WO2014023102A1 - 洁能发电机的风叶驱动方法及装置 - Google Patents

洁能发电机的风叶驱动方法及装置 Download PDF

Info

Publication number
WO2014023102A1
WO2014023102A1 PCT/CN2013/073251 CN2013073251W WO2014023102A1 WO 2014023102 A1 WO2014023102 A1 WO 2014023102A1 CN 2013073251 W CN2013073251 W CN 2013073251W WO 2014023102 A1 WO2014023102 A1 WO 2014023102A1
Authority
WO
WIPO (PCT)
Prior art keywords
clean energy
energy generator
driving method
blade driving
magnetic levitation
Prior art date
Application number
PCT/CN2013/073251
Other languages
English (en)
French (fr)
Inventor
杨青山
杨鹏
杨金鑫
田国栋
杨金涛
张婷婷
杨阳
Original Assignee
Yang Qingshan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang Qingshan filed Critical Yang Qingshan
Publication of WO2014023102A1 publication Critical patent/WO2014023102A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/007Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with means for converting solar radiation into useful energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/708Photoelectric means, i.e. photovoltaic or solar cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/33Shrouds which are part of or which are rotating with the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • F05B2240/51Bearings magnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the invention relates to a method for driving a fan blade, in particular to a blade driving method and device for a clean energy generator.
  • an object of the present invention is to provide a blade driving method and apparatus for a continuous generator which can be applied indoors and outdoors, and which can continuously operate without a wind.
  • a blade driving method and apparatus for a clean energy generator of the present invention includes a magnetic levitation rotary assisting device, and three or more radially arranged winds are embedded in a rotating arc of a magnetic levitation rotary assisting device.
  • the blade in the middle of the wheel arc of the rotating hub of the suspension, is provided with a long rotating shaft, and two or more inertia gears are arranged on the shaft, one of the gears is connected by a sector-shaped helical gear, respectively driving the auxiliary generator, assisting Motor, other inertia gear must be fanned
  • the gear is connected to the auxiliary motor, and the magnetic suspension rotating device is mounted on the long rotating shaft.
  • the numerical control lightning protection device the steel plate platform is provided with a rotating rotary table in the middle and the upper two layers, a lower plate of the platform and a supporting steel pipe arranged in a matrix arrangement, and a wire input battery device for the amorphous silicon photovoltaic electric plate is bundled on the steel pipe, and the steel pipe frame is installed with a wire.
  • Each gear, the lubrication pump of the bearing is provided with a gear box on the flat plate.
  • a hollow shaft, out into the lower portion, is connected up gearbox to drive the auxiliary generator.
  • the transmission device is further provided, and the transmission device causes the running device of the slewing support group plate to interact with the lower device, and the input end and the output end are respectively connected to the blade rotation device and the generator.
  • the magnetic levitation rotating device is installed at the center of the rotating hub, and a plurality of blades are embedded on the rotating arc, and the natural energy is normally operated when there is wind, and the inertia is applied when there is no wind.
  • a long rotating shaft is mounted in the center of the hub.
  • the magnetic rotating device is embedded in the long rotating shaft.
  • the number of inertia gears embedded in the long rotating shaft is set to be several, and the gear is characterized in that the sector teeth are connected to the accumulator generator and the auxiliary motor.
  • one gear on the long rotating shaft should drive two motors, one is the energy storage generator and the other is the auxiliary motor.
  • At least two or more inertia gears on the long rotating shaft are installed, and two or more motors are driven to be an energy storage generator and an auxiliary motor.
  • the sector-shaped helical gear of the gearbox for the energy storage generator and the inertial gear of the long axis Connected, and directly through the voltage regulation, rectification, inverter, frequency conversion for the battery storage, power supply to the magnetic levitation device and the auxiliary motor.
  • the storage battery is the electric energy generated by storing the amorphous silicon photovoltaic electric board.
  • the battery device immediately supplies power to the auxiliary motor and the magnetic levitation rotating device, when the main generator generates power normally. , the battery unit is automatically disconnected.
  • the slewing support group steel plate is upper and lower layers, and a rotating turntable is installed in the middle.
  • the above structure is disposed on the running platform of the upper deck of the slewing support steel plate.
  • the wind blade is rotated by the energy imparted by nature.
  • the battery pack starts the auxiliary motor and the magnetic levitation rotating device drives the inertia gear to simultaneously drive the rotating shaft wheel of the long axis, and the embedded blade continues to rotate.
  • the inertia gear drives the energy storage generator to generate electricity.
  • the energy storage generator is reversely charged, the battery is stored, and at the same time, the auxiliary motor is supplied with power, so that the blades continue to rotate and generate electricity when there is no wind.
  • FIG. 1 is a schematic cross-sectional view showing a specific embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a second embodiment of an integrated lead circuit of the present invention
  • the blade driving method and device of the clean energy generator of the present invention comprises a magnetic levitation hub rotating device 1 (not shown) on the rotating shaft of the rotating hub rotating device 2, at least two inlaid
  • the above-mentioned is arranged to face the blade 3
  • the magnetic suspension hub rotating device is operated on the track 4, and is connected with the slewing support plate plate platform 26, the magnetic levitation hub 1.
  • a long rotating shaft 5 is arranged in the middle of the wind wheel set 4.
  • a magnetic suspension rotary assisting device 6 is mounted, and a plurality of bearing supports 8-8 are mounted on the steel plate platform 7
  • a plurality of inertia gears 9 are embedded, and at the lower end of the inertia gear, the energy storage generator 10 mounted on the steel plate platform is connected by a sector helical gear and an inertial gear 9 on the steel plate platform, and a numerical control is mounted thereon.
  • the lightning protection device 11 is used for regulating the rotary turntable 19 disposed under the steel plate platform, and the speed increasing gear transfer box 12 is connected, and the two motors are driven on a gear 5 on the long rotating shaft, and the first is the energy storage generator 10-10.
  • the second is an auxiliary rotating motor 18, which is connected by a sector-shaped helical gear 17.
  • an integrated wire conveyor 15 is mounted, as shown in (Fig. 2), and the battery 14 is connected by a wire 16, when there is no wind. 14 (Fig. 2-10)
  • Automatic transmission to the inverter via the resistive clutch (Fig. 2-9) (Fig. 2-7) Transfer from the inverter to the inverter (Fig. 2-8) directly to the magnetic suspension rotary unit 1 upper, and the long rotation axis magnetic suspension rotation assist
  • the device 6 and the auxiliary motor 18 (Fig. 2-11), when the energy storage generator 10-10, the normal power generation and the main generator 13 (Fig. 2-2), after normal power generation, the battery device passes the resistance clutch.
  • FIG. 2--9 Automatic Disconnected; then the accumulator generator 10 and the main generator 21 are both supplied to the battery device, and the rectifier is directly supplied to the battery through the regulator (Fig. 2-5) (Fig. 2-6).
  • the resistor The clutch (Fig. 2-9) is automatically disconnected, but the energy storage generator 10-10 (Fig. 2-1) or the main power generation 13 (Fig. 2-2) is passed through the voltage regulator (Fig. 2-5) via the inverter (Fig. 2-5).
  • 2-8) Directly supply power to the auxiliary motor 18 (Fig. 2-11).
  • Below the steel plate platform a rotating turntable is set. The direction of the turntable 19 is adjusted by the numerical control.
  • the steel plate 24 of the F platform of the steel plate platform holds the rotating turntable under the steel plate.
  • a plurality of steel pipes are installed, which are presented as a matrix row.
  • 7 gear-mounted gearboxes 12 are connected, the hollow drive shaft 22 is connected, and the generator 21 is connected.
  • a silicon-free photovoltaic panel is bundled.
  • a lubrication pump 25 is mounted on the support steel pipe 20.
  • the above-mentioned amorphous silicon photovoltaic electric board is fixedly bundled on the supporting steel pipe and is dedicated to the storage of the battery, and the purpose thereof is to start the magnetic levitation device and the auxiliary motor.
  • the above battery operating voltage is: 50Hz - 380V, the battery can be selected any part, no restrictions here.
  • the thickness of the steel plate is 0.5mm-150mm, and the area is 4m 2 — 50m 2
  • Said blade length is 0.3m - 50m width 0.2m - 2m
  • the blade driving method and device of the above-mentioned structure of the clean energy generator adopts the amorphous silicon photovoltaic electric board to convert the absorbed photovoltaic energy into electric energy, and the magnetic suspension rotating device and the auxiliary motor are used as the auxiliary power source, and A plurality of inertia gears are mounted on the rotating shaft, and at least two energy storage generators are connected to the inertia gear by a gearbox of the sector helical gear, and one of the gears is driven by an auxiliary motor.
  • the above-mentioned long rotating shaft has a diameter of 20 mm - 600 mm and a weight of 5 kg - 5000 kg.
  • the inertial tooth on the long axis, its weight is: 10kg - 20000kg.
  • the auxiliary motor has an operating voltage of 50 Hz - 380 V and a power of 2-110 KW.
  • the above magnetic suspension rotating device has an operating voltage of 220 V - 720 V
  • the above-mentioned energy storage generator has a working voltage of 50 Hz - 380 V and a power of 3 KW - this accumulator generator, in particular, is equipped with an integrated wire transmitter 14 for voltage regulation, rectification, inverter and frequency conversion (shown in Figure 2). Power is supplied directly to the auxiliary motor and to the magnetic levitation rotating device.
  • a rotary turntable 19 is provided, and the rotary turntable 19 is mounted under a steel plate platform 7, that is, for the upper and lower sandwich plates of 7 and 24, the numerical control device 11 mounted on the upper plate 7 is rotated and rotated.
  • the turntable 19 can move all the devices presented on the platform 7 to adjust the wind direction of the blades so that the blades 3 are always perpendicular to the direction of the wind flow. At this time, the force arm is large and the starting torque is minimum.
  • the speed-increasing gear box 12 mounted under the upper deck of the flat plate is connected to the auxiliary energy storage generator 13 by the hollow drive shaft group 22.
  • the lower surface 24 of the above-mentioned flat plate is provided with a plurality of steel pipes arranged in a matrix 20.
  • the amorphous silicon photovoltaic panel 23 is bundled and fixed on a plurality of supporting steel tubes 20, and is conveniently installed, which is to disperse the entire area of the photovoltaic electric board, and is close to the battery, and directly uses the wire 16 ( Figure 2-3) Transfer button (Figure 2-4), transfer to the regulator ( Figure 2-5) and then into the rectifier ( Figure 2-6), charge the battery ( Figure 2-10) When there is no wind, initial start When the battery pack 14 (Fig. 2-10) is connected to the inverter through the automatic resistance clutch (Fig. 2-9) (Fig. 2-7), after inverter, enter the inverter (Fig.
  • the motor 17 (Fig. 2-11) is powered.
  • the auxiliary generator (Fig. 2-1) also includes the main generator 13. (Fig. 2-2) Connect the voltage regulator (Fig. 2-5) through the wire (Fig. 2-3) with the transfer button (Fig. 2-4). Then pass the inverter (Fig. 2-8) directly to the magnetic levitation rotating device and the steel plate.
  • the magnetic levitation rotating device on the platform rotates the magnetic levitation device 6 on the long rotating shaft to supply power to the auxiliary motor 18.
  • Fan-shaped helical gear multi-pole speed increase, increase energy, release: a large amount of stored energy is released, because energy generates power, because power is mechanically amplified, releasing power, so the energy it converts is released, and the effect is far beyond The output power is dozens of times.
  • the invention simultaneously adopts inexhaustible and inexhaustible photovoltaic energy and wind air kinetic energy, mechanical energy as power energy, mutual assistance, complement each other, and combines new energy to generate electricity, the invention of the generator Clean and environmentally friendly, due to breaking the use of a single
  • the limitation of wind power and solar power generation, so the present invention is based on the absence of the wind and the wind blade, and when there is no sun, the photovoltaic power storage and the electric energy drive the wind blade to continue to operate, the clean energy generator, the electricity generated
  • This product is stable in quality and has a wide range of applications. It is suitable for installation in various places and can produce large and small products.
  • the present invention is not limited to the above embodiments, and any modification of the structure or shape of the above-described clean energy generator blade driving method and apparatus is a modification of the present invention, and should be considered to fall within the present invention.
  • any modification of the structure or shape of the above-described clean energy generator blade driving method and apparatus is a modification of the present invention, and should be considered to fall within the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

一种洁能发电机的风叶驱动方法,其包括设置磁悬浮旋转装置,其中设有轮毂(1),其轮弧(2)上嵌有数个呈径向设置的风叶(3),风叶(3)顶端镶有轴承,并嵌在圆圈形状的磁悬浮运行轨道(4)上。轮毂(1)上设置有通长转动轴(5)并镶嵌数组磁悬浮装置。轴上嵌有惯性作用的齿轮(9)带动塔架平台上的蓄能发电机(10),充电给蓄电池(14)并通过整流稳压器为启动电机和磁悬浮装置供电。还披露了一种节能发电机的风叶驱动装置,该装置包括轴承支座固定在平台(7)上,平台上辅助电动机(18)与扇形斜齿轮(17)连接,数控装置调控辅助转盘(19)方向,平台上齿轮箱(12)用导杆输到地面连接发电机(21)或通长转动轴(5)直连发电机(21)。平台下有支撑钢管矩阵排列并装有无晶硅光伏电板(23),其通过导线连接蓄电池(14),使发电机连续性运转。

Description

洁能发电机的风叶驱动方法及装置 技术领域
本发明涉及一种发电机风叶驱动方法, 尤其是洁能发电机的风叶驱 动方法及装置。
背景技术
目前随着现代化工业的发展, 各行各业用电量大幅度增加, 全球面 临能源危机, 比如火力发电, 大量消耗矿产资源, 因此也导致环境污染, 因此, 节约能源, 实现可持续发展, 充分利用再生能源已成为当今时代赋 予的主题, 譬如利用风能再生能源和光伏发电结合的发电机, 现在用的风 力发电机和太阳能组合的发电机普遍都是利用风能和太阳能起动, 在没有 风的情况下, 不能转动多久, 就停了, 因发电机在二级风力以下风叶往往 处于停止状态, 而且由于受自然条件限制, 不能保证 24小时内都在刮风, 风力发电机基本上都是在每秒 3米至 6米发才能发电, 时转地停对发电机 损害严重, 发出的电质量差, 电压也不稳定, 国家电网调负荷比较难, 所 以不便于连接国电网。
发明内容:
为了克服上述缺陷,本发明的目的在于提供一种连续性发电机,室内、 室外都能应用, 还且在无风也能连续运转的洁能发电机的风叶驱动方法及 装置。
为了达到上述目的, 本发明的洁能发电机的风叶驱动方法及装置, 它 包括磁悬浮旋转助动装置, 在磁悬浮旋转助动装置的转弧上, 镶嵌有三个 以上的呈径向设置的风叶, 在兹悬浮旋转的转毂的轮弧中间, 设置有通长 转动轴, 在其轴上镶嵌有两个以上的惯性齿轮, 其中一个齿轮用扇形斜齿 轮连接, 分别带动辅助发电机, 辅助电动机, 其它惯性齿轮必须用扇形斜 齿轮连接辅助电动机, 通长转动轴上安装有磁悬浮旋转装置, 在钢板平台 上安装有数个轴承支座, 在平板上安装有蓄电池装置, 在没有风及停止的 情况下, 由蓄电池旋转装置供电, 当蓄能发电机和主发电机正常发电后, 蓄电池有电阻离合器断开,蓄能发电机通过稳压器,整流器给蓄电池蓄电, 当蓄电池满负荷时电阻离合器自动断开, 同时蓄能发电机通过稳压器, 变 频器直接给磁悬浮旋转装置和辅助电动机供电的负荷达不到时由主发电 机通过稳压器, 变频器直接给磁悬浮旋转助动装置和辅助电动机供电, 平 台上设置有数控避雷装置, 钢板平台设上下两层中间设旋转转盘, 平台下 板和以矩阵排列安装的支撑钢管, 在钢管上捆绑有无晶硅光伏电板用导线 输入蓄电池装置, 钢管架上安装有通各齿轮, 轴承的润滑泵, 在平板上设 置有齿轮箱, 由空心传动轴, 伸到下部, 连接增速齿轮箱, 带动辅助发电 机。
其中, 还包括传动装置, 所述的传动装置促使回转支撑组平板的运行 设备和下面设备互动, 其输入端和输出端分别连接风叶旋转装置和发电 机。
进一步地, 所述的磁悬浮旋转装置是安装在转毂中心, 其转弧上嵌装 数个风叶, 有风时起到大自然能量的正常运转, 无风时起惯性作用。
在转毂的中心安装有一个通长转动轴。
其中, 通长转动轴上镶嵌有磁悬浮旋转装置。
特别是, 所述的通长转动轴上镶嵌的惯性齿轮设为数个, 此齿轮的特 点是用扇形轮齿和蓄能发电机、 辅助电动机连接。
其中,通长转动轴上的一个齿轮要带动两个电机,一个是蓄能发电机, 一个是辅助电动机。
特别是, 通长转动轴上的惯性齿轮至少安装两个以上, 并且要带动两 个以上电机一个是蓄能发电机, 一个辅助电动机。
尤其是, 蓄能发电机用变速箱的扇形斜齿轮和通长轴的惯性齿轮连 接, 并直接通过稳压, 整流, 逆变, 变频为蓄电池蓄电, 给磁悬浮装置和 辅助电动机供电。
其中, 蓄电池是用蓄存无晶硅光伏电板产生的电能, 当蓄能发电机 和辅助电动机不能正常带动惯性齿轮时, 蓄电池装置立即往辅助电动机和 磁悬浮旋转装置供电, 当主发电机发电正常时, 蓄电池装置自动断开。
其中, 回转支撑组钢板为上、 下两层, 中间安装有旋转转盘。
上述的结构, 是设置在回转支撑钢板的上层板的运行平台上, 在有 风的时候, 所述的风叶就用大自然赋予的能量进行旋转, 当没有风和阳光 的时, 风叶就起了惯性作用, 蓄电池组启动辅助电动机和磁悬浮旋转装置 带动惯性齿轮同时带动通长轴的转毂轮弧上,镶嵌的风叶继续旋转,此时, 惯性齿轮带动了蓄能发电机发电, 此时蓄能发电机又反充电给蓄电池蓄 能, 同时又给辅助电动机供应电源, 使风叶在无风时继续旋转发电。
由于采用了转毂轮及转弧上上镶嵌的风叶及通长转动轴上的惯性齿 轮, 由于它们的旋转惯性冲量, 才能达到发电机连续运转的效果, 这样才 能体现实践一个新理论, 能量、转换、 守恒、储存、释放的浅规则的定律, 此时, 由于惯性作用, 没有风的时候, 风叶也能旋转, 同时也增强了发电 机的连续转率, 在无风时才能实现正常发电。
附图说明:
图 1、 为本发明具体实施例的剖面结构示意图。
图 2、 为本发明集成导线电路第二具体实施例的结构示意图
具体实施方式
下面结合附图和实施例对本发明进一步详细说明。
如图 1、 图 2所示, 本发明洁能发电机的风叶驱动方法及装置, 它包 括磁悬浮转毂旋转装置 1 (未示出) 在转毂旋转装置转弧上 2, 镶嵌至少 两个以上 (图示 5 ) 呈向设置的风叶 3, 所述的磁悬浮转毂旋转装置运行 轨道上 4, 并和回转支撑组钢板平台下连接在一起 26, 所述的磁悬浮转毂 1, 风轮组 4中间, 设置有通长转动轴 5, 在通长转动轴上 5上, 镶嵌磁悬 浮旋转助动装置 6,在钢板平台上 7安装有数个轴承支座 8-8,在通长转动 轴 5上, 镶嵌有数个惯性齿轮 9, 在惯性齿轮下端, 安装在钢板平台的蓄 能发电机 10, 用扇形斜齿轮和惯性齿轮 9连接在一起, 在钢板平台上 7, 安装有数控避雷装置 11, 用来调控钢板平台下面设置的旋转转盘 19, 增 速齿轮转箱 12连接, 在通长转动轴上的一个齿轮上 5带动两个电机, 一 是蓄能发电机 10-10, 二是辅助转动的电动机 18, 用扇形斜齿轮 17连接, 在平台板 7上, 安装有集成导线传输器 15, (图 -2)所示, 通过导线 16连 接蓄电池 14, 当没有风的时候蓄电池 14 (图 2-10) 通过电阻离合器 (图 2-9) 自动传输给逆变器 (图 2-7) 从逆变器转到变频器 (图 2-8)直接 传 输到磁悬浮旋转装置转毂 1上, 和通长转动轴磁悬浮旋转助动装置上 6和 辅助电机上 18 (图 2-11 ), 当蓄能发电机 10-10, 正常发电及主发电机 13 (图 2-2) 正常发电后蓄电池装置通过电阻离合器图 2-9 自动断开; 然后 蓄能发电机 10和主发电机 21均给蓄电池装置, 通过稳压器, (图 2-5)整 流器 (图 2-6) 直接给蓄电池送电, 当蓄电池满负荷后, 电阻离合器 (图 2-9) 自动断开, 然蓄能发电机 10-10 (图 2-1 )或主发电 13 (图 2-2)通过 稳压器 (图 2-5) 经变频器 (图 2-8) 直接给辅助电动机 18 (图 2-11 ) 供 电, 钢板平台下下面, 设置有旋转转盘, 通过数控调整转盘 19的方向 , 钢板平台 F面的钢板 24托住旋转转盘, 在钢板下面安装有多个钢管, 呈 现为矩阵排例, 在钢板平 7个安装齿轮增速箱 12, 连接空心传动轴 22, 连接发电机 21, 在钢管支撑架上, 设置捆绑有无晶硅光伏电板 23, 在支 撑钢管 20上, 安装有润滑泵 25。
上述的无晶硅光伏电板是固定捆绑在支撑钢管上边, 专用给蓄电池蓄 电的, 其目的用来启动磁悬浮装置和辅助电动机的。
上述的蓄电池工作电压为: 50Hz— 380V,蓄电池可以选择任何一个部 位, 在此不做限制。 钢板厚度为 0.5mm- 150mm, 面积 4m2— 50m2
钢管直径: 0.5mm— 500mm 高度为 lm— 100m
轮毂叶轮直径 0.3m— 6m 高度为 0.2m— 1.5m
所说的风叶长度为 0.3m— 50m宽度 0.2m— 2m
上述结构的洁能发电机的风叶驱动方法及装置, 由于采用了无晶 硅光伏电板, 将吸收的光伏能量转化为电能为磁悬浮旋转装置和辅助 电动机做为助动电源, 并且在通长转动轴上安装有数个惯性齿轮, 至 少有两蓄能发电机, 用扇形斜齿轮的变速箱连接惯性齿轮, 其中一个 齿轮上有一个辅助电动机带动。
上述的通长转动轴, 直径为 20mm— 600mm重量为 5kg— 5000kg。 通长轴上的惯性齿, 它的重量为: 10kg— 20000kg。
所述的辅助电动机工作电压 50Hz— 380V, 功率为 2-110KW.上述 的磁悬浮旋转装置其工作电压为 220V— 720V
上述的蓄能发电机工作电压为 50Hz— 380V 功率为 3KW— 此蓄能发电机, 特别是加装了, 稳压, 整流、 逆变、 变频组成用 集成导线传输器 14 (图 2所示)直接为辅助电动机供电, 并为磁悬浮 旋转装置供电。
进一步地所述的钢板平台下面, 设置有旋转转盘 19, 旋转转盘 19 安装在一个钢板平台 7下面, 也就是说为了 7和 24上下面夹层板, 上 板 7安装的数控装置 11摇控转动旋转转盘 19能移动平台上 7呈现的 所有装置, 使风叶调整的风方向, 使风叶 3始终与风流速方向保持垂 直, 此时的力臂大, 启动扭矩最小。
再进一步, 在平板上层下安装的增速的齿轮箱 12, 用空心传动轴 组 22, 连接辅助蓄能发电机 13。
上述所说的平板下面 24,安装有数个钢管以矩阵 20呈现, 的排列。 其中, 所述的无晶硅光伏电板 23, 是捆绑固定在数个支撑钢管 20 上的, 安装方便, 由其是把光伏的电板整体面积分散化, 距离蓄电池 近, 直接用导线 16 (图 2-3) 传输钮 (图 2-4), 传输给稳压器 (图 2 —5)再进入整流器(图 2-6), 为蓄电池充电 (图 2-10) 当没有风, 初 始起动时, 由蓄电池组 14 (图 2-10) 通过自动电阻离合器 (图 2-9) 接上逆变器 (图 2-7) 经逆变后, 进入变频器 (图 2-8) 直接往辅助电 动机 17 (图 2-11 ) 供电, 当蓄能发电机和空发电正常后, 蓄电池通过 电阻离合器 (图 2-9) 自动断开, 辅助发电机 (图 2-1 ) 也包括主发电 机 13 (图 2-2)通过导线(图 2-3)用传输钮(图 2-4)连接稳压器(图 2-5) 再经变频器 (图 2-8) 直接为磁悬浮旋转装置和钢板平台上 7磁 悬浮旋转装置转动通长转动轴上的磁悬浮装置 6供电, 同时并为辅助 电动机 18供电。
因此, 实践证明是一个理论: 能量、 转换、 守恒、 储存、 释放的 一定定义, 这就是以上所述洁能发电机风叶驱动方法电路应用, 这就 是解读能量转换的实施方案, 守恒, 用惯性齿轮带动的蓄能发电机, 它产生的能大于电池输出的电能, 同进返充电给蓄电池蓄电, 同时通 过集成传输导线器直接给辅助电动机供电, 再说主发电机通过稳压, 变频也可直接为助动装置供电, 储存; 用硕大超重的通长转动轴及风 叶的惯性, 通长轴动轴上镶嵌的齿轮, 在转动过程中, 产生了机械储 能, 增加了惯性冲量, 通过扇形斜齿轮多极增速, 增加能量, 释放: 大量的已储存能量的释放, 因为能量产生功率, 因为功率通过机械放 大, 释放了功率, 所以它转换的能量释放, 所产生的功效大大超出了 输出的功率数十倍。
本发明同时采用了大自然中取之不尽, 用之不完的光伏能量和风 力空气动能, 机械能做为动力能源, 相互助动, 相互补充, 组合利用 新能源进行发电, 此发明的发电机清洁环保, 由于打破了利用单一的 风力、 太阳能发电的局限性, 所以本发明在于没有风动风叶的情况下, 也没有太阳的时候, 借助光伏储存和电能驱动风叶, 继续运转发电, 此洁能发电机, 发出的电的不质量不用大电网经常调负荷, 此发明连 续发出的电的质量稳定, 本产品制造简单, 用途范围广泛, 适合各个 场所安装, 可制造出大小产品。
本发明不局限于上述实施方式, 不论在其结构或形状做任何变化, 凡是利用上述的洁能发电机风叶驱动方法及装置, 都是本发明的一种 变形, 均应认为落在本发明保护范围之内。

Claims

权 利 要 求 书
1、 一种洁能发电机的风叶驱动方法及装置, 其特征在于, 洁能发电机的风叶驱动方法, 其特征在于包括磁悬浮旋转助动装 置,在风轮组中间部位设置了磁悬浮旋转助动装置的轮毂,在其轮 弧上嵌有数个呈径向设置的风叶,风叶的顶部镶有旋转轴承,并嵌 有圆圈形状的磁悬浮运行轨道上,轮毂上安整有通长转动轴,在轴 上设置磁悬浮旋转助动装置,在通长转动轴上镶嵌有数个扇形斜齿 轮、在齿轮上分别带动辅助发电机,其中一齿轮上又加带辅助电动 机,辅助发电机及主发电机通过稳压器,变频器直接往辅助电动机, 磁悬浮旋转装置上供电, 同时给蓄电池组蓄电, 当蓄电满负荷时, 电阻离合器自动断开, 当辅助发电机不工作时,蓄电池自动启动磁 悬浮旋转装置和辅助电动机,其装置包括钢板平台,在平台上安装 有多个轴承支座, 有数控避雷装置, 在平板上安装有齿轮增速箱, 有空心传动轴组, 钢板平台旋转转盘上, 旋转转盘有钢板支撑, 钢 板下面有按矩阵排的支撑钢管,在支撑钢管上捆绑有无晶硅光伏电 板,在支撑架上安有轴承和齿轮的润滑油泵,有集成导线传输器连 接各电器装置。
2、 根据权利要求 1 所过的洁能发电的风叶驱动方法及装 置, 其特征在于包括风轮组, 所述的磁悬浮旋转动装置的轮毂, 在 轮弧上嵌有数个呈径向设置的风叶,风叶的顶尖部镶有旋转轴承并 镶嵌在圆圈形状的磁悬浮运转轨道上。
3、 根据权利要求 2所述的洁能发电机的风叶驱动方法及装 置,其特征在于所述的运行轨道是圆圈形状,其外围相对称的磁悬 浮动行轨道上此磁悬浮运行轨道外圈装置是有支撑固定架。
4、 根据权利要求 2所述的洁能发电机的风叶驱动方法及装 置, 其特征在于, 所述的轮毂, 在轮毂上安装有通长转动轴。
5、 根据权利要求 4所述的洁能发电机的风叶驱动方法及装 置,其特征在于所述的通长转动轴,在轴上安装有磁悬浮旋转助动 装置。
6、 根据权利要求 5所述的洁能发电机的风叶驱动方法及装 置, 其特征在于所述的通长转动轴, 在轴上镶嵌有数个齿轮。
7、 根据权利要求 6所述的的洁能发电机的风叶驱动方法及 装置,其特征在于,在通长转动轴上安装的齿轮分别带动安装在平 台上的辅助发电机。
8、 根据权利要求 7所述的洁能发电机的风叶驱动方法及装 置, 其特征在于, 通长转动轴上安装的齿轮上, 其中有一齿轮用扇 形铁齿轮连接带动一个辅助电动机。
9、 根据权利要求 7所述的的洁能发电机的风叶驱动方法及 装置, 其特征在于, 所述的辅助发电机, 发出的电, 通过稳压器, 整流器为蓄电池蓄电, 同时, 经过稳压器, 变频器直接为辅助电动 机和磁悬浮装置送电。
10、 根据权利要求 1所述的洁能发电机的风叶驱动方法及装 置,其特征在于所述的主发电机通过稳压器,变频器直接为磁悬浮 旋转装置送电和辅助电动机送电。
11、 根据权利要求 9所述的洁能发电机的风叶驱动方法及装 置, 其特征在于, 所述的蓄电池组, 通过逆变器, 变频器为磁悬浮 旋转装置供电, 同时为辅助电动机供电。
12、 根据权利要求 1所述的洁能发电机的风叶驱动方法及装 置, 其特征在于, 所述的钢板平台座落在旋转转盘上面。
13、 根据权利要求 1所术宾洁能发电机的风叶驱动方法及装 置, 其特征在于, 所述的数控避雷装置设置在平板上面。
14、 根据权利要求 1所述的洁能发电机的风叶驱动方法及装 置其特征在于, 所述的通长转动轴直接与发电机相接。
15、 根据权利要求 12 所述的洁能发电机风叶驱动方法及装 置, 其特征在于, 所述的下面钢制平板的上面安装有旋转转盘。
16、 根据权利要求 15 所述的洁能发电机的风叶驱动方法及 装置,其特征在于,所述的钢制平板下面安装有矩阵排放的支撑钢 管。
17、 根据权利要求 16 所述的洁能发电机的风叶驱动方法及 装置, 其特证在于, 所述的支撑钢管上面捆绑无晶硅光伏电板。
PCT/CN2013/073251 2012-08-09 2013-03-27 洁能发电机的风叶驱动方法及装置 WO2014023102A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210280730.2 2012-08-09
CN2012102807302A CN102820737A (zh) 2012-08-09 2012-08-09 洁能发电机的风叶驱动方法及装置

Publications (1)

Publication Number Publication Date
WO2014023102A1 true WO2014023102A1 (zh) 2014-02-13

Family

ID=47304656

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2013/073251 WO2014023102A1 (zh) 2012-08-09 2013-03-27 洁能发电机的风叶驱动方法及装置
PCT/CN2013/000936 WO2014023084A1 (zh) 2012-08-09 2013-08-09 一种节能发电机的风叶驱动装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000936 WO2014023084A1 (zh) 2012-08-09 2013-08-09 一种节能发电机的风叶驱动装置

Country Status (2)

Country Link
CN (1) CN102820737A (zh)
WO (2) WO2014023102A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11606003B1 (en) * 2022-09-01 2023-03-14 K-Technology Usa Inc Portable power generating system uses rotating table
US11777372B1 (en) 2022-09-01 2023-10-03 K-Technology Usa, Inc. Portable power generating system uses rotating table

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820737A (zh) * 2012-08-09 2012-12-12 杨青山 洁能发电机的风叶驱动方法及装置
CN107547008A (zh) * 2016-06-29 2018-01-05 杨青山 一种磁悬浮发电驱动装置
WO2018103183A1 (zh) * 2016-12-08 2018-06-14 杨青山 一种磁悬浮智能发电驱动装置
CN114257054B (zh) * 2021-12-23 2023-09-26 陆河县鸿泰水电开发有限公司 一种具有蓄电功能的节能环保的高效发电机
CN116181565B (zh) * 2023-02-23 2024-02-23 河北利风新能源技术有限公司 一种保护叶片的风力发电机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201118259Y (zh) * 2007-07-18 2008-09-17 张骐纬 一种改进型的备用电源装置
CN101900085A (zh) * 2009-05-25 2010-12-01 杨青山 太阳能风力发电机风叶驱动方法及装置
CN201803289U (zh) * 2010-09-28 2011-04-20 王旸 一种风光互补双能路灯
CN202077516U (zh) * 2010-12-03 2011-12-21 河南省电力公司南阳供电公司 杆塔驱鸟器
CN102820737A (zh) * 2012-08-09 2012-12-12 杨青山 洁能发电机的风叶驱动方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUP0800557A2 (en) * 2008-09-10 2010-08-30 Pal Tamas Csefko Device and method fof increasing of the power factor of wind or hydraulic machines with additional pneumatic system
CN201428558Y (zh) * 2009-06-22 2010-03-24 金坛市誉泰隆能源科技有限公司 风力发电机的软风启动装置
CN102022272A (zh) * 2009-09-09 2011-04-20 赵大庆 智能梯度稳定高质大功率风力发电机组
US8403638B2 (en) * 2010-06-30 2013-03-26 Mitsubishi Heavy Industries, Ltd. Wind power generator
CN201851281U (zh) * 2010-11-22 2011-06-01 林石贤 一种发电装置
CN102322395A (zh) * 2011-06-02 2012-01-18 江重华 离网式风光互补集群发电系统
CN202326032U (zh) * 2011-12-12 2012-07-11 山东大学 机械耦合式压缩空气储能微型混合风力发电系统
CN102817787A (zh) * 2012-08-09 2012-12-12 杨青山 光伏发电机风叶驱动装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201118259Y (zh) * 2007-07-18 2008-09-17 张骐纬 一种改进型的备用电源装置
CN101900085A (zh) * 2009-05-25 2010-12-01 杨青山 太阳能风力发电机风叶驱动方法及装置
CN201803289U (zh) * 2010-09-28 2011-04-20 王旸 一种风光互补双能路灯
CN202077516U (zh) * 2010-12-03 2011-12-21 河南省电力公司南阳供电公司 杆塔驱鸟器
CN102820737A (zh) * 2012-08-09 2012-12-12 杨青山 洁能发电机的风叶驱动方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11606003B1 (en) * 2022-09-01 2023-03-14 K-Technology Usa Inc Portable power generating system uses rotating table
US11777372B1 (en) 2022-09-01 2023-10-03 K-Technology Usa, Inc. Portable power generating system uses rotating table

Also Published As

Publication number Publication date
CN102820737A (zh) 2012-12-12
WO2014023084A1 (zh) 2014-02-13

Similar Documents

Publication Publication Date Title
WO2014023102A1 (zh) 洁能发电机的风叶驱动方法及装置
CN103883469B (zh) 机械耦合式磁悬浮风机偏航系统
CN100546153C (zh) 绕线型外转子无刷双馈发电机及其控制装置
CN201039068Y (zh) 变速恒频绕线型无刷双馈发电机控制装置
WO2011106919A1 (zh) 风力发电装置
WO2012116532A1 (zh) 一种发电设备
CN103498762B (zh) 机械储能风力发电系统
CN103133264B (zh) 一种基于飞轮储能调速的风力发电机系统
CN201045750Y (zh) 外转子无刷双馈发电机及其控制装置
CN103378646A (zh) 太阳能驱动风力发电装置的方法及装置
CN102817787A (zh) 光伏发电机风叶驱动装置
CN107332493A (zh) 一种新能源基塔
CN101051779B (zh) 绕线型内转子无刷双馈发电机及其控制装置
CN104179638A (zh) 一种风轮框传动大型风力发电机
CN104806452A (zh) 发电驱动装置
CN201038960Y (zh) 内转子无刷双馈发电机及其控制装置
CN101655065B (zh) 风力发电机变桨距控制系统
CN102116263A (zh) 一种攻角跟随式兆瓦级垂直轴风力发电机
CN107965420A (zh) 一种新型自动调向风力发电装置
CN203532167U (zh) 风力转化为机械能储能装置
CN100557941C (zh) 绕线型无刷双馈发电机控制装置
CN211082138U (zh) 一种用于风力发电机的专用调向机构
CN202851262U (zh) 洁能发电机驱动装置
CN104847601A (zh) 发电装置
CN104976054A (zh) 一种垂直轴风力发电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13828318

Country of ref document: EP

Kind code of ref document: A1