WO2018020319A2 - 惯性飞轮传动组件及具有惯性飞轮传动组件的系统 - Google Patents

惯性飞轮传动组件及具有惯性飞轮传动组件的系统 Download PDF

Info

Publication number
WO2018020319A2
WO2018020319A2 PCT/IB2017/001066 IB2017001066W WO2018020319A2 WO 2018020319 A2 WO2018020319 A2 WO 2018020319A2 IB 2017001066 W IB2017001066 W IB 2017001066W WO 2018020319 A2 WO2018020319 A2 WO 2018020319A2
Authority
WO
WIPO (PCT)
Prior art keywords
flywheel
inertia
inertia flywheel
drive assembly
inertial
Prior art date
Application number
PCT/IB2017/001066
Other languages
English (en)
French (fr)
Other versions
WO2018020319A3 (zh
Inventor
廖明振
Original Assignee
无限原力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无限原力股份有限公司 filed Critical 无限原力股份有限公司
Publication of WO2018020319A2 publication Critical patent/WO2018020319A2/zh
Publication of WO2018020319A3 publication Critical patent/WO2018020319A3/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/02Additional mass for increasing inertia, e.g. flywheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a transmission assembly and system, and more particularly to a transmission assembly and system having an inertial flywheel that can increase the efficiency of overall energy application through an inertia flywheel. ⁇ Background technique ⁇
  • the present invention is intended to provide an inertial flywheel drive assembly that can be used with an existing powertrain or power generation system.
  • the present invention can be applied to a conventional power generating device such as a wind power generator, a hydroelectric generator, a solar power panel, or a regenerative power generating device that recycles waste materials.
  • the present invention is a method of matching an inertial flywheel transmission component with a driving device, and reducing the output of the driving device after the inertia flywheel transmission component reaches a certain rotational speed (which can generate a certain moment of inertia and mass momentum), and improves
  • the high mechanical energy output requirements of the prior art cause the waste of energy.
  • the present invention provides an inertial flywheel transmission assembly comprising: at least one inertia flywheel and at least one transmission member.
  • the at least one inertial flywheel includes a flywheel body and an axis, the shaft is disposed through the flywheel body, and the flywheel body is pivoted.
  • At least one transmission member is coupled to the axis of the at least one inertia flywheel.
  • the flywheel body can be a rotating body, and the flywheel body has an edge portion and a center portion.
  • the outer edge portion is disposed around the central portion, wherein the outer edge portion has a first thickness, the central portion has a second thickness, and the first thickness is greater than the second: thickness.
  • the inertial flywheel drive assembly further includes an adjustment member, and the outer edge portion further includes at least one slot, and the adjustment member is inserted into the slot.
  • the density of the adjustment member is different from the flywheel body.
  • edge portion and the center portion are connected through at least one connecting member.
  • the edge portion is composed of a plurality of edge members.
  • the inertia flywheel drive assembly further includes: the at least one transmission member further includes a first transmission member.
  • the at least one inertia flywheel further includes a first inertia flywheel and a second inertia flywheel, and the first inertia flywheel drives the second inertia flywheel through the first transmission member.
  • the at least one transmission member further includes a first transmission member and a second transmission member.
  • the at least one inertia flywheel further includes a first inertia flywheel, a second inertia flywheel, and a third inertia flywheel.
  • the first inertia flywheel drives the second inertia flywheel and the third inertia flywheel through the first transmission member and the second transmission member, respectively.
  • the at least one transmission member further includes a plurality of transmission members.
  • the at least one inertial flywheel further includes a plurality of inertial flywheels, wherein the inertial flywheels are respectively driven by the transmission members.
  • the transmission member may be a pulley, a sprocket or a gear.
  • the present invention also provides a system having an inertial flywheel drive assembly, comprising: at least one drive device, any of the inertial flywheel drive assemblies previously described, an inertia flywheel monitoring unit, and at least one output device.
  • At least one driving device includes a power regulating unit for regulating the output of the driving device.
  • the inertia flywheel drive assembly is coupled to at least one drive.
  • At least one inertial flywheel monitoring unit is configured to detect a rotational speed of at least one of the inertial flywheels in the inertial flywheel drive assembly.
  • At least one output device is coupled to the inertia flywheel drive assembly.
  • the power control unit regulating drive provides an initial output to the inertia flywheel drive assembly,
  • the inertia flywheel of the inertia flywheel drive assembly reaches a rated speed, and the inertia flywheel monitoring unit transmits an adjustment signal to the power control unit, according to which the power control unit adjusts the output of the drive device.
  • At least one of the drive devices is directly coupled to at least one of the inertia flywheels of the flywheel drive assembly.
  • the at least one output device is directly coupled to at least one of the inertia flywheels of the flywheel drive assembly.
  • At least one of the drive means, the inertial flywheel drive assembly and the at least one output device are integrated into a single component.
  • the at least one output device is a plurality of output devices.
  • an electronic control unit is further included.
  • a system monitoring unit is further included, which monitors at least the operating states of the at least one driving device, the inertial flywheel transmission component, and the at least one output device.
  • an emergency stop unit may be further included, wherein the system monitoring unit transmits a status abnormality signal to the emergency stop unit, and the emergency stop unit transmits a stop signal to the at least one driving device or directly suspends at least one inertia flywheel. The operation of the drive assembly.
  • the system may further include a plurality of damping units.
  • the inertia flywheel drive assembly further includes at least one flywheel connector disposed on an outer edge portion of the inertia flywheels.
  • the central portion is formed by a plurality of center members, wherein the edge members are coupled to the center member via at least one of the connectors.
  • FIG. 1 is a perspective view of an inertial flywheel according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the inertia flywheel of FIG. 1.
  • FIG. 3A is a schematic illustration of an inertial flywheel drive assembly in accordance with yet another embodiment of the present invention.
  • Figure 3B is a front elevational view of Figure 3A.
  • Figure 4 is a schematic illustration of an inertial flywheel drive assembly in accordance with yet another embodiment of the present invention.
  • Figure 5A is a schematic illustration of an inertial flywheel drive assembly in accordance with yet another embodiment of the present invention.
  • Figure 5B is a plan view of Figure 5A.
  • Figure 6 is a schematic illustration of an inertial flywheel drive assembly in accordance with yet another embodiment of the present invention.
  • FIG. 7 is a schematic illustration of an inertial flywheel drive assembly in accordance with yet another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a system of an inertial flywheel transmission assembly according to an embodiment of the present invention.
  • Figure 9 is a schematic illustration of one embodiment of the system of Figure 8.
  • FIG. 10 is a schematic diagram of still another embodiment of the system of FIG.
  • Figure 11 is a schematic illustration of yet another embodiment of the system of Figure 8.
  • Figure 12 is a schematic illustration of a system for an inertial flywheel drive assembly for a carrier in accordance with an embodiment of the present invention.
  • Figure 13 is a schematic view of an inertia flywheel drive assembly for a fan in accordance with an embodiment of the present invention.
  • Inertial flywheel drive assembly system Inertial flywheel drive assembly 1 First inertia flywheel
  • connection is not a technical point of the present invention, and therefore is not particularly described.
  • same component symbols are used for the same, similar components or devices of the present invention.
  • bearings are not specifically drawn in the drawings, but should not affect the understanding of the core concepts of the present invention by those of ordinary skill in the art.
  • the embodiment discloses an inertial flywheel transmission component, which can be used with an existing power device and a power generating device, can maintain a fixed inertia characteristic after being activated by the inertia flywheel transmission component, and obtain a stable The amount of mass momentum can greatly reduce the supply of overall power.
  • the inertia flywheel drive assembly of the present embodiment includes at least one inertia flywheel and at least one transmission member. The number of inertia flywheels and transmissions can be adjusted according to demand. The possible implementations will be described in sequence below.
  • FIG. 1 is a perspective view of an inertia flywheel according to an embodiment of the present invention.
  • Figure 2 is a schematic cross-sectional view of the inertia flywheel of Figure 1.
  • the inertia flywheel 11 of the present embodiment includes a flywheel body 111 and an axis 113.
  • the shaft 113 passes through the flywheel body 111, and the flywheel body 111 is rotated by the shaft 113. If the inertia flywheel 11a is to be used with a transmission member, the transmission member can be coupled to the shaft 113 and transmitted by the shaft 113 to transmit mechanical energy.
  • the flywheel body 111 of the embodiment is a rotating body, and the flywheel body 111 There is an edge portion 111a and a center portion 111b, and the outer edge portion 111a is disposed around the center portion 111b.
  • the edge portion 111a and the center portion 111b are integrally formed and integrated into a single member, but are not limited thereto. In order to achieve better results, it is possible to select a metal having a large mass proportion.
  • the thickness of the flywheel body 111 may be a shape in which the center of the flywheel gradually increases in the circumferential direction to form a mass distribution on the outer edge.
  • the surface can be designed to be streamlined to reduce windage and improve efficiency.
  • the outer edge portion 111a of the present embodiment has a first thickness W1
  • the central portion 111b has a second thickness W2
  • the first thickness W1 is larger than the second thickness W2.
  • the center portion of the flywheel body of one embodiment may be a plate body, a spoke or a partial/partial hollow design. With this design, the inertia flywheel of the present invention can be designed to have a large inertial mass.
  • FIG. 3A and FIG. 3B is a schematic diagram of an inertial flywheel drive assembly according to still another embodiment of the present invention.
  • the difference from the foregoing embodiment is that the flywheel body 211 of the inertia flywheel 21 of the present embodiment can also be used with an adjustment member 215.
  • the density (or specific gravity) of the adjusting member 215 here is different from that of the flywheel body, that is, the adjusting member 215 and the flywheel body 211 are made of different materials.
  • the flywheel body 211 may further include at least one slot 211c, and the adjusting member 215 is inserted into the slot 211c for use.
  • the manner in which the adjusting member 215 is locked in the slot 211c is not particularly drawn, and the adjusting member 215 can be fixed to the slot 211c by means of screws, snaps, snaps, adhesives, or the like.
  • the purpose of the adjustment member 215 is that the user can match the appropriate adjustment member 215 according to different needs and scenes, and adjust the inertia of the flywheel body 211 through the adjustment member 215.
  • the adjustment member 215 having a larger density or a larger specific gravity can improve the mass inertia of the flywheel body 211.
  • the shape of the adjusting member 215 and the locking of the adjusting member 215 and the slot 211c are not limited by the embodiment and the description.
  • FIG. 4 is a schematic view of an inertial flywheel drive assembly in accordance with still another embodiment of the present invention.
  • the difference from the foregoing embodiment is that the edge portion and the center portion of the flywheel body 221 of the present embodiment are two Independent component.
  • the user can compose the flywheel body of different shapes and sizes according to requirements.
  • the center portion of this embodiment is constituted by a plurality of center pieces 221b.
  • the edge portion is composed of a plurality of edge members 221a which may be the same or different length members.
  • the edge portion and the center portion are connected by at least one connecting member 221c. That is, each of the edge members 221a can be connected to the center member 221b via a connecting member 221c.
  • part or all of the edge portion can be replaced with an edge member having a longer diameter, using the flywheel of the prior art. More flexible and simple. Further, in this embodiment, in combination with the previous embodiment, a plurality of adjusting members are provided at the edge of the edge member to further adjust the overall moment of inertia.
  • FIG. 5A is a schematic diagram of an inertial flywheel transmission assembly 23 according to still another embodiment of the present invention.
  • Fig. 5B is a plan view of Fig. 5A.
  • the center portion of the flywheel body of the embodiment has a center piece 231b, and the center piece 231b is a circular plate body, and the edge portion has a plurality of edge pieces 231a which are sector plates. body.
  • the peripheral edge of the center member 23 1b further includes a plurality of perforations, and a plurality of perforations of the edge members 23 l a , and the positions of the perforations of the center member 23 1b are corresponding to the perforations of the edge members 23 1 a.
  • these edge portions are also disposed around the center member 231b.
  • the edge members 231a will be screwed together along the outer edge of the center member 231b (not shown) and formed like the foregoing.
  • the embodiment has a thinner center with a thinner center.
  • edge members 231a of the embodiment may be the same or different.
  • the entire edge members may be the same size, or a partial edge portion may be used as in this embodiment. Different designs.
  • the user can replace the edge portion according to different needs to adjust the moment of inertia of the flywheel body.
  • edge piece 231a of the embodiment can be locked only in One side of the center piece 231b of the flywheel body can be locked on both sides of the center piece 231b of the flywheel body.
  • the number of the single-sided locking edge members 231a is not limited by one piece, and the user can adjust according to different needs.
  • the advantages of this embodiment are at least: Since the center portion and the edge portion are both plate bodies, the manufacturing cost is relatively low, and special equipment is not required. Can be made. In addition, since the center portion and the edge portion are separate members, the storage volume can be disassembled during transportation, so that it is easy to transport. Finally, the user can adjust the moment of inertia according to the requirements, so it has higher flexibility, can increase the application surface, meets the needs of the industry, and is not a new design in the industry.
  • FIG. 6 is a schematic diagram of an inertial flywheel drive assembly in accordance with an embodiment of the present invention. This embodiment illustrates the case where two inertial flywheels are combined with a transmission member.
  • the inertial flywheel drive assembly 1 of the present embodiment includes at least one transmission member and at least one inertia flywheel. Further, the at least one inertia flywheel further includes a first inertia flywheel 11a and a second inertia flywheel l lb. Although the illustration shows an inertia flywheel of Fig. 1, it is not limited to the embodiment of Fig. 1.
  • the transmission member of the embodiment is the first transmission member 13a, and the first inertia flywheel 11a drives the second inertia flywheel l lb through the first transmission member 13a.
  • the first transmission member 13a herein may be, for example, a pulley, a sprocket, a gear or other equivalent mechanically transferable member.
  • the first axial center 1 13a of the first inertia flywheel 1 1a can be driven by a motor (primer) to cause the first inertia flywheel 11a to start to rotate after overcoming the initial static frictional force.
  • the motor of the embodiment can be used with an electronic or mechanical transmission.
  • the first axis 113a can also drive the transmission member 13a to start moving. Since the transmission member 13a is such that the first axis 1 13a and the second axis 113b are interlocked, the second inertial flywheel 1 lb also starts to rotate after overcoming the initial frictional force.
  • first inertia flywheel 11a and the second inertia flywheel lib of the embodiment are arranged in different axes, but other embodiments may adopt a coaxial arrangement. , this implementation should not be a limitation.
  • the second inertia flywheel lib of the present embodiment is similar in construction to the first inertia flywheel 11a of the foregoing embodiment, so that the detailed features thereof will not be limited again.
  • FIG 7 there is shown a schematic view of an inertial flywheel drive assembly in accordance with yet another embodiment of the present invention.
  • This embodiment exemplifies the case where three inertial flywheels are combined with two transmission members.
  • At least one inertial flywheel of the inertial flywheel transmission assembly 1 of the present embodiment further includes a first inertia flywheel 11a, a second inertia flywheel lib, and a third inertia flywheel llc, and is coupled with the first transmission member 13a and the second transmission member. 13b.
  • the first inertia flywheel 11a drives the second inertia flywheel lib through the first transmission member 13a
  • the first inertia flywheel 11a can also drive the third inertia flywheel llc through the second transmission member 13b.
  • the third inertia flywheel may also be driven by the second inertia flywheel through the second transmission member. That is, the first inertia flywheel drives the second inertia flywheel, and the second inertia flywheel drives the third inertia flywheel.
  • first inertia flywheel 11a of the present embodiment and the second inertia flywheel 11b and the third inertia flywheel 11c are disposed on different axes, but other implementations are possible.
  • the configuration of partial coaxial, all coaxial, and partial different axis settings should not be limited by this embodiment.
  • the mass of the first inertia flywheel 11a can be set to be smaller than that of the second inertia flywheel 11b and the third inertia flywheel, and the mass inertia of the first inertia flywheel 11a is larger than that of other inertia flywheels, and the mass inertia is relatively small.
  • the third inertia flywheel 11c of the present embodiment herein is similar in construction to the first inertia flywheel 11a and the second inertia flywheel lib of the foregoing embodiment, and the second transfer member 13b is similar to the aforementioned first transmission member 13a. Therefore, they will not be limited to their detailed features. It is to be noted that although FIGS. 8 to 9 illustrate application examples of two to three inertia flywheels, the present invention does not limit the number of inertia flywheels. The user can match multiple transmission parts and multiple inertia flywheels according to different needs. Similarly, these inertia flywheels are driven by these transmissions, respectively.
  • FIG. 8 is a schematic structural diagram of a system of the inertial flywheel transmission assembly 3 according to an embodiment of the present invention.
  • Figure 9 is a schematic illustration of one embodiment of the system of Figure 8. The following describes the application of the inertial flywheel drive assembly in a system.
  • This embodiment is an inertial flywheel drive assembly system 3 including at least one drive unit 33, an inertial flywheel drive assembly 31, an inertia flywheel monitoring unit 37, and at least one output device 35.
  • the drive unit 33 herein can be a motor or any drive that can provide the mechanical energy of the inertial flywheel drive assembly 23.
  • the drive unit 33 can also include a power control unit (not shown) for regulating the output of the drive unit 33.
  • the inertial flywheel drive assembly 31 herein may be applied to the inertial flywheel drive assembly of any of the foregoing embodiments, but is not limited by the foregoing embodiments.
  • the inertia flywheel drive assembly 31 can be coupled to a drive unit 33 that can rotate the inertia flywheel of the flywheel drive assembly 31.
  • Figure 8 illustrates an inertial flywheel drive assembly 31 with an inertial flywheel, but is not limited by an inertia flywheel.
  • the drawing illustrates the technique in which the driving device 33 and the output device 35 are respectively disposed on both sides of the inertia flywheel transmission assembly 23
  • the driving device 33 and the output device 35 are disposed in the same manner as the inertia flywheel transmission assembly 23.
  • this arrangement has the advantage that the required configuration space is small (the drive unit 33 shares the same side space with the output device 35) and can be applied to some compact or small systems.
  • the present invention can design an appropriate driving device 33 according to the load required, and the inertial flywheel transmission component 31, the driving device 33 and the output device 35 adopt the same or different transmission wheel diameters (here
  • the wheel diameter can refer to different objects according to different transmission parts, for example, if it is a belt
  • the wheel is the wheel diameter of the pulley
  • the user can adjust the inertia flywheel transmission component by the ratio of the transmission wheel diameter.
  • the wheel diameter of the pulley on the driving device side is half of the wheel diameter of the pulley on the inertia flywheel side, so that the rotation speed of the two drives exhibits a multiple relationship (the rotation speed of the driving device is faster than the rotation of the inertia flywheel) Speed), but not limited by this proportional relationship.
  • the inertia flywheel monitoring unit 37 is configured to detect the rotational speed of at least one of the inertial flywheels in the inertial flywheel drive assembly 31.
  • the inertia flywheel monitoring unit 37 can be, for example, a contact or inductive tachometer.
  • At least one output device 35 is coupled to the flywheel drive assembly 31.
  • the output device 35 can be a generator or the like.
  • the flywheel assembly 31 is directly coupled to other electronic devices or stored or output with electrical energy generated by a battery.
  • an inertial flywheel is combined with two output devices 35 as an example, but is not limited thereto.
  • an electronic control unit 39 is further included.
  • the rectifying unit is taken as an example, but in other embodiments, the rectifying unit, the rectifying unit, and the variable can be adjusted according to requirements. Press unit, voltage regulator unit, voltage/rectifier unit, transformer/conversion unit, etc.
  • the electronic control unit 39 can provide the received power to the system itself or to an external device, and the external device will store the power, use it directly or the external device is the power grid.
  • the power control unit (not shown) of the control drive 33 provides an initial output to the flywheel drive assembly 31.
  • the initial output here will be adjusted based on the number of inertia flywheels of the inertial flywheel drive assembly 31, the weight of the inertia flywheel, and the design.
  • the initial output will overcome the static friction of the inertia flywheel drive assembly 23 (the total in the overall system components)
  • the static friction force causes the inertia flywheels of the flywheel drive assembly 31 to begin to rotate.
  • the inertia flywheel monitoring unit 37 will continuously monitor the inertia flywheel drive assembly 31, and the inertia flywheel of the inertia flywheel drive assembly 31 reaches a rated speed, and the inertia flywheel monitoring unit 37 will transmit an adjustment signal to the power control unit (Fig. Not shown), according to the power control unit (not shown) to adjust the output, the output device 35 rotates according to the default speed.
  • the adjusted output will be lower than the initial output. Since the initial output needs to overcome the initial static friction of the inertial flywheel drive assembly 31, after the inertia flywheel drive assembly 31 is started, only a lower output must be provided to overcome its dynamic friction. That is, the output thereof is adjusted to the extent that the output device 35 in the maintenance system can maintain the default speed operation.
  • the inertial flywheel drive assembly system 3 of the present invention only needs to provide greater energy at the initial stage to activate the inertia flywheel drive assembly 31, which is to be continuously passed through the inertia flywheel drive assembly 31.
  • the drive unit 33 can reduce the energy output to a level that maintains the inertial flywheel of the inertia flywheel drive assembly 31 for continued rotation.
  • the drive unit is a combination of photovoltaic solar panels, motors, and voltage regulators.
  • Photovoltaic solar panels will pass current through the regulated rectifier to the battery, which is supplied to the motor, which causes the motor to drive the inertia flywheel to provide a subsequent output device (generator system).
  • the battery can reduce the current supply to the motor (primer).
  • the current obtained by the photovoltaic solar panels and generators of these systems can be stored and supplied by the battery.
  • Motivation Sustainably drives the overall system to operate.
  • these obtained currents can also be supplied to the load or to the grid. That is, the power generated by the present invention can also be stored by battery, directly supplied to the load, or directly to the power grid.
  • the drive device is water Turbine in a power generation system. If it is applied to a wind power system, the drive unit is a fan. If it is applied to a renewable energy power generation device that recycles waste materials, the drive device is an internal combustion engine.
  • the drive device is water Turbine in a power generation system. If it is applied to a wind power system, the drive unit is a fan. If it is applied to a renewable energy power generation device that recycles waste materials, the drive device is an internal combustion engine.
  • system may further include a system monitoring unit that monitors at least the operating states of the at least one driving device, the inertial flywheel transmission component, and the at least one output device.
  • the purpose of the system monitoring unit is to prevent the inertial flywheel transmission component from being stalled or abnormal due to inertia moments, causing the inertia flywheel to stall or fall off.
  • the system monitoring unit can be coupled to the inertia flywheel monitoring unit 37 to monitor the rotational speed of each of the inertial flywheels in the system.
  • a monitoring unit of the embodiment can monitor the rotational speed of all or part of the rotating parts in the system.
  • a system monitoring unit can be a sensing unit that monitors the axial vibration state and the overall vibration state of each inertia flywheel.
  • the system monitoring unit can be electrically connected to the output device to monitor the overall operating state, power and output of the system.
  • system monitoring unit herein can be remotely controlled, for example, by wireless network, Bluetooth or infrared.
  • system monitoring unit of multiple systems can be combined with a monitoring center, and the system monitoring units of different systems will uniformly report the monitoring status to the monitoring center.
  • the system of the present invention may also include an emergency stop unit.
  • the system monitoring unit detects an abnormal state, the system monitoring unit notifies the emergency stop unit to stop the overall operation.
  • the inertia flywheel rotates too fast, the speed is too slow, the inertia flywheel's axis is abnormal vibration, the inertia flywheel body abnormal vibration, the inertia flywheel The axis is off or offset, the plane vibration frequency set by the system device is too large or lost. If the output of the device increases excessively fast, slow or unstable, the system monitoring unit transmits a status abnormal signal to the emergency stop unit, and the emergency stop unit transmits a stop signal to at least one driving device or Directly suspend the operation of at least one inertial flywheel drive assembly, forcing the system to stop and prevent accidents. After the system is stopped, the engineers will further inspect and repair it.
  • the system may further include a plurality of shock absorbing units (not shown), one of which may reduce the problem that the overall vibration of the system causes the axial center shift and the snapping offset, and then the shock absorption.
  • the unit also reduces unnecessary energy consumption and improves overall energy efficiency.
  • the damper unit can be placed in the inertia flywheel drive assembly or in the outer casing, frame, etc. of the system to reduce or absorb vibration.
  • the damping unit can further protect against damage caused by earthquakes.
  • an embodiment of the drive device can be directly coupled to at least one of the inertia flywheels of the flywheel drive assembly.
  • the drive unit, the inertia flywheel drive assembly and the output unit can be integrated into a single unit (co-construction).
  • the advantage of this design is that the system integrated into a single component (co-construction) can be considered as a module to be used with other existing modules, making the application simpler and easier.
  • the inertial flywheel drive assembly system 3 of the present embodiment includes at least one drive unit 33, an inertial flywheel drive unit 31, an inertia flywheel monitoring unit (not shown), and at least one output unit 35.
  • the at least one output device 35 of the present embodiment is a brushless generator (the brushless generator is not provided with a stator), but is not limited thereto.
  • the inertia flywheel transmission assembly 31 of the present embodiment has two inertia flywheels, and two inertia flywheels are respectively disposed on the left and right sides.
  • the two inertial flywheels herein are referred to as a first inertia flywheel 331 and a second inertia flywheel 332, respectively.
  • This embodiment may also include a reversing mechanism 36 having a plurality of gears therein.
  • the driving device 33 drives the reverse mechanism 36.
  • the internal gears of the reverse mechanism 36 are respectively coupled to the first inertia flywheel 331 and the second inertia flywheel 332, and drive the first inertia flywheel 331 and the second inertia flywheel 332 to rotate, wherein the first inertia flywheel 331 and the second The direction of rotation of the inertia flywheel 332 is reversed.
  • the first inertia flywheel 331 and the second inertia flywheel 332 will be respectively connected to the magnetic rotor of the brushless generator (output device 35) and the armature rotor. Accordingly, the magnetic rotor of the brushless generator (output device 35) and the armature rotor are relatively reversely rotated in opposite directions.
  • An additional benefit of the relative reverse rotation of the magnetic rotor and the armature rotor is that it has a relatively higher rotational speed than a typical generator, thereby providing more power.
  • FIG 11 is a schematic illustration of a system of yet another embodiment of Figure 8.
  • the flywheel drive assemblies 31 of the present embodiment are coaxially disposed, and the inertia flywheel drive assembly of the present embodiment further includes at least one flywheel link 32.
  • the flywheel couplings 32 are disposed at the outer edge portions of these inertia flywheels 31 (not shown).
  • the inertia flywheel 31 is preferably made of a material having a relatively high mechanical strength to avoid deformation or even disintegration of the flywheel body due to insufficient strength during rapid operation.
  • the flywheel connecting member 32 is sleeved on the outer edge portion of the inertia flywheel 31, so that the flywheels can be synchronously rotated, and the plurality of flywheels can be regarded as a single large flywheel (the moment of inertia will become large growing up).
  • This design can be used in vehicles with small spaces, in buildings or inside power machinery, such as ships, cars or electric appliances.
  • FIG. 12 is a schematic diagram of a system for an inertial flywheel drive assembly for a carrier in accordance with an embodiment of the present invention.
  • the embodiment further includes a support frame 34, and the inertia flywheel transmission component 31 can be separately set in the frame 34, and the design can strengthen the collision resistance of the overall system, and Can be applied to space conditions that limit the use of more vibration.
  • the overall space can be saved and the energy consumption caused by the transmission member can be reduced, thereby achieving a compact structure.
  • the design of several flywheels the required output can be adjusted according to different needs.
  • flywheel, prime mover and generator coaxial design are used in this case, there may be one embodiment or all of the different axes.
  • FIG. 13 is a schematic diagram of an inertial flywheel drive assembly for a fan according to an embodiment of the invention.
  • the inertia flywheel drive assembly of the present invention can also be used in other independent electrical appliances such as air conditioners, refrigerators or electric fans.
  • the inertial flywheel drive assembly 31 can be disposed on the base of the fan (forming a similar integrated configuration), and the inertia flywheel drive assembly 31 drives the output device to charge the battery in the fan, and the battery provides power to the fan blade. The way to proceed.
  • the inertial flywheel drive assembly can achieve similar effects independently of the fan.
  • the present invention is a method of matching an inertial flywheel transmission component with a driving device. After the inertia flywheel transmission component reaches a certain rotational speed (a certain inertia moment can be generated), The method of reducing the mechanical energy output of the driving device to improve the power consumption efficiency of the prior art requires maintaining the high output (high mechanical energy) of the driving device, thereby achieving the purpose of improving power generation efficiency.
  • the invention designs the flywheel body of the inertia flywheel of the inertia flywheel transmission component as a rotating body and distributes the mass on the outer edge of the body, so as to freely mix and adjust the mass momentum of the system, further drive the output device to improve the overall power generation.
  • the way of efficiency has been very practical.
  • the present invention is not only freely combinable, but also has a design that is more convenient for normalized production, facilitates transportation, and is not found in related industries, and is sufficiently novel. And with this design, it is possible to obtain higher operating efficiency and mass momentum than the conventional inertia flywheel, and it has unintended effects, so it is of course progressive.
  • the system of the present invention and the inertia flywheel drive set are both tested and tested in practice, and their operational efficiency and matching of components are confirmed, and sufficient for commercial operation, which proves to have industrial applicability.
  • the inventors believe that the present invention has met the application requirements stipulated by the Patent Law, and therefore, the application is filed according to law, and the review committee is required to give approval as soon as possible after review, so as to implement the application as soon as possible, so as to utilize the present. It is hoped that the invention will contribute to the warming of the global environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种惯性飞轮传动组件,包括至少一惯性飞轮以及至少一传动件。至少一惯性飞轮包括一飞轮本体以及一轴心,轴心穿设飞轮本体,飞轮本体得以以轴心转动。至少一传动件与至少一惯性飞轮的轴心连动。飞轮本体具有一边缘部以及一中心部,外缘部环绕中心部设置,其中外缘部具有一第一厚度,中心部具有一第二厚度,第一厚度大于第二厚度。

Description

惯性飞轮传动组件及具有惯性飞轮传动组件的系统
【技术领域】
【0001】 本发明是有关于一种传动组件及系统, 尤指一种具有惯性飞轮 的传动组件及系统, 可通过惯性飞轮提高整体能量应用的效率。 【背景技术】
【0002】 本发明是欲提供一种可搭配既有的动力系统、 发电系统的惯性 飞轮传动组件。 举例而言, 本发明可应用在既有的发电设备, 例如风力发电机、 水力发电机、 太阳能发电板或回收废物料的再生能源发电装置等常见的驱动装 置。
【0003】 无论是水力、 火力、 风力发电装置需要持续性地供应动力以产 生机械能, 尔后再将机械能转成电力。 申请人有感目前最常见应用在动力系统 的传动组件, 多会造成动力传输过程中使得能量耗损, 此种作业方式以现今节 能的观点观之, 实在太不经济、 不符合现在节约能源的潮流。
【0004】 本发明是将惯性飞轮传动组件与驱动装置搭配的方式, 在惯性 飞轮传动组件达到一定的转速 (可产生一定的惯性力矩及质动量) 后, 降低驱 动装置的输出量的方式, 改善现有技术的高机械能输出需求造成能量浪费的缺 点。
【发明内容】
【0005】 有鉴于此, 本发明提供一种惯性飞轮传动组件, 包括: 至少一 惯性飞轮以及至少一传动件。 至少一惯性飞轮包括一飞轮本体以及一轴心, 轴 心穿设飞轮本体, 飞轮本体得以以轴心转动。 至少一传动件与至少一惯性飞轮 的轴心连动。 飞轮本体可为一旋转体, 且飞轮本体具有一边缘部以及一中心部, 外缘部环绕中心部设置, 其中外缘部具有第一厚度, 中心部具有第二厚度, 第 一厚度大于第二 :厚度。
【0006】 在一实施例中, 惯性飞轮传动组件还包含调整件, 外缘部更包 含至少一插槽, 调整件得以插设于插槽。
【0007】 在一实施例中, 调整件的密度与飞轮本体不同。
【0008】 在一实施例中, 边缘部与中心部透过至少一连接件相连。
【0009】 在一实施例中, 边缘部是由复数个边缘件所构成。
【0010】 在一实施例中, 惯性飞轮传动组件更包含: 至少一传动件更包 含第一传动件。 至少一惯性飞轮更包含第一惯性飞轮跟第二惯性飞轮, 第一惯 性飞轮透过第- -传动件带动第二惯性飞轮。
【0011】 在一实施例中, 至少一传动件更包含第一传动件及第二传动件。 至少一惯性飞轮更包含第一惯性飞轮、 第二惯性飞轮及第三惯性飞轮。 第一惯 性飞轮分别透过第一传动件、 第二传动件带动第二惯性飞轮、 第三惯性飞轮。
【0012】 在一实施例中, 至少一传动件更包含复数个传动件。 至少一惯 性飞轮更包含复数个惯性飞轮, 其中该些惯性飞轮系分别透过该些传动件带动。
【0013】 在一实施例中, 传动件可为皮带轮、 链轮或是齿轮。
【0014】 在一实施例中, 其中飞轮本体的厚度由圆心往圆周方向递增。
【0015】 本发明还提供一种具有惯性飞轮传动组件的系统, 包括: 至少 一驱动装置、 如前所述的任一惯性飞轮传动组件、 惯性飞轮监控单元以及至少 一输出装置。 至少一驱动装置包括一动力调控单元, 用以调控驱动装置的输出。 惯性飞轮传动组件与至少一驱动装置相连。 至少一惯性飞轮监控单元用以侦测 惯性飞轮传动组件中的至少一惯性飞轮的转速。 至少一输出装置与惯性飞轮传 动组件相连。 动力调控单元调控驱动装置提供一初始输出给惯性飞轮传动组件, 待惯性飞轮传动组件的惯性飞轮达到一额定转速, 惯性飞轮监控单元传送一调 整信号给动力调控单元, 据此动力调控单元调整驱动装置的输出量。
【0016】 在一实施例中, 至少一驱动装置与惯性飞轮传动组件的至少一 惯性飞轮直接连接。
【0017】 在一实施例中, 至少一输出装置与惯性飞轮传动组件的至少一 惯性飞轮直接连接。
【0018】 在一实施例中, 至少一驱动装置、 惯性飞轮传动组件与至少一 输出装置系可整合成一单一构件。
【0019】 在一实施例中, 至少一输出装置为复数个输出装置。
【0020】 在一实施例中, 还包含一电控单元。
【0021】 在一实施例中, 还可包括一系统监控单元, 其系至少监控至少 一驱动装置、 惯性飞轮传动组件及至少一输出装置的运作状态。
【0022】 在一实施例中, 还可包括一紧急中止单元, 其中系统监控单元 传送一状态异常信号给紧急中止单元, 紧急中止单元传送一中止信号给至少一 驱动装置或直接中止至少一惯性飞轮传动组件的运作。
【0023】 在一实施例中, 系统还可包括复数个减震单元。
【0024】 在一实施例中, 其中该些惯性飞轮同轴设置, 该惯性飞轮传动 组件更包含至少一飞轮连接件, 飞轮连接件设置于该些惯性飞轮的外缘部。
【0025】 在一实施例中, 中心部是由复数个中心件所构成, 其中边缘件 与中心件透过至少一连接件相连。
【附图说明】
【0026】 图 1是本发明一实施例的惯性飞轮的立体图。
【0027】 图 2是图 1的惯性飞轮的剖面示意图。 [0028 图 3A是本发明又一实施例的惯性飞轮传动组件的示意图。
[0029 图 3B是图 3A的正面示意图。
[0030 图 4是本发明再一实施例的惯性飞轮传动组件的示意图。
[0031 图 5A是本发明又一实施例的惯性飞轮传动组件的示意图。
[0032 图 5B是图 5A的俯视图。
[0033 图 6是本发明又一实施例的惯性飞轮传动组件的示意图。
[0034 图 7是本发明又一实施例的惯性飞轮传动组件的示意图。
[0035 图 8是本发明一实施例的惯性飞轮传动组件的系统的架构示意
【0036: 图 9是图 8的系统的其一实施例的示意图。
【0037 : 图 10是图 8的系统的再一实施例的示意图。
【0038 : 图 11是图 8的系统的又一实施例的示意图。
【0039 : 图 12是本发明一实施例的惯性飞轮传动组件的系统用于载具的 示意图。
【0040】 图 13是本发明一实施例的惯性飞轮传动组件用于风扇的示意 图。
主要组件符号说明:
1 惯性飞轮传动组件
11 惯性飞轮
111 飞轮本体
1 1 1 a 边缘部
1 1 1 b 中心部
113 轴心 惯性飞轮
1 飞轮本体
1 飞轮本体
1 c 插槽
5 调整件
1a边缘件
1b 中心件
1 c 连接件
惯性飞轮
1a 中心件
1b边缘件
a 第一惯性飞轮b 第二惯性飞轮c 第三惯性飞轮a 第一传动件
b 第二传动件
3a 第一轴心
3b 第二轴心
惯性飞轮传动组件系统 惯性飞轮传动组件1 第一惯性飞轮
2第二惯性飞轮
驱动装置
输出装置 36 反向机构
37 惯性飞轮监控单元
39 电控单元
W1 第一厚度
W2 第二厚度
【具体实施方式】
【0001】 在本说明书及后续的申请专利范围中, 「连接」一词是包含任何 直接及间接的连接手段, 此外连接方式非本发明的技术要点, 故不特别详述之。 为了便于理解, 本发明的相同、 相似组件或装置皆使用同样的组件符号。 此外, 为了维持图面的简洁, 图面已省略部份现有技术的构件, 例如轴承都不特别绘 制在图面, 但应不影响到本领域的通常知识者对于本发明的核心概念理解。
【0002】 本实施例揭示一种惯性飞轮传动组件, 此惯性飞轮传动组件可 搭配既有的动力装置、 发电装置使用, 通过惯性飞轮传动组件启动后可维持一 固定惯性的特性, 以及获得一稳定的质动量, 可大幅的减少整体动力的供给。 本实施例的惯性飞轮传动组件包含至少一惯性飞轮及至少一传动件。 其惯性飞 轮及传动件的数量可依据需求而有所调整。 以下将依序介绍可能的实施态样。
【0003】 首先, 先针对惯性飞轮传动组件的惯性飞轮进行介绍, 请先一 并参考图 1及图 2, 图 1是本发明一实施例的惯性飞轮的立体图。 图 2是图 1的惯性 飞轮的剖面示意图。 本实施例的惯性飞轮 11包括一飞轮本体 111以及一轴心 113。 轴心 113穿设飞轮本体 111, 飞轮本体 111得以以轴心 113转动。 若此惯性飞轮 11a 欲搭配一个传动件时, 传动件可连结轴心 113, 并被轴心 113连动后将机械能传 出。
【0004】 进一步而言,本实施例的飞轮本体 111为一旋转体,飞轮本体 111 具有一边缘部 111a以及一中心部 l l lb, 外缘部 111a环绕中心部 111b设置。 在本 实施例中边缘部 111a及一中心部 111b是一体成形并整合成单一构件, 但不以此 为限制。 且为了达到较佳的效果, 可挑选质量比重较大的金属制作。
【0005】 此外, 飞轮本体 111的厚度可为由圆心渐次往圆周方向递增, 形 成质量分布在外缘的型态。 且, 表面可以设计成呈现流线型, 以降低风阻提高 效率。 进一步而言, 本实施例的外缘部 111a具有第一厚度 Wl, 中心部 111b具有 第二厚度 W2, 第一厚度 Wl大于第二厚度 W2。 亦可有一实施例的飞轮本体的中央 部为板体、轮辐或者部份 /局部镂空的设计, 通过此种设计, 本发明的惯性飞轮 设计的可以得到较大的惯性质量。
【0006】 接着, 请特别参考图 3A跟图 3B, 其为本发明又一实施例的惯性 飞轮传动组件的示意图。 与前述实施例不同处在于, 本实施例的惯性飞轮 21的 飞轮本体 211还可搭配一个调整件 215使用。 此处的调整件 215的密度(或比重) 与飞轮本体不同, 亦即调整件 215与飞轮本体 211是不同的材质所制成。 飞轮本 体 211还可以包含至少一插槽 211c, 调整件 215得以插设在插槽 211c使用。 调整 件 215锁固在插槽 211c的方式并未特别绘制, 调整件 215可通过螺钉、 卡扣、 卡 合、 胶黏等方式固定在插槽 211c。
【0007】 设置调整件 215的目的在于, 使用者可以依据不同的需求、 场景 搭配适合的调整件 215, 并通过调整件 215调整飞轮本体 211的惯性。例如选用密 度或比重较大的调整件 215可以提高飞轮本体 211的质惯性。
【0008】 补充说明的是, 调整件 215的形状以及调整件 215与插槽 211c的 锁固是不以本实施例以及说明书为限制。
【0009】 接着, 图 4是本发明再一实施例的惯性飞轮传动组件的示意图。 与前述实施例不同处在于, 本实施例的飞轮本体 221的边缘部以及中心部为两个 独立构件。 换言之, 使用者可以依据需求组成不同形状、 不同大小的飞轮本体。
【0010】 详细而言, 本实施例的中心部由多个中心件 221b所构成。 且边 缘部是由多个边缘件 221a所构成, 这些边缘件 221a可为相同或是不同长度的构 件。 边缘部与中心部通过至少一连接件 221c相连。 亦即每一个边缘件 221a都可 通过一连接件 221 c与中心件 221 b相连接。
【0011】 通过此种设计, 当使用者突然有增大转动惯量的需求时, 可将 边缘部的部份或是全数换成具有较长直径的边缘件, 使用上相较现有技术的飞 轮更为弹性以及简便。 此外本实施例亦可结合前一实施例, 在边缘件的边缘设 置多个调整件, 更进一步的调整整体的转动惯量。
【0012】 请一并参考图 5A跟图 5B, 图 5A为本发明又一实施例的惯性飞轮 传动组件 23的示意图。 图 5B是图 5A的俯视图。
【0013】 与前述实施例不同处在于, 本实施例的飞轮本体的中心部具有 一中心件 231b, 且中心件 231b为一圆形板体, 而边缘部具有多个边缘件 231a则 为扇形板体。 其中, 中心件 23 1b的周缘还包括复数个穿孔, 搭配边缘 件 23 l a的复数个穿孔, 且中心件 23 1b的该些穿孔的位置与边缘件 23 1 a的该些穿孔对应设置。 但相似地, 这些边缘部也是环绕中心件 231b设 置, 进一步而言, 这些边缘件 231a将会沿着中心件 231b的外缘以螺丝串合锁 固 (图未绘出螺丝) , 并形成类似前述实施例外围较厚中心较薄的设计。
【0014】 请继续参考图面, 本实施例的边缘件 231a的形状、 重量可相同 或者不同, 在其一实施例中可全数的边缘件为同一尺寸, 或者如本实施例采用 部份边缘部不同的的设计。 此外, 使用者亦可依据不同的需求置换边缘部, 以 调整飞轮本体的转动惯量。
【0015】 此外, 须特别说明的是, 本实施例的边缘件 231a可以仅固锁在 飞轮本体的中心件 231b的一侧, 以可以在飞轮本体的中心件 231b两侧都锁固。 且, 单侧锁固的边缘件 231a的片数也不以一片为限制, 使用者都可以依据不同 的需求而有所调整。
【0016】 相较于现有技术的飞轮需要一体成形的设计, 本实施例的优点 至少有: 由于中心部与边缘部皆为板体, 较容易制作成本较低, 也不须通过特 殊设备便能够制作。 此外, 因中心部与边缘部为独立构件, 亦可在运送过程拆 解收纳体积较小, 故便于运送。 最后, 使用者可依据需求调整转动惯量, 因此 具有较高的灵活度, 更可增加应用面, 符合业界的需求, 实乃未见于业界的崭 新设计。
【0017】 接着, 请参考图 6, 其是本发明其一实施例的惯性飞轮传动组件 的示意图。 本实施例例示了两个惯性飞轮搭配一传动件的情况。
【0018】 本实施例的惯性飞轮传动组件 1包括至少一传动件以及至少一 惯性飞轮。进一步而言, 至少一惯性飞轮还包含第一惯性飞轮 11a跟一第二惯性 飞轮 l lb。 图面例示虽例示图 1的惯性飞轮, 但不以图 1的实施态样为限制。 本实 施例的传动件为第一传动件 13a,且第一惯性飞轮 11a通过第一传动件 13a带动第 二惯性飞轮 l lb。 此处的第一传动件 13a例如可为皮带轮、 链轮、 齿轮或是其它 的等效可传递机械能的构件。
【0019】 实际运用的时候, 可通过一马达 (原动机) 带动第一惯性飞轮 1 1a的第一轴心 1 13a, 使第一惯性飞轮 11a克服初始的静止摩擦力后开始转动。 其中, 为了灵活的调整马达的转速, 本实施例的马达可以搭配电子式或者机械 式的变速器使用。 同时, 第一轴心 113a亦可带动传动件 13a开始运动。 因传动件 13a是可使得于第一轴心 1 13a与第二轴心 113b连动, 故第二惯性飞轮 1 lb克服初 始的摩擦力后也会开始转动。 【0020】 须特别注意的是, 本实施例的第一惯性飞轮 11a跟一第二惯性飞 轮 lib虽为不同轴设置的实施态样, 但亦可有其它实施态样采用同轴设置的配 置, 不应此实施态样为限制。
【0021】 本实施例的第二惯性飞轮 lib与前述实施例的第一惯性飞轮 11a 的构造相似, 故不将再次针对其细部特征进行限定。
【0022】 请参考图 7, 其是本发明又一实施例的惯性飞轮传动组件的示意 图。 本实施例例示了三个惯性飞轮搭配两个传动件的情况。
【0023】 本实施例的惯性飞轮传动组件 1的至少一惯性飞轮还包含第一 惯性飞轮 lla、一第二惯性飞轮 lib以及第三惯性飞轮 llc,并搭配第一传动件 13a 以及第二传动件 13b。相似地,第一惯性飞轮 11a通过第一传动件 13a带动第二惯 性飞轮 lib,且第一惯性飞轮 11a还可通过第二传动件 13b带动第三惯性飞轮 llc。 然而, 在其它实施态样中, 第三惯性飞轮亦可通过第二传动件被第二惯性飞轮 带动。 亦即, 第一惯性飞轮带动第二惯性飞轮, 而第二惯性飞轮则带动第三惯 性飞轮。
【0024】 须特别注意的是, 本实施例的第一惯性飞轮 11a跟一第二惯性飞 轮 llb、 第三惯性飞轮 11c虽为不同轴设置的实施态样, 但亦可有其它实施态样 采用部份同轴、 全部同轴、 部份异轴设置的配置, 不应此实施态样为限制。 此 外, 第一惯性飞轮 11a的质量可设置地较第二惯性飞轮 llb、 第三惯性飞轮 llc, 第一惯性飞轮 11a的质惯量较其它惯性飞轮大的情况下, 较易带动质惯量较小的 第二惯性飞轮 llb、 第三惯性飞轮 llc。
【0025】 此处的本实施例的第三惯性飞轮 11c与前述实施例的第一惯性 飞轮 lla、 第二惯性飞轮 lib的构造相似, 且第二传送件 13b与前述的第一传动件 13a相似, 故皆不将再次针对其细部特征进行限定。 【0026】 补充说明的是, 虽然图 8至图 9例示了两个至三个惯性飞轮的应 用例示, 但本发明并不限定惯性飞轮的数量。 使用者可以依据不同的需求搭配 多个传动件以及多个惯性飞轮。 相似地, 这些惯性飞轮是分别通过这些传动件 带动。
【0027】 接着, 请一并参考图 8及图 9, 图 8为本发明一实施例的惯性飞轮 传动组件 3的系统的架构示意图。 图 9是图 8的系统的其一实施例的示意图。 以下 将会开始叙述惯性飞轮传动组件应用在一系统中的情况。
【0028】 本实施例为一种具有惯性飞轮传动组件系统 3, 包括至少一驱动 装置 33、 惯性飞轮传动组件 31、 惯性飞轮监控单元 37以及至少一输出装置 35。
【0029】 此处的驱动装置 33可为马达或者是任一可以提供惯性飞轮传动 组件 23机械能的驱动装置。 驱动装置 33还可包括一动力调控单元 (图未绘出), 用以调控驱动装置 33的输出。
【0030】 此处的惯性飞轮传动组件 31, 可应用前述任一实施例的惯性飞 轮传动组件, 但不以前述实施例为限制。 惯性飞轮传动组件 31可与驱动装置 33 相连, 驱动装置 33可带动惯性飞轮传动组件 31的惯性飞轮转动。 图 8例示的有一 个惯性飞轮的惯性飞轮传动组件 31, 但不以一个惯性飞轮为限制。 图面虽示意 了驱动装置 33与输出装置 35分别设置在惯性飞轮传动组件 23的两侧的技术, 但 亦可有一实施态样可将驱动装置 33与输出装置 35设置在惯性飞轮传动组件 23同 一侧, 此种设置方式的优点在于所需的配置空间较小 (驱动装置 33与输出装置 35共享同一侧的空间), 可应用在一些精简或是小型的系统之中。
【0031】 特别说明的是, 本发明可依据负载所需, 而设计适当的驱动装 置 33, 而惯性飞轮传动组件 31、 驱动装置 33及输出装置 35采用相同或者为不同 的传动轮径 (此处的轮径可依据不同的传动件指称不同的对象, 例如若为皮带 轮则为皮带轮的轮径),使用者可通过传动轮径的比例来调整惯性飞轮传动组件
31、 驱动装置 33及输出装置 35的相互的相对转动速度。 以传动件为皮带轮为例, 可令驱动装置侧的皮带轮的轮径为惯性飞轮侧的皮带轮的轮径的一半, 使得两 者的转速呈现倍数关系 (驱动装置的转动速度快于惯性飞轮的转动速度), 但不 以此比例关系为限制。
【0032】 惯性飞轮监控单元 37用以侦测惯性飞轮传动组件 31中的至少一 惯性飞轮的转速。 惯性飞轮监控单元 37例如可为一个接触式或感应式转速计。 至少一输出装置 35, 与惯性飞轮传动组件 31相连。 输出装置 35可为发电机等。 有一实施态样中, 惯性飞轮组件 31直接耦接到其它的电子装置使用或者搭配一 电池将产生的电能储存或输出。 本实施例是以一个惯性飞轮搭配两个输出装置 35为例, 但不以此为限制。
【0033】 此外, 在图 9的实施例中, 还包含一电控单元 39, 本实施例以整 流单元为例, 但在其它实施例中以可依据需求调整为整流单元、 整压单元、 变 压单元、 稳压单元、 整压 /整流单元、 变压 /变流单元等。 电控单元 39可将接收 到的电能提供给系统本身使用, 亦可传送至外部的装置, 外部的装置将会储存 此些电能、 直接使用或者外部装置即为电网。
【0034】 实际操作的时候, 动力调控单元 (图未绘出) 调控驱动装置 33 提供一初始输出给惯性飞轮传动组件 31。 此处的初始输出将会依据惯性飞轮传 动组件 31的惯性飞轮数量、 惯性飞轮的重量以及设计有所调整, 初始输出将能 克服惯性飞轮传动组件 23的启动的静摩擦力 (整个系统组件里的总合静摩擦 力), 并使得飞轮传动组件 31的这些惯性飞轮开始转动。 然而, 除了惯性飞轮传 动组件 31的启动的静摩擦力以外, 系统中还有其它的摩擦力存在, 例如轴承摩 擦力、 轴心摩擦力等等, 但此些系统中存在的摩擦力并非本发明着重的要点且 是为本领域的通常知识者可轻易思及, 故不特别赘述。
【0035】 惯性飞轮监控单元 37将会持续地监控惯性飞轮传动组件 31, 待 惯性飞轮传动组件 31的惯性飞轮达到一额定转速, 惯性飞轮监控单元 37将会传 送一调整信号给动力调控单元 (图未绘出), 据此动力调控单元 (图未绘出) 调 整输出量, 输出装置 35依据默认的转速转动。 调整后的输出量将会低于初始输 出量, 因初始输出量需要克服惯性飞轮传动组件 31的初始静摩擦力, 待惯性飞 轮传动组件 31启动后, 仅须提供一较低输出量克服其动摩擦力, 亦即其输出量 调整至可维持系统中的输出装置 35维持默认转速运转的程度即可。
【0036】 相较现有技术的动力装置, 本发明的惯性飞轮传动组件系统 3仅 须在初始阶段提供较大的能量以启动惯性飞轮传动组件 31, 待惯性飞轮传动组 件 31可持续地通过惯性转动后, 驱动装置 33可将能量输出调降, 维持在可保持 惯性飞轮传动组件 31的这些惯性飞轮可持续转动的程度即可。 通过此种作法, 本发明的系统整体的能量耗损将会较现有技术的动力系统低, 较为节能, 且符 合现今世界能源应用趋势。
【0037】 举例来说, 若将本发明应用在既有的太阳能发电系统中, 则驱 动装置即为光伏太阳能板、 马达以及稳压整流器的组合。 光伏太阳能板将会通 过稳压整流器将电流汇入电池, 提供给马达, 让马达带动惯性飞轮, 以提供后 续的输出装置(发电机组系统)。 当惯性飞轮达到额定转速, 系统稳定发电以后, 电池即可降低对马达 (原动机) 的电流供给, 此时这些系统的光伏太阳能板及 发电机所获的电流可通过电池储存及供应马达 (原动机) 可持续的驱动整体系 统运转。 或者, 这些所获的电流亦可供应负载使用或输往电网。 亦即, 本发明 产生的电力亦可通过电池储存、 直接供应负载使用或直接输往电网。
【0038】 若将本发明应用在既有的水力发电系统之中, 驱动装置即为水 力发电系统中的涡轮机。 而若是应用在风力发电系统时, 驱动装置即为风机。 若是应用在回收废物料的再生能源发电装置, 则驱动装置即为内燃机。 此上皆 为举例, 不应以此些为例子限制本发明的应用。
【0039】 此外, 本发明的其一实施态样, 系统还可包括一系统监控单元, 其是至少监控至少一驱动装置、 惯性飞轮传动组件及至少一输出装置的运作状 态。 其设置系统监控单元的目的在于, 避免惯性飞轮传动组件因为惯性力矩抖 动或是异常, 使得惯性飞轮失速、 或是脱落产生意外。
【0040】 例如, 系统监控单元可与惯性飞轮监控单元 37相连接, 监控系 统中的各个惯性飞轮的转速。 除了系统中的各个惯性飞轮的转速, 亦可有一实 施态样的监控单元可监控系统中的全部或部份旋转件的转速。 或者一系统监控 单元可为一感测单元, 监控各个惯性飞轮的轴心振动状况、 整体的振动状况。 或者系统监控单元可与输出装置电性连接, 以监控系统整体的运作状态、 电力 及输出量。
【0041】 此外,此处的系统监控单元可远程操控,例如可通过无线网络、 蓝牙或者红外线的方式进行监控。 在一实施态样中, 多个系统的系统监控单元 可搭配一监控中心, 不同系统的系统监控单元将会统一将监测的状况回报给监 控中心。
【0042】 且为了搭配上述的系统监控单元, 本发明的系统还可包括一紧 急中止单元。 当系统监控单元监控到异常状态时, 系统监控单元会通知紧急中 止单元停止整体的运作。
【0043】 详细而言, 当系统监控单元监控的过程侦测到, 惯性飞轮的转 速过快、 转速过慢、 惯性飞轮的轴心不正常的振动、 惯性飞轮的本体不正常的 振动、 惯性飞轮的轴心脱落或偏移、 系统装置设置的平面振动频率过大或者输 出装置的输出量增大速度过快、 或慢或是速度不稳等异常情况, 系统监控单元 传送一状态异常信号给紧急中止单元, 紧急中止单元将会传送一中止信号给至 少一驱动装置或直接中止至少一惯性飞轮传动组件的运作, 强迫系统停俥, 以 避免意外的发生。 系统停俥后, 再由工程人员进一步检视、 修护。
【0044】 补充说明的是, 系统还可包括多个减震单元(图未示出), 一者 这些可以减少系统整体振动导致轴心偏移、 卡合偏移的问题, 再者这些减震单 元亦可以降低无谓的能量耗损, 提高整体能量的效率。 减震单元可设置在惯性 飞轮传动组件或者设置在系统的外壳体、 机架等任何可以减少、 吸收振动的位 置。 此外, 减震单元亦可进一步防范地震对系统造成的损伤。
【0045】 此外, 亦可有一实施例的驱动装置与惯性飞轮传动组件的至少 一惯性飞轮直接连接。 且可将驱动装置、 惯性飞轮传动组件与输出装置是可整 合成一单一构件(共构)。 此种设计的优点是, 可将整合成单一构件(共构) 的 系统视为一个模块与其它既有的模块搭配使用, 使得用户在应用上更为简单方 便。
【0046】 接着, 请参考图 10, 图 10是图 8的再一实施例的系统的示意图。 与前述实施例相似地, 本实施例的惯性飞轮传动组件系统 3, 包括至少一驱动装 置 33、 惯性飞轮传动组件 31、 惯性飞轮监控单元 (图未绘出) 以及至少一输出 装置 35。 其中本实施例的至少一输出装置 35为一个无刷发电机 (此无刷发电机 并无设置定子), 但不以此为限制。
【0047】 与前述实施例不同处在于, 本实施例的惯性飞轮传动组件 31具 有两个惯性飞轮, 两个惯性飞轮分别设置在左右两侧。 为了方便理解, 此处的 两个惯性飞轮分别称之为第一惯性飞轮 331以及第二惯性飞轮 332。 本实施例还 可包括一反向机构 36, 反向机构 36内部有多个齿轮。 驱动装置 33带动反向机构 36, 反向机构 36内部的齿轮将会分别耦接第一惯性飞轮 331以及第二惯性飞轮 332,并带动第一惯性飞轮 331以及第二惯性飞轮 332转动,其中第一惯性飞轮 331 与第二惯性飞轮 332的转动方向相反。 接着, 第一惯性飞轮 331与第二惯性飞轮 332将会分别与无刷发电机(输出装置 35 ) 的磁转子以及电枢转子连接。 据此使 得无刷发电机 (输出装置 35 ) 的磁转子与电枢转子分别相对地反向转动。 相较 于现有技术的发电机可切割更大量的磁力线, 增加电能的产出。 其中磁转子与 电枢转子相对反向转动的额外好处在于, 其较一般发电机具有相对更高的转速, 故可提供较多的电力。
【0048】 其余组件的关系、 组件的设置与前述实施例相似, 将不再赘述。 【0049】 图 11是图 8的又一实施例的系统的示意图。 与前述实施例不同处 在于, 首先, 本实施例的这些飞轮传动组件 31为同轴设置, 此外本实施例的惯 性飞轮传动组件还包含至少一飞轮连接件 32。 飞轮连接件 32设置在这些惯性飞 轮 31的外缘部 (图未标示)。
【0050】 且为了配合飞轮连接件 32, 惯性飞轮 31较佳可采用机械强度较 强的材料制作, 以避免快速运转过程中强度不足造成飞轮本体变形, 甚至崩解 的情况。
【0051】 进一步而言, 通过飞轮连接件 32套设在这些惯性飞轮 31的外缘 部, 可让这些飞轮同步转动, 并可将多个飞轮视为单一一个巨大飞轮 (转动惯 量将会成大幅成长)。此种设计可应用在空间较狭小的载具、建筑物内或者动力 机械内部, 例如船舶、 汽车或是电用具等等。
【0052】 补充说明的是,虽然图面例示通过两个飞轮连接件 32的实施例, 但使用者可依据不同需求调整成一个、 三个或是多个, 仅须在配置时注意飞轮 连接件 32配置的位置是否均匀不影响转动即可。 【0053】 其余构件, 例如驱动装置 33跟输出装置 35与前述实施例相似, 故将不再赘述。
【0054】 请继续参考图 12, 其为本发明一实施例的惯性飞轮传动组件的 系统用于载具的示意图。
【0055】 本实施例与前述实施例的差异在于, 本实施例还包含一支撑框 架 34, 惯性飞轮传动组件 31可以单独设立在框架 34内, 此种设计可以强化整体 系统的抗撞能力, 且可以应用在空间条件限制的以会有较多振动的使用情况。 且通过将发电机、 原动机直接与飞轮传动组件 31直接连接的方式, 亦可以节省 整体的空间且降低传动件所造成的能量耗损, 达到结构精简的效果。 此外, 通 过应用数个飞轮的设计, 亦可依据不同的需求而调整所需的输出。
【0056】 补充说明的是, 本案虽然采飞轮、 原动机及发电机同轴设计, 但亦可有一实施例部分或是全数异轴设置。
【0057】 最后, 请参考图 13, 其为本发明一实施例的惯性飞轮传动组件 用于风扇的示意图。 除了应用于风扇以外, 本发明的惯性飞轮传动组件亦可运 用在其它的独立电用具, 例如冷气机、 电冰箱或是电扇等等。 本实施例可将惯 性飞轮传动组件 31设置于风扇的基座(形成类似一体共构的设计), 并通过惯性 飞轮传动组件 31带动输出装置对风扇内的电池充电, 电池再提供电力给扇叶的 方式进行。 当然, 亦可有一实施例, 特别将惯性飞轮传动组件独立于风扇之外 亦可达到相似的功效。
【0058】 本图仅为示意, 部份构件已省略或是简化, 但本领域的通常知 识者应能理解并将其据以实施并利用。
【0059】 综上所述, 本发明是将惯性飞轮传动组件与驱动装置搭配的方 式, 在惯性飞轮传动组件达到一定的转速 (可产生一定的惯性力矩) 后, 可大 幅地降低驱动装置的机械能输出量的方式, 改善现有技术需要维持驱动装置高 输出量 (高机械能) 造成能量浪费的缺点, 实已可达到提高发电效率的目的。
【0060】 本发明通过将惯性飞轮传动组件的惯性飞轮的飞轮本体设计为 旋转体且质量分布在本体的外缘, 以自由搭配、 调整系统的质动量, 进一步驱 动输出装置, 以提升整体的发电效率的方式, 已甚具有实用性。 且, 本发明除 了可以自由组合以外, 本发明的设计更便于规格化生产、 利于运输, 更未见于 相关产业, 足戡具有新颖性。 且通过此种设计, 亦可得到相较传统惯性飞轮更 高的运作效率以及质动量, 具有非预期的功效, 因此当然具有进步性。 此外, 本发明的系统以及惯性飞轮传动组皆以实际测试以及试做, 其运作效率以及各 组件的搭配皆以证实, 且足以作为商业运作的规模, 足兹证明具有产业利用性。
【0061】 据此, 本发明人认为本发明已符合专利法所规定的申请要件, 因此爰依法提出申请, 敬请审査委员审査后尽速给予核准, 以裨尽早投产实施, 以利用本发明为日益暖化的地球环境贡献棉薄之力, 是所至盼。
【0062】 以上所述者, 仅为本发明的一较佳实施例而已, 并非用来限定 本发明实施的范围, 即凡依本发明权利要求所述的形状、 构造、 特征及精神所 为的均等变化与修饰, 均应包括在本发明的权利要求内。

Claims

权利要求 一种惯性飞轮传动组件, 其特征在于, 所述惯性飞轮传动组件包括: 至少一惯性飞轮, 所述各惯性飞轮包括一飞轮本体以及一轴 心, 所述轴心穿设所述飞轮本体, 所述飞轮本体得以以所述轴心转 动; 以及 至少一传动件, 与所述至少一惯性飞轮的所述轴心连动; 其中, 所述飞轮本体具有一边缘部以及一中心部, 所述外缘部 环绕所述中心部设置, 其中所述外缘部具有一第一厚度, 所述中心 部具有一第二厚度, 所述第一厚度大于所述第二厚度。 如请求项 1所述的惯性飞轮传动组件, 其特征在于, 其中所述惯性飞 轮传动组件还包含一调整件, 所述外缘部还包含至少一插槽, 所述 调整件得以插设在所述插槽。 如请求项 2所述的惯性飞轮传动组件, 其特征在于, 其中所述调整件 的密度与所述飞轮本体不同。 如请求项 1所述的惯性飞轮传动组件, 其特征在于, 其中所述边缘部 与所述中心部通过至少一连接件相连。 如请求项 4所述的惯性飞轮传动组件, 其特征在于, 其中所述边缘部 是由多个边缘件所构成。 如请求项 5所述的惯性飞轮传动组件, 其特征在于, 其中所述中心部 是由多个中心件所构成。 如请求项 1所述的惯性飞轮传动组件, 其特征在于, 还包含: 所述至少一传动件还包含一第一传动件; 以及 所述至少一惯性飞轮还包含一第一惯性飞轮和一第二惯性飞 轮, 所述第一惯性飞轮通过所述第一传动件带动所述第二惯性飞轮。.如请求项 7所述的惯性飞轮传动组件, 其特征在于, 其中所述第一惯 性飞轮跟所述第二惯性飞轮是同轴或不同轴设置。.如请求项 1所述的惯性飞轮传动组件, 其特征在于, 还包含: 所述至少一传动件还包含一第一传动件及一第二传动件; 以及 所述至少一惯性飞轮还包含一第一惯性飞轮、 一第二惯性飞轮 及一第三惯性飞轮, 所述第一惯性飞轮分别通过所述第一传动件、 所 述第二传动件带动所述第二惯性飞轮、 所述第三惯性飞轮。0.如请求项 9述的惯性飞轮传动组件, 其特征在于,其中所述第一惯性 飞轮、 所述第二惯性飞轮、 与所述第三惯性飞轮是部份或全部同轴 或不同轴设置。
1.如请求项 1所述的惯性飞轮传动组件, 其特征在于, 还包含:
所述至少一传动件还包含多个传动件; 以及
所述至少一惯性飞轮还包含多个惯性飞轮,其中所述这些惯性飞 轮是分别通过所述这些传动件带动。
2.如请求项 1所述的惯性飞轮传动组件, 其特征在于, 其中所述这些 惯性飞轮同轴设置, 所述惯性飞轮传动组件还包含至少一飞轮连接 件, 所述飞轮连接件设置在所述这些惯性飞轮的所述外缘部。
3.如请求项 1所述的惯性飞轮传动组件, 其特征在于, 其中所述飞轮本 体的厚度由圆心往圆周方向递增。
4.一种具有惯性飞轮传动组件的系统, 其特征在于, 所述具有惯性 飞轮传动组件的系统包括: 至少一驱动装置, 包括一动力调控单元, 用以调控所述驱动装 置的输出;
如请求项 1〜 13所述的任一惯性飞轮传动组件,与所述至少一驱 动装置相连;
至少一惯性飞轮监控单元, 用以侦测所述惯性飞轮传动组件中 的所述至少一惯性飞轮的转速; 以及
至少一输出装置, 与所述惯性飞轮传动组件相连;
其中,所述动力调控单元调控所述驱动装置提供一初始输出给所 述惯性飞轮传动组件, 待所述惯性飞轮传动组件的所述惯性飞轮达到 一额定转速,所述惯性飞轮监控单元传送一调整信号给所述动力调控 单元, 据此所述动力调控单元调控所述驱动装置的调整输出量。5.如请求项 14所述的具有惯性飞轮传动组件的系统, 其特征在于, 其中所述至少一驱动装置与所述惯性飞轮传动组件的所述至少一惯 性飞轮直接连接。
PCT/IB2017/001066 2016-07-28 2017-07-28 惯性飞轮传动组件及具有惯性飞轮传动组件的系统 WO2018020319A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610603388.3A CN105972153A (zh) 2016-07-28 2016-07-28 惯性飞轮传动组件及具有惯性飞轮传动组件的系统
CN201610603388.3 2016-07-28

Publications (2)

Publication Number Publication Date
WO2018020319A2 true WO2018020319A2 (zh) 2018-02-01
WO2018020319A3 WO2018020319A3 (zh) 2018-06-07

Family

ID=56951021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/001066 WO2018020319A2 (zh) 2016-07-28 2017-07-28 惯性飞轮传动组件及具有惯性飞轮传动组件的系统

Country Status (2)

Country Link
CN (1) CN105972153A (zh)
WO (1) WO2018020319A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110854923A (zh) * 2019-11-18 2020-02-28 贵州电网有限责任公司 一种提升同步电机对惯性响应的质量块装置及其使用方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2053412B (en) * 1979-06-29 1983-05-18 Hartridge Ltd Leslie Cam box assembly with contra-rotating flywheels
JPS61112841A (ja) * 1984-11-08 1986-05-30 Toyota Motor Corp フライホイ−ル等価慣性モ−メント可変装置
DE19649712C2 (de) * 1996-11-30 1998-12-03 Daimler Benz Ag Antreibbare Welle mit beschleunigungsabhängig änderbarem Trägheitsmoment
US7175570B2 (en) * 1997-02-18 2007-02-13 Nautilus, Inc. Exercise bicycle frame
US6537175B1 (en) * 2000-10-10 2003-03-25 Michael W. Blood Power system
JP2007082387A (ja) * 2005-09-15 2007-03-29 Takao Kikuchi 発電システム
DE202007015050U1 (de) * 2007-10-27 2007-12-27 Gleissner, Gerhard, Dipl.-Ing. Hybrid-Kraftfahrzeug mit Schwungradanordnung
GB2463534A (en) * 2008-09-23 2010-03-24 Heptron Ltd Liquid flywheel with emergency liquid release
US8006794B2 (en) * 2009-04-30 2011-08-30 Gramling James T Kinetic energy storage device
TWM367241U (en) * 2009-05-19 2009-10-21 Wen-Xiang Zhang Self-generating power generator system
CN101997398A (zh) * 2009-08-27 2011-03-30 刘世珍 动力产生系统及装置
US20110175370A1 (en) * 2010-01-20 2011-07-21 Dugas Patrick J Portable Multi-Stack Flywheel Energy Storage Assembly
CN102108945B (zh) * 2011-02-12 2013-03-27 山东中泰新能源集团有限公司 特大型垂直轴风力发电装置的机械传动系统
CN202405929U (zh) * 2011-11-30 2012-08-29 深圳市配天电机技术有限公司 一种并立电机系统、发电机系统及电动机系统
CN104595447A (zh) * 2015-01-21 2015-05-06 陈少琼 离合档位控制飞轮传动装置及动力系统
CN206036121U (zh) * 2016-07-28 2017-03-22 易随科技股份有限公司 惯性飞轮传动组件及具有惯性飞轮传动组件的系统

Also Published As

Publication number Publication date
CN105972153A (zh) 2016-09-28
WO2018020319A3 (zh) 2018-06-07

Similar Documents

Publication Publication Date Title
CN101240776B (zh) 消除风力涡轮机变速箱中的反冲冲击的方法
CA3086465C (en) Windmill electrical power system and torque enhanced transmission
CN203962295U (zh) 一种双转子水平轴风力发电机的永磁调速机构
WO2014023102A1 (zh) 洁能发电机的风叶驱动方法及装置
CA2907692A1 (en) Turbine driven by wind or motor and method for generating electricity
WO2018020319A2 (zh) 惯性飞轮传动组件及具有惯性飞轮传动组件的系统
TW201738486A (zh) 慣性飛輪傳動組件及具有慣性飛輪傳動組件的系統
US10208732B2 (en) Intelligent wind turbine generator
CN204156658U (zh) 一种飞轮蓄能发电机
CN206036121U (zh) 惯性飞轮传动组件及具有惯性飞轮传动组件的系统
GB2491488A (en) Electromechanical driveline with power splitting device
CN206036122U (zh) 惯性飞轮传动组件及具有惯性飞轮传动组件的系统
TW201804080A (zh) 慣性飛輪傳動組件及具有慣性飛輪傳動組件的系統
TWM548926U (zh) 慣性飛輪傳動組件及具有慣性飛輪傳動組件的系統
WO2018037285A2 (zh) 惯性飞轮传动组件及具有惯性飞轮传动组件的系统
KR20090127024A (ko) 에너지 증폭기를 이용한 무한 동력 발전기와 그 작동방법
TWM541511U (zh) 慣性飛輪傳動組件及具有慣性飛輪傳動組件的系統
TWM553898U (zh) 慣性飛輪傳動組件及其系統
TWI622700B (zh) 慣性飛輪傳動組件及具有慣性飛輪傳動組件的系統
TWM481546U (zh) 循環發電裝置
CN204283740U (zh) 轮式直驱风力发电机
CN102795104A (zh) 具有离心装置的传动轴及传动方法
WO2023171517A1 (ja) ロータリー駆動発電装置
TWM539001U (zh) 慣性飛輪傳動組件及具有慣性飛輪傳動組件的系統
JP3179801U (ja) 可変変速風車発電用動力伝達機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833640

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833640

Country of ref document: EP

Kind code of ref document: A2