KR101184186B1 (ko) 2010-04-09 2012-09-18 김민중 고소 원통형구조물의 외주를 이용한 풍력발전장치
US9059601B2 (en) * 2010-06-29 2015-06-16 Richard Rogers Wind-driven recharger for vehicle battery
US10001110B2 (en) 2010-06-29 2018-06-19 Richard Rogers Wind-driven electric generator array
US9647487B2 (en) 2010-06-29 2017-05-09 Richard Rogers Wind-driven recharger for vehicle battery
US8646719B2 (en) * 2010-08-23 2014-02-11 Heliplane, Llc Marine vessel-towable aerovehicle system with automated tow line release
FI123019B (fi) * 2010-08-26 2012-10-15 Winwind Oy Tuulivoimalarakenne
KR101042200B1 (ko) * 2010-09-02 2011-06-16 드림스페이스월드주식회사 Pcb를 사용한 무인 비행체
BR112013007255B1 (pt) * 2010-11-12 2021-01-19 Sky Sapience sistema
US20120248770A1 (en) * 2011-04-02 2012-10-04 Joonbum Byun High Altitude Wind Power Generator with Kite and Dual Purpose Circular Fan
US8564148B1 (en) * 2011-05-11 2013-10-22 John J. Novak AC energy generator
US8851839B2 (en) * 2011-08-23 2014-10-07 Charles Franklin ECKART Wide blade multiple generator wind turbine
EP2782502B1 (en) * 2011-11-25 2016-04-06 Sanofi-Aventis Deutschland GmbH Apparatus for eliciting a blood sample
KR101611779B1 (ko) * 2011-12-18 2016-04-11 구글 인코포레이티드 연 지상 스테이션과 이를 이용하는 시스템
FR2975445A1 (fr) * 2012-08-13 2012-11-23 Pierre Benhaiem Aerogenerateur a entrainement circonferentiel
CN103659153B (zh) * 2012-09-17 2016-02-10 上海南洋电机有限公司 一种风力发电机的现场维护方法
US11476781B2 (en) 2012-11-16 2022-10-18 U.S. Well Services, LLC Wireline power supply during electric powered fracturing operations
US9840901B2 (en) 2012-11-16 2017-12-12 U.S. Well Services, LLC Remote monitoring for hydraulic fracturing equipment
US9995218B2 (en) 2012-11-16 2018-06-12 U.S. Well Services, LLC Turbine chilling for oil field power generation
US9745840B2 (en) 2012-11-16 2017-08-29 Us Well Services Llc Electric powered pump down
US10119381B2 (en) 2012-11-16 2018-11-06 U.S. Well Services, LLC System for reducing vibrations in a pressure pumping fleet
US11449018B2 (en) * 2012-11-16 2022-09-20 U.S. Well Services, LLC System and method for parallel power and blackout protection for electric powered hydraulic fracturing
US10407990B2 (en) 2012-11-16 2019-09-10 U.S. Well Services, LLC Slide out pump stand for hydraulic fracturing equipment
US10020711B2 (en) 2012-11-16 2018-07-10 U.S. Well Services, LLC System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources
US10254732B2 (en) 2012-11-16 2019-04-09 U.S. Well Services, Inc. Monitoring and control of proppant storage from a datavan
US10526882B2 (en) 2012-11-16 2020-01-07 U.S. Well Services, LLC Modular remote power generation and transmission for hydraulic fracturing system
US9410410B2 (en) 2012-11-16 2016-08-09 Us Well Services Llc System for pumping hydraulic fracturing fluid using electric pumps
US9893500B2 (en) 2012-11-16 2018-02-13 U.S. Well Services, LLC Switchgear load sharing for oil field equipment
US9970278B2 (en) 2012-11-16 2018-05-15 U.S. Well Services, LLC System for centralized monitoring and control of electric powered hydraulic fracturing fleet
US10232332B2 (en) 2012-11-16 2019-03-19 U.S. Well Services, Inc. Independent control of auger and hopper assembly in electric blender system
US10036238B2 (en) 2012-11-16 2018-07-31 U.S. Well Services, LLC Cable management of electric powered hydraulic fracturing pump unit
US11959371B2 (en) 2012-11-16 2024-04-16 Us Well Services, Llc Suction and discharge lines for a dual hydraulic fracturing unit
US9650879B2 (en) 2012-11-16 2017-05-16 Us Well Services Llc Torsional coupling for electric hydraulic fracturing fluid pumps
WO2014109917A1 (en) * 2013-01-10 2014-07-17 Leonid Goldstein Airborne wind energy system
US9611835B1 (en) * 2013-01-11 2017-04-04 Google Inc. Motor control topology for airborne power generation and systems using same
US20140263822A1 (en) * 2013-03-18 2014-09-18 Chester Charles Malveaux Vertical take off and landing autonomous/semiautonomous/remote controlled aerial agricultural sensor platform
US9777698B2 (en) 2013-11-12 2017-10-03 Daniel Keith Schlak Multiple motor gas turbine engine system with auxiliary gas utilization
US9294016B2 (en) * 2013-12-19 2016-03-22 Google Inc. Control methods and systems for motors and generators operating in a stacked configuration
US20150239557A1 (en) * 2014-02-25 2015-08-27 Jedidya Boros Self balancing airborne observational apparatus
DE112014000137T5 (de) * 2014-03-18 2015-11-26 Mitsubishi Electric Corporation Mechanische Vorrichtung
FR3020096B1 (fr) * 2014-04-16 2019-04-19 Anemos Technologies Eolienne adaptative
CA2908276C (en) * 2014-10-14 2022-11-01 Us Well Services Llc Parallel power and blackout protection for electric hydraulic fracturing
US20160190906A1 (en) * 2014-12-25 2016-06-30 Ballou De'Wana Geomagnetic Device
US20200044551A1 (en) * 2014-12-25 2020-02-06 De'Wana Ballou Geomagnetic Device
US10422320B1 (en) * 2015-12-31 2019-09-24 Makani Technologies Llc Power management for an airborne wind turbine
US9948098B1 (en) 2015-12-31 2018-04-17 X Development Llc Fault tolerance control strategies for multi-kite power generation system
US10144510B1 (en) * 2016-06-29 2018-12-04 Kitty Hawk Corporation Tethered wind turbine using a stopped rotor aircraft
FR3053259B1 (fr) * 2016-07-01 2020-10-23 Elistair Dispositif d'alimentation pour drone filaire
CA2987665C (en) 2016-12-02 2021-10-19 U.S. Well Services, LLC Constant voltage power distribution system for use with an electric hydraulic fracturing system
US9991763B1 (en) * 2017-05-04 2018-06-05 Florida Turbine Technologies, Inc. Gas turbine engine with multiple electric generators
US10280724B2 (en) 2017-07-07 2019-05-07 U.S. Well Services, Inc. Hydraulic fracturing equipment with non-hydraulic power
US10745102B2 (en) * 2017-07-17 2020-08-18 Griff Aviation As Swingable arm mount for an aerial vehicle having a lift generating means, and an aerial vehicle, advantageously a multicopter with a swingable arm mount
CN107444609B (zh) * 2017-07-18 2019-11-12 猫头鹰安防科技有限公司 一种具有高负载能力且延长续航时间的农药喷洒无人机
WO2019071086A1 (en) 2017-10-05 2019-04-11 U.S. Well Services, LLC SYSTEM AND METHOD FOR FLOWING INSTRUMENTED FRACTURING SLUDGE
CA3078879A1 (en) 2017-10-13 2019-04-18 U.S. Well Services, LLC Automated fracturing system and method
US10655435B2 (en) 2017-10-25 2020-05-19 U.S. Well Services, LLC Smart fracturing system and method
AR113611A1 (es) 2017-12-05 2020-05-20 U S Well Services Inc Bombas de émbolos múltiples y sistemas de accionamiento asociados
CA3084607A1 (en) 2017-12-05 2019-06-13 U.S. Well Services, LLC High horsepower pumping configuration for an electric hydraulic fracturing system
DE102018114768A1 (de) * 2017-12-14 2019-06-19 Schaeffler Technologies AG & Co. KG Elektromaschinenbaugruppe für eine Windkraftanlage
WO2019152981A1 (en) 2018-02-05 2019-08-08 U.S. Well Services, Inc. Microgrid electrical load management
WO2019204242A1 (en) 2018-04-16 2019-10-24 U.S. Well Services, Inc. Hybrid hydraulic fracturing fleet
WO2019241783A1 (en) * 2018-06-15 2019-12-19 U.S. Well Services, Inc. Integrated mobile power unit for hydraulic fracturing
RU2697075C1 (ru) * 2018-07-25 2019-08-12 Юлий Борисович Соколовский Способ преобразования кинетической энергии ветра на летающей ветроэнергетической установке
US10648270B2 (en) 2018-09-14 2020-05-12 U.S. Well Services, LLC Riser assist for wellsites
US20200102931A1 (en) * 2018-10-02 2020-04-02 Edward John Koch Wind Turbine
CA3115669A1 (en) 2018-10-09 2020-04-16 U.S. Well Services, LLC Modular switchgear system and power distribution for electric oilfield equipment
CN109573064A (zh) * 2019-01-29 2019-04-05 王彩霞 一种续航能力强的无人飞行设备
US11578577B2 (en) 2019-03-20 2023-02-14 U.S. Well Services, LLC Oversized switchgear trailer for electric hydraulic fracturing
US11728709B2 (en) 2019-05-13 2023-08-15 U.S. Well Services, LLC Encoderless vector control for VFD in hydraulic fracturing applications
CA3148987A1 (en) 2019-08-01 2021-02-04 U.S. Well Services, LLC High capacity power storage system for electric hydraulic fracturing
US11097839B2 (en) * 2019-10-09 2021-08-24 Kitty Hawk Corporation Hybrid power systems for different modes of flight
RU2723540C1 (ru) * 2019-11-27 2020-06-15 федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» Соленоидный ветрогенератор с зубцовым статором
US11009162B1 (en) 2019-12-27 2021-05-18 U.S. Well Services, LLC System and method for integrated flow supply line
CA3086465C (en) * 2020-07-09 2022-03-01 Jerry D. Washington, Jr. Windmill electrical power system and torque enhanced transmission
KR102185288B1 (ko) * 2020-10-14 2020-12-02 주식회사 천우 전력용변압기용 냉각기의 운동에너지를 이용한 에너지 저장장치
KR102185310B1 (ko) * 2020-10-14 2020-12-03 주식회사 천우 복합 중성점접지 변압기 리액터를 포함하고 방호기능을 갖는 전력용변압기 시스템
KR102185299B1 (ko) * 2020-10-14 2020-12-03 주식회사 천우 전력용변압기의 다기능 방호장치
WO2023023827A1 (en) * 2021-08-24 2023-03-02 Dimo Georgiev Stoilov Methods and machines for harvesting electricity from fluid flows

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4285481A (en) * 1979-06-04 1981-08-25 Biscomb Lloyd I Multiple wind turbine tethered airfoil wind energy conversion system
US5419683A (en) * 1990-11-10 1995-05-30 Peace; Steven J. Wind turbine
US6304002B1 (en) * 2000-04-19 2001-10-16 Dehlsen Associates, L.L.C. Distributed powertrain for high torque, low electric power generator
US20030091437A1 (en) * 2001-11-07 2003-05-15 Roberts Bryan William Windmill kite
CN1668845A (zh) * 2002-07-24 2005-09-14 太阳力株式会社 风力发电装置及风力发电装置等的建设方法
US6951443B1 (en) * 2000-09-08 2005-10-04 General Electric Company Wind turbine ring/shroud drive system
US20060049304A1 (en) * 2002-01-07 2006-03-09 Sanders John K Jr Quiet vertical takeoff and landing aircraft using ducted, magnetic induction air-impeller rotors
CN101207313A (zh) * 2006-12-22 2008-06-25 财团法人工业技术研究院 具有复合式发电机的发电装置及其发电方法

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2429502A (en) 1943-08-21 1947-10-21 Arthur M Young Captive helicopter-kite means
US2472290A (en) 1946-03-18 1949-06-07 Joy Products Company Helicopter kite
US3181810A (en) 1961-02-27 1965-05-04 Curtiss Wright Corp Attitude control system for vtol aircraft
FR1430178A (fr) 1964-12-15 1966-03-04 Giravions Dorand Procédé pour éviter l'échauffement excessif et contrôler la trajectoire d'un engin aérospatial
US3582025A (en) 1969-03-14 1971-06-01 Lynn D Richardson Winged rotary kite
GB1389403A (en) * 1971-06-01 1975-04-03 Westland Aircraft Ltd Helicopter power transmission systems
US3987987A (en) 1975-01-28 1976-10-26 Payne Peter R Self-erecting windmill
US4084102A (en) 1976-01-19 1978-04-11 Charles Max Fry Wind driven, high altitude power apparatus
US4166596A (en) 1978-01-31 1979-09-04 Mouton William J Jr Airship power turbine
US4486669A (en) 1981-11-09 1984-12-04 Pugh Paul F Wind generator kite system
US4450364A (en) 1982-03-24 1984-05-22 Benoit William R Lighter than air wind energy conversion system utilizing a rotating envelope
US4659940A (en) * 1982-04-27 1987-04-21 Cognitronics Corporation Power generation from high altitude winds
US5435259A (en) 1988-10-13 1995-07-25 Labrador; Gaudencio A. Rein-deer kite and its control systems
US4685354A (en) * 1985-06-20 1987-08-11 Westinghouse Electric Corp. Transmission with a speed reducer and gear shifter
GB8907889D0 (en) 1989-04-07 1989-05-24 Kirby John Flying generator
US5040948A (en) 1990-03-26 1991-08-20 Harburg Rudy W Coaxial multi-turbine generator
RU2006662C1 (ru) * 1990-12-27 1994-01-30 Владимир Афанасьевич Корниенко Силовой ветроагрегат
DE69529349D1 (de) * 1995-10-13 2003-02-13 Nils Erik Gislason Windrad mit waagerechter welle
US7281527B1 (en) * 1996-07-17 2007-10-16 Bryant Clyde C Internal combustion engine and working cycle
US5807202A (en) * 1996-09-04 1998-09-15 Sikorsky Aircraft Corporation Differential speed transmission
US6600240B2 (en) 1997-08-08 2003-07-29 General Electric Company Variable speed wind turbine generator
IT1297939B1 (it) * 1997-12-23 1999-12-20 Fiatavio Spa Gruppo di trasmissione ad ingranaggi
US6091161A (en) * 1998-11-03 2000-07-18 Dehlsen Associates, L.L.C. Method of controlling operating depth of an electricity-generating device having a tethered water current-driven turbine
US6254034B1 (en) 1999-09-20 2001-07-03 Howard G. Carpenter Tethered aircraft system for gathering energy from wind
DE19948324C2 (de) * 1999-10-07 2001-08-09 Fogtec Brandschutz Gmbh & Co Vorrichtung zum Löschen eines Feuers
FR2804082B1 (fr) * 2000-01-20 2002-05-17 Gyropter Aeronef a ailes tournantes
US6726439B2 (en) 2001-08-22 2004-04-27 Clipper Windpower Technology, Inc. Retractable rotor blades for power generating wind and ocean current turbines and means for operating below set rotor torque limits
US7002259B2 (en) 2001-08-22 2006-02-21 Clipper Windpower Technology, Inc. Method of controlling electrical rotating machines connected to a common shaft
US7109598B2 (en) 2001-11-07 2006-09-19 Bryan William Roberts Precisely controlled flying electric generators III
US7183663B2 (en) 2001-11-07 2007-02-27 Bryan William Roberts Precisely controlled flying electric generators
US6612195B2 (en) * 2001-11-26 2003-09-02 Sikorsky Aircraft Corporation Split-torque face gear transmission
US6923622B1 (en) 2002-03-07 2005-08-02 Clipper Windpower Technology, Inc. Mechanism for extendable rotor blades for power generating wind and ocean current turbines and means for counter-balancing the extendable rotor blade
US6731017B2 (en) 2002-06-03 2004-05-04 Clipper Windpower Technology, Inc. Distributed powertrain that increases electric power generator density
US6998723B2 (en) * 2002-08-06 2006-02-14 Carl Cheung Tung Kong Electrical generating system having a magnetic coupling
US6672539B1 (en) * 2002-08-30 2004-01-06 Stephen L. Schoeneck Power generation system
US6955025B2 (en) 2002-09-11 2005-10-18 Clipper Windpower Technology, Inc. Self-erecting tower and method for raising the tower
US7095597B1 (en) 2003-04-30 2006-08-22 Clipper Windpower Technology, Inc. Distributed static var compensation (DSVC) system for wind and water turbine applications
US7042110B2 (en) 2003-05-07 2006-05-09 Clipper Windpower Technology, Inc. Variable speed distributed drive train wind turbine system
US7069802B2 (en) * 2003-05-31 2006-07-04 Clipper Windpower Technology, Inc. Distributed power train (DGD) with multiple power paths
US7129596B2 (en) * 2004-01-10 2006-10-31 Aleandro Soares Macedo Hovering wind turbine
US7335000B2 (en) * 2005-05-03 2008-02-26 Magenn Power, Inc. Systems and methods for tethered wind turbines
US7399162B2 (en) * 2006-01-17 2008-07-15 Williams Herbert L Wind turbine
CA2675883C (en) * 2007-01-17 2014-08-26 New World Generation Inc. Multiple generator wind turbine and method of operation
WO2009006287A2 (en) * 2007-06-29 2009-01-08 George Syrovy Oscillating windmill
US7675189B2 (en) * 2007-07-17 2010-03-09 Baseload Energy, Inc. Power generation system including multiple motors/generators

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4285481A (en) * 1979-06-04 1981-08-25 Biscomb Lloyd I Multiple wind turbine tethered airfoil wind energy conversion system
US5419683A (en) * 1990-11-10 1995-05-30 Peace; Steven J. Wind turbine
US6304002B1 (en) * 2000-04-19 2001-10-16 Dehlsen Associates, L.L.C. Distributed powertrain for high torque, low electric power generator
US6951443B1 (en) * 2000-09-08 2005-10-04 General Electric Company Wind turbine ring/shroud drive system
US20030091437A1 (en) * 2001-11-07 2003-05-15 Roberts Bryan William Windmill kite
US20060049304A1 (en) * 2002-01-07 2006-03-09 Sanders John K Jr Quiet vertical takeoff and landing aircraft using ducted, magnetic induction air-impeller rotors
CN1668845A (zh) * 2002-07-24 2005-09-14 太阳力株式会社 风力发电装置及风力发电装置等的建设方法
CN101207313A (zh) * 2006-12-22 2008-06-25 财团法人工业技术研究院 具有复合式发电机的发电装置及其发电方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102729800A (zh) * 2012-07-16 2012-10-17 董忠绘 电动汽车驱动轮毂电动机
CN105570321A (zh) * 2014-10-29 2016-05-11 斯凯孚公司 具有能量收集装置的轴承设备
CN105570321B (zh) * 2014-10-29 2020-06-05 斯凯孚公司 具有能量收集装置的轴承设备
CN109996955A (zh) * 2016-10-19 2019-07-09 安派克斯能源私人有限公司 空中风能产出系统的操作方法及相应的系统
CN109996955B (zh) * 2016-10-19 2022-04-12 安派克斯能源私人有限公司 空中风能产出系统的操作方法及相应的系统
CN110273984A (zh) * 2019-07-22 2019-09-24 国电联合动力技术有限公司 风电机组双输入分流电变桨驱动装置及风电机组

Also Published As

Publication number Publication date
KR20110079610A (ko) 2011-07-07
US7816800B2 (en) 2010-10-19
RU2536642C2 (ru) 2014-12-27
AU2009270766A1 (en) 2010-01-21
US8444081B2 (en) 2013-05-21
US7675189B2 (en) 2010-03-09
EP2326831B1 (en) 2013-05-29
AU2009270766B2 (en) 2014-02-20
WO2010009431A3 (en) 2011-01-06
US20100156102A1 (en) 2010-06-24
CA2730937A1 (en) 2010-01-21
ZA201103933B (en) 2012-08-29
US20090021021A1 (en) 2009-01-22
WO2010009431A2 (en) 2010-01-21
MX2011000677A (es) 2011-06-20
BRPI0916226A2 (pt) 2015-11-03
US20110031344A1 (en) 2011-02-10
RU2011105823A (ru) 2012-08-27
HK1158290A1 (en) 2012-07-13
JP2011528548A (ja) 2011-11-17
JP5591802B2 (ja) 2014-09-17
EP2326831A2 (en) 2011-06-01
ES2432079T3 (es) 2013-11-29
CN102159831B (zh) 2015-07-15

Similar Documents

Publication Publication Date Title
CN102159831B (zh) 包括多个电动机/发电机的发电系统
RU2438041C2 (ru) Прямоприводной генератор или двигатель для ветро- или гидроэнергетической установки или судна и способ сборки такой установки
EP2556243B1 (en) Wind turbine rotor and wind turbine
CN101711309A (zh) 涡轮转子和发电设备
CN102121455A (zh) 风力涡轮机传动系系统
JP2018538783A (ja) 再生可能エネルギー源からエネルギーを生成する方法および装置
JP2009138735A (ja) 遠心推動省エネ発電システム
KR101368799B1 (ko) 풍력발전기
BRPI1104839A2 (pt) turbina eàlica de energia para veÍculos elÉtricos e hÍbridos
GB2491488A (en) Electromechanical driveline with power splitting device
WO2018020319A2 (zh) 惯性飞轮传动组件及具有惯性飞轮传动组件的系统
US20110133482A1 (en) System and method for production of electricity in small/large scale in an eco-friendly manner without usage of any raw materials
KR20150048641A (ko) 조류 발전장치
CN102635508A (zh) 具高效姿态控制机构的风筝风力发电系统
WO2021119670A1 (en) Wind turbine protections
TWM548926U (zh) 慣性飛輪傳動組件及具有慣性飛輪傳動組件的系統

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150715

Termination date: 20160717