RU2697075C1 - Способ преобразования кинетической энергии ветра на летающей ветроэнергетической установке - Google Patents

Способ преобразования кинетической энергии ветра на летающей ветроэнергетической установке Download PDF

Info

Publication number
RU2697075C1
RU2697075C1 RU2018127364A RU2018127364A RU2697075C1 RU 2697075 C1 RU2697075 C1 RU 2697075C1 RU 2018127364 A RU2018127364 A RU 2018127364A RU 2018127364 A RU2018127364 A RU 2018127364A RU 2697075 C1 RU2697075 C1 RU 2697075C1
Authority
RU
Russia
Prior art keywords
wind
shaft
propeller
flying
electric machine
Prior art date
Application number
RU2018127364A
Other languages
English (en)
Inventor
Юлий Борисович Соколовский
Ольга Юльевна Иванова
Юрий Маркович Рыжевский
Original Assignee
Юлий Борисович Соколовский
Ольга Юльевна Иванова
Юрий Маркович Рыжевский
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Юлий Борисович Соколовский, Ольга Юльевна Иванова, Юрий Маркович Рыжевский filed Critical Юлий Борисович Соколовский
Priority to RU2018127364A priority Critical patent/RU2697075C1/ru
Application granted granted Critical
Publication of RU2697075C1 publication Critical patent/RU2697075C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

Изобретение относится к ветроэнергетике. Способ преобразования кинетической энергии ветра на летающей ветроэнергетической установке заключается в том, что в состав летающей ветроэнергетической установки включен пропеллер с множеством лопастей и возможностью их вращения, этот пропеллер обеспечивает подъем летающей ветроэнергетической установки и имеет устройство разворота лопастей на угол атаки относительно направления ветра. В рабочем режиме летающая ветроэнергетическая установка представляет собой ветроустановку с вертикальным валом типа Дарье, при подлете к рабочей точке, пространственные координаты которой задают предварительно в узел стабилизации с контроллером, за счет энергии ветра через вращающийся вертикальный вал, включенную коммутационную муфту и ускоряющий редуктор вращает нижний конец вала электрической машины, работающей в генераторном режиме и передающей электроэнергию через кабель связи, регулятор тока заряда, разряда на аккумулятор стартового стола, при этом второй конец вала электрической машины подключен к валу пропеллера через шарнирное соединение валов, причем угловое положении валов в плоскости, параллельной ветру, обеспечивается с помощью флюгера, узла стабилизации с контроллером, гироскопа, датчиков скорости и направления ветра, датчиков тока и оборотов электрической машины, причем в состав узла стабилизации с контроллером входит мотор-гайка и винт, соединяющий мотор-гайку с подшипником на валу пропеллера, при этом верхняя часть ветроустановки имеет опорный диск в форме крыла с изменяющимся углом атаки относительно направления ветра, жестко связанный с вертикальным валом, при этом узел стабилизации с контроллером обеспечивает стационарное положение рабочей точки летающей ветроэнергетической установки в рабочем режиме при минимальном расстоянии до стартового стола и положение вертикального вала с углом атаки крыла, осуществляет выбор оборотов вертикального вала и электрической машины, управляет регулятором тока заряда, разряда, т.е. током нагрузки электрической машины в генераторном режиме. Изобретение направлено на повышение эффективности использования энергии ветра. 2 з.п. ф-лы, 5 ил.

Description

Высотная ветроэнергетика имеет огромный, долгосрочный потенциал, но сталкивается с разнообразными инженерными и нормативными проблемами. Исследователям еще предстоит выяснить, как безопасно подвесить ветровые турбины на высоте, как держать их в воздухе в течение длительного периода времени при сильных ветрах, и как избежать взаимных помех для авиации. И хотя, предстоит разрешить множество трудностей, высотная энергия ветра может в конечном итоге стать более простым и дешевым способом извлекать энергию из ветра, нежели развитие традиционной ветроэнергетики. Такая ситуация может возникнуть по той причине, что не будет никакой необходимости в гигантских стальных и бетонных башнях или в поворотном механизме, который переориентирует стандартные ветровые турбины по мере изменения направления ветра. Высотная энергия ветра может стать самым дешевым источником энергии в мире. А в масштабах всего мира, высотная ветроэнергетика сможет обеспечить потребности всей планеты, обладая низкими затратами, используя специальные системы захвата ветра, которые будут парить на высотах, где сила ветра намного выше, чем она есть на уровне земли. Кинетическая энергия воздушного потока
Figure 00000001
пропорциональна площади его поперечного сечения и третьей степени его скорости. Поэтому повышение скорости ветра на высотах 800-1000 м в 2,7 раза и более повышает энергию ветра (воздушного потока- ВП) в 18-20 раз.
Перерасчет скорости ветра Vo с высоты Нo на высоту оси ротора H1 осуществляется по известной зависимости [1]:
Figure 00000002
Проблема заключается в выборе значений показателя k. Значения k во многих работах принимается k=0,143 (см., например, работу [1]). В нормативных документах [2] рекомендуют k=0,2. В работе [3] для различных мест США представлены значения k=0,23.
Figure 00000003
Figure 00000004
3. Justus C.G., Mikhail A. Height Variations of Wind Speed and Wind Distributions Statistics, Geophy. Res. Letters, 3, 251-264, 1976.
Известна ВЫСОТНАЯ ПАРУСНАЯ ВЕТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА С БОКОВЫМ ДОПОЛНИТЕЛЬНЫМ КАНАТОМ И АЭРОСТАТОМ Патент RU №2464447, С2, F03D 11/00 Опубликовано 20.10.2012 г, Бюл. №29.), как вариант решения поставленной задачи по извлечению и использованию энергии ветра на значительной высоте над землей. Изобретение относится к высотной ветроэнергетике и предназначено для преобразования энергии ветра, преобладающего на значительной высоте над поверхностью Земли, в электрическую энергию. Высотная ветроэнергетическая установка содержит парус, силовые канаты, соединенные с парусом, аэростат и барабаны, каждый из которых соединен со своей электрической машиной. Аэростат соединен с парусом и с силовым канатом, соединенным с вновь введенным дополнительным канатом, расположенным на первом барабане. Аэростат также соединен и с другим силовым канатом, соединенным с парусом, причем на втором барабане расположен силовой канат, соединенный с парусом. Барабаны могут быть размещены на поворотной платформе. Эта установка имеет ряд недостатков, снижающих ее эффективность и вероятность реализации.
1. Управление парусами и передача энергии осуществляется достаточно сложно и ненадежно с помощью тросов и барабанов. При резких порывах ветра или его резком изменении направления в этом известном устройстве вероятны аварийные ситуации, особенно в связи с отсутствием контроля и поддержания натяжения тросов (с учетом их парусности и дополнительным, паразитным натяжением). Непонятен алгоритм управления электрическими машинами, обеспечивающий оптимальный угол атаки паруса в момент получения энергии.
2. Аэростат имеет значительную "ометаемую" площадь и дополнительную нагрузку на тросы, особенно при штормовых ветрах.
3. Циклический характер получения энергии и дополнительные ее затраты существенно снижает эффективность установки, усложняет связь с внешней энергетической сетью.
В качестве прототипа рассмотрим United States Patent №9,759,188 В2 от 12.09.2017 г. Электрогенерирующий гироплан, устройство и методика управления.
Это гироплан (вариант его конструкции дан на FIGRE 6 патента), вырабатывающий энергию, он содержит пропеллер с множеством лопастей, прикрепленных с возможностью вращения к раме, причем указанный пропеллер выполнен с возможностью поворота вокруг оси вращения и обеспечивает подъем гироплана, причем указанный пропеллер имеет шаг, заданный траекторией относительно встречного ветра, и разворот лопастей на соответствующий угол относительно направления ветра (угол атаки α); трос, имеет первый конец и второй конец, причем указанный первый конец расположен рядом с землей, а второй конец проходит вверх, причем указанный трос приспособлен для закрепления на гироплане (работа всего комплекса-
Электрогенерирующий гироплан - поясняется FIGRE 18 патента). Средство управления натяжением, приспособленное для регулирования натяжения в указанном тросе, содержит: бортовой измеритель натяжения, выполненный с возможностью измерения натяжения, существующего или прикрепленного к указанному тросу; датчик скорости ветра, приспособленный для определения скорости ветра, который действует на гироплан; контроллер, выполненный с возможностью приема сигналов от упомянутого бортового измерителя натяжения и датчика скорости ветра и циклического контроля натяжения в указанном тросе, причем упомянутый контроллер дополнительно приспособлен для определения того, соответствует ли вход от упомянутого бортового измерителя натяжения конфигурации гироплана. Пропеллер с лопастями генерируют полезную энергию через трос; контролируется натяжение троса, определяется как слишком низкое, так и слишком высокое значение относительно заданного диапазона натяжения; информация о состояния троса и дополнительное приспособление обеспечивают циклическую намотку или размотку упомянутого троса вблизи его первого конца в заданном систематическом порядке, если указанное выходное состояние указывает слишком низкий или слишком высокий уровень натяжения со ссылкой на указанный заранее определенный диапазон. Преобразователь выполнен с возможностью преобразования энергии вращения от упомянутого ведущего вала. Указанный трос хранится в системе хранения троса, причем система хранения троса содержит: цилиндрический резервуар с открытой верхней поверхностью и закрытой цилиндрической стенкой. Указанный резервуар выполнен с диаметром, немного большим, чем диаметр естественной намотки упомянутого троса, цилиндрическую стенку его покрывают слоем, предназначенным для уменьшения трения и накопления тепла, а указанный слой является тефлоновым покрытием. В прототипе применена техника Autogyro. Она представляет собой форму безмоторного винтокрылого гироплана, обычно имеющего один или несколько вращающихся аэродинамических лопастей. Гиродины приводят в действие пропеллер при подготовке гироплана к взлету, а затем он летает с вращающимся пропеллером (вращающимися крыльями).
Прототип-Электрогенерирующий гироплан хотя имеет ряд достоинств по сравнению с аналогом, но и общие с ним недостатки.
1. Передача энергии от взмывающего вверх гироплана с оптимальным углом атаки лопастей (рабочий этап) передается с троса на разматывающую катушку, вал которой связан через муфту с валом электрической машины (на этом этапе работающей в генераторном режиме). При резких порывах ветра, его резком изменении направления из-за парусного эффекта самого троса вероятны аварийные ситуации и снижение эффективности передачи энергии на землю (искажается контроль натяжения каната).
2. В связи с периодическим возвратом гироплана на нижний уровень траектории (подготовительный этап) и процессом намотки троса на катушку с переходом электрической машины в двигательный режим, снижается эффективность работы всего комплекса - Электрогенерирующий гироплан - работающего в циклическом режиме, как и аналог. Это усложняет передачу энергии в потребительскую сеть.
Цель изобретения - разработка эффективной летающей ветроэнергетической установки(ЛВУ), например, по Фиг. 1 (В- вектор ветра, FП - подъемная сила пропеллера, FС - стабилизационная сила, развиваемая пропеллером, 1-кабель связи (КС), 2-основной вал, 3-крепеж ЛВУ, 4-опорный стакан, 5-опорный подшипник, 6-аэродинамическое крыло-летающая тарелка-(ЛТ), 7-ось крыла, 8-крыло, 9-закрылок, 10-кабельное кольцо, 11-коммутационная муфта, 12-нижний опорный диск, 13-вспомогательная скоба, 14-ускоряюший редуктор,15-электрическая машина(ЭМ), 16-флюгер, 17-шарнир валов, 18-подшипник на валу-23 пропеллера гироплана - 22, 21-узел управления положением крыльев получающим команды из узла стабилизации (УС), 19-винт, жестко закрепленный к обойме подшипника-18, 20-мотор -гайка с УС для ЛВУ. В качестве варианта ветроустановки с вертикальным валом для ЛВУ рассмотрим, например, устройство, описанное в Способе преобразования кинетической энергии потока во вращательном движении крыла и установке для осуществления этого способа (Патент RU №2589569. Опубликовано: 10.07.2016 г. Бюлл. №19) по Фиг. 3 патента без элементов конструкции, обеспечивающих поддержание вертикального положения ветроустановки.
Специальная конструкция отдельного крыла и закрылка показана по разрезу Б-Б на Фиг. 5 патента. При движении каждого крыла по круговой орбите его угол атаки α относительно результирующего вектора ветра задается закрылком, узел управления которого через вал закрылка вращает закрылок, обеспечивая оптимальное значение угла α атаки крыла при его движении по круговой орбите.
Например, при применении этой ветроустановке (как варианта) в ЛВУ необходимо дополнительно изыскать конструктивные средства для формирования подъемной силы, удерживающей ЛВУ на заданной высоте. Предлагается верхнему опорному диску- 6 придать форму крыла с изменяемым углом атаки относительно вектора ветра по Фиг. 2. При наклоне вертикального вала-2 под воздействием мотор-гайки УС-20 и пропеллера-22 по Фиг-2 а), 2б) и шарнира-17 по Фиг. 3 для вала-2 с валом пропеллера-23 в диапазоне от +10 до -6 градусов организуется угол атаки α ЛТ ЛВУ относительно вектора ветра В при изменениях скорости ветра в рабочем диапазоне 10-30 м /сек.
1. Рабочий режим. Способ преобразования кинетической энергии ветра на летающей ветроэнергетической установке, заключается в том, что в состав летающей ветроэнергетической установки включен пропеллер-22 с множеством лопастей и возможностью их вращения, этот пропеллер обеспечивает подъем летающей ветроэнергетической установки и имеет устройство разворота лопастей на угол атаки α относительно направления ветра. В рабочем режиме летающая ветроэнергетическая установка представляет собой ветроустановку с вертикальным валом-2 типа Дарье. При подлете к рабочей точке, пространственные координаты которой задают предварительно в узел стабилизации УС-20 с контроллером. За счет энергии ветра через вращающийся вертикальный вал, включенную коммутационную муфту-11 и и ускоряющий редуктор-14 вращает нижний конец вала электрической машины-15, работающей в генераторном режиме и передающей электроэнергию через кабель связи-1, регулятор тока заряда разряда(РТЗР)-27, на аккумулятор стартового стола-28 (см. Фиг. 4, вид сверху, где 24-катушка с КС, 25- муфта, 26- реверсивный электродвигатель перемотки катушки, 27-РТЗР, 28- емкий аккумулятор, 29-инвертор, 30-опорные полки для крыла-6, 31- несущие конструкции стартового стола, П.С. - промышленная сеть). Второй конец вала электрической машины подключен к валу 23 пропеллера-22 через шарнирное соединение валов- 17, причем угловое положение валов в плоскости, параллельной ветру, обеспечивается с помощью флюгера-16, узла стабилизации с контроллером, гироскопа, датчиков скорости и направления ветра, датчиков тока и оборотов электрической машины, датчиков тока и оборотов электрической машины, причем в состав узла стабилизации с контроллером входит мотор-гайка-20 и винт-19, соединяющий мотор-гайку с подшипником -18 на валу пропеллера. Верхняя часть ветроустановки имеет опорный диск в форме крыла-6 с изменяемым углом атаки относительно направления ветра, жестко связанный с вертикальным валом. При этом узел стабилизации с контроллером обеспечивает стационарное положение рабочей точки летающей ветроэнергетической установки в рабочем режиме при минимальном расстоянии до стартового стола и положение вертикального вала с углом атаки крыла, осуществляет выбор оборотов вертикального вала и электрической машины, управляет регулятором тока заряда, разряда, т.е. током нагрузки электрической машины в генераторном режим.
2. Установочный режим. В установочном режиме вертикальный подъем и возвращение на стартовый стол -31 летающей ветроэнергетической установки осуществляют пропеллером-22, причем вертикальное положение КС-1 при подъеме и спуске обеспечивают флюгером-16 и узлом стабилизации с контроллером -20, который задает положение плоскости, параллельно ветру, для пропеллера в пространстве с учетом координат рабочей точки, выставляет положение крыльев пропеллера-22 на угол атаки α и задает скорость его оборотов от ЭМ-15 в режиме двигателя, получающей электроэнергию от аккумулятора-28 на стартовом столе через РТЗР-27 и КС-1, причем в установочном режиме вертикальный вал -2 ЛВУ отключен от М с помощью коммутационной муфты-11, а ее крыльям задают режиме флюгерования (в этом режиме вращающий момент на валу -2 равен нулю).
3. На стартовом столе по Фиг. 4. имеется кабельная катушка- 24 для смотки размотки КС-1 для летающей ветроэнергетической установки. Вал катушки связан со вспомогательным реверсивным электродвигателем -26, которым управляет регулятор натяжения (РН) кабеля связи, получающий информацию от узла стабилизации с контроллером, датчиков вспомогательного реверсивного двигателя (зарядного тока РТЗР ЭМ -15, ее оборотов в режиме генератора) и минимизирует натяжение кабеля связи-1 в зоне выхода его из катушки 24. Натяжение КС в зоне выхода его из катушки должно быть близко к нулю за счет регулирования оборотов пропеллера -22 и углового положения его крыльев, а также оборотов реверсивного электродвигателя-26 на валу катушки-24.
Работа ЛВУ. Перед пуском ЛВУ ее опорный диск в форме крыла-6 лежит на опорных полках-30, сама ветроустановка располагается ниже, а выше крыла-6 находится флюгер- 16,муфта-11, редуктор-14.ЭМ-15,УС-20,пропеллер -22 и т.д. По результатам метеосводок выбирается высота, координаты рабочей точки ЛВУ, которые задаются в УС. После этого включается пропеллер, который обеспечивает вертикальный подъем за счет наклонению навстречу ветру В с помощью шарнира -17 в плоскости параллельной ветру на определенный угол, задаваемый УС. Скорость оборотов и угол атаки крыльев пропеллера-22 также задается УС-20. Вращение вала пропеллера при подъеме ЛВУ осуществляется от ЭМ-15, получающей питание через КС-1 и РТЗР-27 от аккумулятора- 28. Натяжение КС, близкое к нулю в зоне кабельной катушки-2 обеспечивает РН. При выходе ЛВУ в заданную рабочую точку включается связь между собственно ветроустановкой и ЭМ (коммутационная муфта -11,ускоряющий редуктор-14), ЭМ-15 переводится из режима двигателя в режим генератора, причем часть механической энергии в рабочем режиме расходуется пропеллером- 22, наклоненным против ветра в плоскости параллельной ветру, и удерживающим КС и ЛВУ примерно в вертикальном положении (См. Фиг. 1), а основная часть энергии ЭМ по КС и РТЗР передает в аккумулятор-28 (см. Фиг. 4, вид сверху, где 24-катушка с КС. 25- муфта, 26- реверсивный электродвигатель перемотки катушки, 27-РТЗР, 28- емкий аккумулятор, 29-инвертор, 30-опорные полки для крыла-6, 31- несущие конструкции стартового стола, П.С. - промышленная сеть). Второй конец ее вала подключен к валу-23 пропеллера-22 через шарнирное соединение валов-17, причем обеспечивают необходимое угловое положение валов в плоскости параллельной ветру с помощью флюгера-16, УС-20 с контроллером, гироскопа, датчиков скорости и направления ветра, датчиков тока и оборотов ЭМ. В состав УС-20 кроме контроллера входит мотор-гайка и винт-19, соединяющий мотор-гайку с подшипником-18 на валу пропеллера-23. Этот же узел обеспечивает стационарное положение рабочей точки ЛВУ в рабочем режиме при минимальном расстоянии до стартового стола и положение центрального вала-2 с задаваемым углом атаки α крыла-6 по Фиг. 2, причем выбор оптимальных оборотов центрального вала-2 и ЭМ-15 осуществляется также УС, управляющим РТЗР-27, т.е током нагрузки ЭМ в генераторном режиме. При штиле или малой скорости ветра с учетом метеосводок принимают решение, удерживать ЛВУ в рабочей точке за счет энергии, получаемой от аккумулятора или опускать ЛВУ на стартовый стол. В этих случаях пропеллер и ЭМ в режиме двигателя получают команды от УС.
Для эффективного внедрения предлагаемого "Способа" необходима ЛВУ значительной мощности(1-5 мгаватт) в связи со сложностью систем управления и их согласования, а также значительных веса, габаритов ЭМ, КС и требований к прочности отдельных деталей(валов, крыльев, закрылков, флюгера и т.п. при силовых ветровых нагрузках). Очевидно, что только при применении новых перспективных материалов, обладающих повышенной прочностью и проводимостью (для КС и ЭМ) при уменьшенном весе возможна реализация предлагаемого "Способа" (Открытие Графена считается настоящим революционным событием, которое позволит многое изменить в нашей жизни. Этот материал обладает настолько уникальными физическими свойствами, что в корне меняет представление человека о природе вещей и веществ.)

Claims (3)

1. Способ преобразования кинетической энергии ветра на летающей ветроэнергетической установке, заключающийся в том, что в состав летающей ветроэнергетической установки включен пропеллер с множеством лопастей и возможностью их вращения, этот пропеллер обеспечивает подъем летающей ветроэнергетической установки и имеет устройство разворота лопастей на угол атаки относительно направления ветра, отличающийся тем, что в рабочем режиме летающая ветроэнергетическая установка, представляющая собой ветроустановку с вертикальным валом типа Дарье, при подлете к рабочей точке, пространственные координаты которой задают предварительно в узел стабилизации с контроллером, за счет энергии ветра через вращающийся вертикальный вал, включенную коммутационную муфту и ускоряющий редуктор вращает нижний конец вала электрической машины, работающей в генераторном режиме и передающей электроэнергию через кабель связи, регулятор тока заряда, разряда на аккумулятор стартового стола, при этом второй конец вала электрической машины подключен к валу пропеллера через шарнирное соединение валов, причем угловое положение валов в плоскости, параллельной ветру, обеспечивается с помощью флюгера, узла стабилизации с контроллером, гироскопа, датчиков скорости и направления ветра, датчиков тока и оборотов электрической машины, причем в состав узла стабилизации с контроллером входит мотор-гайка и винт, соединяющий мотор-гайку с подшипником на валу пропеллера, при этом верхняя часть ветроустановки имеет опорный диск в форме крыла с изменяющимся углом атаки относительно направления ветра, жестко связанный с вертикальным валом, при этом узел стабилизации с контроллером обеспечивает стационарное положение рабочей точки летающей ветроэнергетической установки в рабочем режиме при минимальном расстоянии до стартового стола и положение вертикального вала с углом атаки крыла, осуществляет выбор оборотов вертикального вала и электрической машины, управляет регулятором тока заряда, разряда, т.е. током нагрузки электрической машины в генераторном режиме.
2. Способ по п. 1, отличающийся тем, что в установочном режиме вертикальный подъем и возвращение на стартовый стол летающей ветроэнергетической установки осуществляют пропеллером, причем вертикальное положение кабеля связи при подъеме и спуске обеспечивают флюгером и узлом стабилизации с контроллером, который задает положение плоскости, параллельной ветру, для пропеллера в пространстве с учетом координат рабочей точки, выставляет положение крыльев пропеллера на угол атаки и задает скорость его оборотов от электрической машины в режиме двигателя, получающей электроэнергию от аккумулятора на стартовом столе через регулятор тока заряда разряда и кабель связи, причем в установочном режиме вертикальный вал летающей ветроэнергетической установки отключен от электрической машины с помощью коммутационной муфты, а ее крыльям задают режим флюгерования.
3. Способ по п. 1, отличающийся тем, что на стартовом столе имеется катушка для смотки, размотки кабеля связи со вспомогательным реверсивным электродвигателем, которым управляет регулятор натяжения кабеля связи, получающий информацию от узла стабилизации с контроллером, датчиков вспомогательного реверсивного двигателя, и минимизирует натяжение кабеля связи в зоне выхода его из катушки.
RU2018127364A 2018-07-25 2018-07-25 Способ преобразования кинетической энергии ветра на летающей ветроэнергетической установке RU2697075C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018127364A RU2697075C1 (ru) 2018-07-25 2018-07-25 Способ преобразования кинетической энергии ветра на летающей ветроэнергетической установке

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018127364A RU2697075C1 (ru) 2018-07-25 2018-07-25 Способ преобразования кинетической энергии ветра на летающей ветроэнергетической установке

Publications (1)

Publication Number Publication Date
RU2697075C1 true RU2697075C1 (ru) 2019-08-12

Family

ID=67640272

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018127364A RU2697075C1 (ru) 2018-07-25 2018-07-25 Способ преобразования кинетической энергии ветра на летающей ветроэнергетической установке

Country Status (1)

Country Link
RU (1) RU2697075C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2762471C1 (ru) * 2021-03-05 2021-12-21 Александр Владимирович Губанов Мобильный модуль аэроэнергостата
RU2778761C2 (ru) * 2020-05-25 2022-08-24 Юлий Борисович Соколовский Способ преобразования кинетической энергии ветра на летающей ветроэнергетической установке

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4659940A (en) * 1982-04-27 1987-04-21 Cognitronics Corporation Power generation from high altitude winds
RU2109981C1 (ru) * 1992-03-16 1998-04-27 Юрий Иванович Черкасов Способ преобразования кинетической энергии скоростного напора ветра и ветроустановка
WO1999013221A1 (en) * 1997-09-05 1999-03-18 Theodorus Istvan Van Bakkum Wind turbine carried by tethered wing
WO2009019488A2 (en) * 2007-08-07 2009-02-12 Peter Robert Goodell Changing a position of a structure (5)
US8421257B2 (en) * 2009-03-11 2013-04-16 Dimitri Chernyshov Tethered glider system for power generation
RU2536642C2 (ru) * 2008-07-17 2014-12-27 Бейслоуд Энерджи, Инк. Электрическая генерирующая система и способ её работы
RU2611470C1 (ru) * 2015-08-27 2017-02-22 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский авиационный институт (национальный исследовательский университет) (МАИ) Устройство для предварительной раскрутки ротора беспилотного гироплана
US9759188B2 (en) * 2009-06-03 2017-09-12 Grant Howard Calverley Gyroglider power-generation, control apparatus and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4659940A (en) * 1982-04-27 1987-04-21 Cognitronics Corporation Power generation from high altitude winds
RU2109981C1 (ru) * 1992-03-16 1998-04-27 Юрий Иванович Черкасов Способ преобразования кинетической энергии скоростного напора ветра и ветроустановка
WO1999013221A1 (en) * 1997-09-05 1999-03-18 Theodorus Istvan Van Bakkum Wind turbine carried by tethered wing
WO2009019488A2 (en) * 2007-08-07 2009-02-12 Peter Robert Goodell Changing a position of a structure (5)
RU2536642C2 (ru) * 2008-07-17 2014-12-27 Бейслоуд Энерджи, Инк. Электрическая генерирующая система и способ её работы
US8421257B2 (en) * 2009-03-11 2013-04-16 Dimitri Chernyshov Tethered glider system for power generation
US9759188B2 (en) * 2009-06-03 2017-09-12 Grant Howard Calverley Gyroglider power-generation, control apparatus and method
RU2611470C1 (ru) * 2015-08-27 2017-02-22 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский авиационный институт (национальный исследовательский университет) (МАИ) Устройство для предварительной раскрутки ротора беспилотного гироплана

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2778761C2 (ru) * 2020-05-25 2022-08-24 Юлий Борисович Соколовский Способ преобразования кинетической энергии ветра на летающей ветроэнергетической установке
RU2762471C1 (ru) * 2021-03-05 2021-12-21 Александр Владимирович Губанов Мобильный модуль аэроэнергостата

Similar Documents

Publication Publication Date Title
US7582981B1 (en) Airborne wind turbine electricity generating system
US9759188B2 (en) Gyroglider power-generation, control apparatus and method
US4565929A (en) Wind powered system for generating electricity
US9080550B2 (en) Airborne wind energy conversion system with fast motion transfer
EP2649309B1 (en) Dynamic adjustment of power plant output based on electrical grid characteristics
US20100308174A1 (en) Rotocraft power-generation, control apparatus and method
US20140361540A1 (en) Wind energy devices, systems, and methods
US9404477B2 (en) Proportional moving air power transmission and energy collection and control system
US20100259050A1 (en) Wind turbine electricity generating system
WO2007043895A1 (en) Speed control system for a wind power plant's rotor and an aerodynamic brake
WO2005067373A2 (en) Hovering wind turbine
RU2697075C1 (ru) Способ преобразования кинетической энергии ветра на летающей ветроэнергетической установке
Bhattacharjee Wind power technology
RU2778761C2 (ru) Способ преобразования кинетической энергии ветра на летающей ветроэнергетической установке
WO2013189503A2 (en) High altitude maglev vertical-axis wind turbine system (ham-vawt)
RU2563048C1 (ru) Солнечно-ветряная электростанция высотного базирования
Sokolovsky HIGH-ALTITUDE WIND PLANTS.
RU2642004C2 (ru) Многомодульная высотная ветровая энергетическая установка
WO2003019005A1 (en) A wind turbine and rotor assembly
CN104153944B (zh) 一种大型海上垂直轴风力发电机组
KR101242766B1 (ko) 로터 하중 저감 장치가 설치된 풍력 발전기 및 로터 하중 저감 장치가 설치된 풍력 발전기의 로터 하중 저감 방법
US20230279837A1 (en) Methods for operating wind turbines and feeding auxiliary systems
PHILLIPS DOCTOR TECHNOLOGIAE: ENGINEERING: MECHANICAL
CN110645146A (zh) 风筝式高空风力发电机
CN116292084A (zh) 用于操作风力涡轮和对辅助功率源充电的方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200726