CN102159507A - 用于去除液体中的有机物的方法和体系 - Google Patents

用于去除液体中的有机物的方法和体系 Download PDF

Info

Publication number
CN102159507A
CN102159507A CN200980137216.XA CN200980137216A CN102159507A CN 102159507 A CN102159507 A CN 102159507A CN 200980137216 A CN200980137216 A CN 200980137216A CN 102159507 A CN102159507 A CN 102159507A
Authority
CN
China
Prior art keywords
liquid
microcapsule
film
capsule
described film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200980137216.XA
Other languages
English (en)
Inventor
熊切泉
鲁那·布莱德森
皮奥特尔·瓦尔茨斯基
帕维尔·诺瓦克
杨娟
克里斯汀·西蒙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinvent AS
Original Assignee
Sinvent AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinvent AS filed Critical Sinvent AS
Publication of CN102159507A publication Critical patent/CN102159507A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/145Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing embedded catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0209Impregnation involving a reaction between the support and a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/727Treatment of water, waste water, or sewage by oxidation using pure oxygen or oxygen rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

本发明涉及用于去除液体中的有机物尤其是去除水中的稀的、有毒的有机物的方法,其中液体与结合光催化膜的含有氧化剂的微胶囊接触。本发明还涉及用于去除液体中的有机物的体系。

Description

用于去除液体中的有机物的方法和体系
本发明涉及用于去除液体中尤其是可饮用水中的有机物的有效水处理方法。该方法结合具有用于氧化有机物质的光催化性能或具有以颗粒的形式的光催化剂的陶瓷多孔膜与将在膜表面释放强氧化剂的微胶囊和纳米胶囊。
现今,氯广泛应用在可饮用水的处理中。根据毒理学研究和报道,一些消毒副产物(例如,三卤甲烷(THM)、卤代乙酸(HAA)、亚氯酸盐、氯酸盐、溴酸盐)是可能的人体致癌物。在未受污染的饮用水中的大部分需氯量由天然有机物质(NOM)发出。
去除有机物的处理方法的最优选择取决于存在的有机物的特性和对处理过的水所要求的最终品质。通常,明矾是用于在常规pH条件(6-7)下去除NOM、颜色和混浊的表现最好的无机凝结剂。然而,存在不能通过凝结过程去除并且将需要另外的处理的部分有机物质。处理后残留的NOM影响在配水系统中的消毒剂需求、消毒副产物的形成和生物膜形成。可生物降解的有机物的去除将减少在配水系统中的消毒剂分解和生物膜生长。
去除有机物的处理方法的选择将取决于有机物的特性和所要求的去除的程度。如果对去除NOM以提高水质的要求超过通过单独凝结可达到的水质的要求,则将需要另外的处理。对于用于可饮用目的的水的处理而言,全世界已经开发了许多先进的处理技术。这些一般分成三类:氧化工艺、吸附剂和膜过滤。
氧化工艺:
NOM的UV处理导致其分子量的逐渐减小,有机碳的需求的逐渐减小和最终矿化。来自VUV/BAC工艺的产品水显示在THM、HAA、亚硝酸盐、过氧化氢、溴酸盐、细胞毒性和诱变性方面的低潜在健康风险。
涉及加入铁的聚合物吸附树脂的工艺被特定地设计成从饮用水中去除DOC(Morran等人,1996)。与粉状的活性炭(PAC)和凝结剂处理相结合的该工艺被发现提高被去除的DOC的量(在82%-96%之间),减少需氯量,并显著减少THM。然而,增加了生物再生长,这使采用降低NOM浓度的处理和改变NOM特性之间的关键区别显著。
吸附剂:
当活性炭用于难处理的微量污染物(microcontaminant)(例如,有臭味和异味的化合物、藻毒素或农药)的去除时,NOM显著影响其有效性。吸附点的激烈竞争导致对粉状活性炭(PAC)的更高剂量需求和粒状活性炭(GAC)过滤器的较短的寿命。NOM特性也在竞争效应中起作用,其中分子量范围与目标化合物相近的NOM导致最大的竞争,并且因此导致对吸附的最大的影响。
膜过滤:
微滤膜/超滤膜几乎不去除NOM,因为分子的尺寸通常比膜的孔径小(见表1)。然而,NOM使低压膜结垢并且需要化学脱垢以恢复通量。NOM的组成对结垢速率具有极大的影响:具有高分子量的亲水的中性化合物看起来对结垢速率具有大的影响。
  膜体系  跨膜压力(kPa)   混浊去除(%)  NOM去除(%)   水损失(%)
  微滤   <100   >97   <2   5-10
  超滤   <100   >99   <10   10-15
  纳滤   <500   >99   >90   15-30
表1.应用于NOM去除的膜过滤工艺
凝结剂通常降低膜结垢速率。诸如磁铁矿的颗粒和凝结剂的加入可以通过增加滤饼的孔隙度改进膜性能。NOM的在膜之前的UV降解降低膜的结垢速率。
由于使光催化剂和液体中的反应物之间高效率接触的困难性和为光催化剂提供充足的光的困难性,所以光催化在液体处理中的应用已经被限制。使具有细粉末形式的光催化剂分散在液体中增加光催化剂和液体中的反应物之间的接触。然而,把可能具有从几个纳米到亚微米尺寸的细的光催化剂从液体中分离是困难的。另外,液体中的粉末迅速减少在深度方向的光强度。因此,光催化剂的很大部分会缺少给光量。因为光催化活性取决于光功率,因此分散光催化剂的配置可能不给予光催化材料的最优氧化性能。约10μm至约200μm的尺寸的光催化微球不仅通过膜过滤改进微球的回收,而且还可以相对于粉末形式的光催化剂改进光催化性能(WO2008/076082)。
从方法不需要额外的设施来分离出催化剂的意义上说,优选被固定的催化剂。另外,在处理期间催化剂损失可以被忽略,当在体系中使用昂贵的催化剂时这是非常重要的。此外,光将被均匀地提供到光催化剂,不依赖于光催化剂在液体中的位置。在这样的被固定的催化剂体系中,液体可以流动溢出催化剂(参考US5,779,912)并穿过催化剂层(“Photo-catalytic membrane reactor using porous titanium oxide membranes(使用多孔氧化钛 膜的光催化膜反应器)”,Tsuru,T;Toyosada,T;Yoshioka,T等人,J.ChemEng.Japan,卷36(9),页1063-1069(2003))。通过使用膜可以把额外的气体加入反应区域(photo-WaterCatox(光-水双三氯酚),WO 02/074701)。
当液体采用相对于催化层的平行流供给到催化剂上时,优选在催化层上的湍流和窄的液体层厚度以促进液体中的反应物和光催化剂之间的接触和维持尽可能强的光功率以及增加催化剂/反应物比。相反,如果液体穿过催化层,那么反应物将通过扩散以及还通过流动被输送到催化剂。这种配置对于输送来说是有益的。然而,这同样会导致问题:在催化层中渗透路径具有纳米级的尺寸并且路径在一定操作时间后可能被液体中的颗粒或分子堵塞。堵塞导致液体侧的压力增加和穿过层的通量的减少。另外,需要更高的压力,例如5巴-100巴,以获得足以穿过催化层的通量,因为渗透被催化剂层和多孔支持层二者的阻力减少。
在许多情况下,光催化剂(例如TiO2)的胶囊化(encapsulation)可以增强光学/光催化性能。光催化剂还可以被例如多孔二氧化硅层包覆以防止与光催化剂紧密接触的基层材料的劣化(JP 09225321A1)。
然而,本发明的发明人已经发现氧化剂的胶囊化(例如在TiO2胶囊中的H2O2)可以进一步增强光催化性能。氧化剂的控制释放可以显著改进光催化剂的效率。将氧化剂胶囊化于光胶囊的内部的优点可以如下列出:
1)当在工艺中应用时,简化把氧化剂并入光催化剂中的程序。
2)在氧化剂周围提供阻挡层,并从而通过以受控制的方式释放氧化剂而提高氧化剂的寿命。
3)通过以受控制的方式释放氧化剂,提高光催化剂的效率和持久性。
4)通过把被还原的物质(如果有的话)固定到光催化剂膜,减少堵塞。
本发明提供了一种用于通过使液体与结合光催化膜3的含有氧化剂的微胶囊2接触来去除液体中的有机物尤其是水中的稀的、有毒的有机物的方法。
本发明还提供了一种用于去除液体中的有机物尤其是去除水中的稀的、有毒的有机物的体系,该体系包括与含有氧化剂的微胶囊2结合的光催化膜3。
微胶囊可以由多孔材料例如中孔材料或微孔材料制成或可以由密致材料制成。
另外,微胶囊可以由光催化材料例如TiO2制成。JP 2003096399描述了TiO2的光催化微胶囊的用途。在JP 2006247621中报道了基于光催化剂包覆的具有核壳结构的微粒的、用于水处理的光催化剂载体。
微胶囊还可以由诸如金属氧化物的无机材料或有机与无机杂化复合材料或有机材料制成。
微胶囊可以被分散或固定在具有比具有纳米至微米尺寸的孔和mm厚度的多孔载体小得多的输送阻力的筛网过滤器上。筛网过滤器可以是疏水性的或亲水性的并对液体中的反应物具有亲合力。
在液体中的胶囊提高反应物到催化表面的整体输送。另外,反应器中的压力降与其中流是穿过膜的情况相比较小,并且高压力不是必须的,这提供更简单的和成本更低的单元设计。此外,光源和固定了胶囊的网的结合给予在胶囊的表面存在的光催化剂较好的给光量。
图1示出了催化膜过滤器的一种可能的配置。光催化剂12被固定(immobilise)/固定(fix)在筛网/过滤器13上,筛网/过滤器13具有在1μm至1cm的范围的孔径和在几个μm至1cm的范围的厚度。借助于纤维、灯泡或其他方法14可以引入光。可以组合几个光催化筛网/过滤器13、15和光源14,如图1的图示所示。在本配置中,液体从一侧16被引入,穿过被组合的结构并且从单元17出来。
本配置的优点是:较低的输送阻力,反应物到催化表面的较好的质量输送,被固定的催化剂,从光源到催化剂的短距离,氧化剂从胶囊中的供给。
图2示出了光催化微胶囊或纳米胶囊的三个典型的结构。左:中空光催化剂(18)。颗粒由可以是密致的或多孔的光催化层(壳)组成。胶囊是中空的。中:胶囊(18)的核(19)被独立地具有氧化性质或通过光催化生成氧化剂的液体、固体或气体填充。胶囊还可以由还原剂或其他化学品填充。右:壳的中央空隙具有气体、液体和/或固体的两种或多种混合物。
图3图示了本发明的一个实施方式。胶囊2被固定在多孔膜3上。多孔膜可以由诸如氧化铝、二氧化钛、二氧化硅的氧化物、由诸如不锈钢的金属、由诸如碳、黏土的吸附剂或由其他材料制成。孔径可以是例如从1nm至100μm。含有待处理的分子1的液体从膜3的一侧被供入。供液线4比渗透线6具有一些超压。反应在催化胶囊2上使用光5发生。多孔膜3不仅充当胶囊2的载体而且还充当筛:较大的分子将不穿过膜。
图4图示了本发明的另一个实施方式。胶囊2被固定在多孔膜3上和筛网过滤器9上。筛网过滤器具有大的孔径,例如10μm-10000μm,以减少水渗透的阻力。含有待处理的分子1的液体在膜7的一侧被供给,从膜上流过并从膜单元10出来。反应在被固定在膜3和/或过滤器9上的胶囊2上或其附近发生。气体(例如氧气、臭氧、空气、富氧空气、氢气、甲烷、氯气)或液体(例如过氧化氢)可以从膜8的另一侧被供给。该另外的气体或液体增强氧化反应。
图5图示了本发明的另一个实施方式。胶囊2被固定在多孔膜3上。另外,如图4所描述的筛网过滤器可以被应用。含有待处理的分子1的液体在膜7的一侧被供给,从膜上流过并从膜单元10出来。电场11被施加以增加分子1向多孔膜表面3和向如图4所描述的有胶囊存在的筛网过滤器的扩散。膜需要具有导电性并且可以由金属制成或被金属包覆。反应在被固定在膜3和/或过滤器9上的胶囊2上或其附近发生。光5被施加。气体(例如氧气、臭氧、空气、富氧空气、氢气、甲烷、氯气)或液体(例如过氧化氢)可以从膜8的另一侧被供给。该另外的气体或液体通过例如加强氧化、氢化或其他反应来增强反应。
图6示出了具有与没有光催化剂的正常膜(normal membrane)结合的含有胶囊的筛网过滤器9的体系。含有有机物的液体被从7供给并且流过筛网过滤器,并从10流出,有机物被在筛网9上的光催化剂氧化。反应使用光5发生。底部的“正常膜”3可以是多孔的或密致的。在多孔膜的情况下,可以加入穿过正常膜的另外的氧化剂,如在其他部分描述的。
实施例
实施例1)
KMnO 4 氧化剂在石蜡中的胶囊化:
高锰酸钾KMnO4(Carus Chemical Company)和石蜡分别用作氧化剂和胶囊材料。把氧化剂的粉末逐份加到伴有连续的搅拌和加热的熔化的蜡中,以形成含有45%的氧化剂的均相混合物。在搅拌混合物一段时间后,把具有分散的氧化剂的熔化的蜡缓慢地逐滴加到水中。当熔化的蜡滴与水取得接触时,蜡立即固化。
将所形成的胶囊称重并倾倒到预定体积的水中。
图7示出了KMnO4从所形成的胶囊释放的一个实例。
用机械搅拌器搅拌0.17g胶囊分散在0.2L水中的悬浮液,并且以预定的时间间隔测量KMnO4的浓度。
KMnO4在室温下具有6.4g/100ml水的溶解度。因此,如果KMnO4作为粉末被分散,那么它将立即溶解。相反,当加入胶囊时,KMnO4的浓度随时间缓慢地而连续地增加。结果清楚地表明胶囊化可以控制KMnO4的溶解。
实施例2)
Na 2 S 2 O 8 在石蜡中的胶囊化:
过硫酸钠Na2S2O8(Sigma-Aldrich)和石蜡分别用作氧化剂和胶囊材料。把氧化剂的粉末逐份加入伴有连续的搅拌和加热的熔化的蜡中,以形成含有37%的氧化剂的均相混合物。在搅拌混合物一段时间后,把具有分散的氧化剂的熔化的蜡缓慢地逐滴加到水中。当熔化的蜡滴与水取得接触时,蜡立即固化。
图8示出了Na2S2O8从所形成的胶囊释放的一个实例。
用机械搅拌器搅拌0.13g胶囊分散在0.1L水中的悬浮液,并且以预定的时间间隔测量Na2S2O8的浓度。
Na2S2O8在室温下具有55.6g/100ml的溶解度。因此,如果Na2S2O8作为粉末被分散,那么它将立即溶解。相反,当加入胶囊时,Na2S2O8的浓度随时间缓慢地而连续地增加。结果清楚地表明胶囊化可以控制Na2S2O8的溶解。
实施例3)
氧化剂在有机树脂中的胶囊化:
高锰酸钾KMnO4(Carus Chemical Company)或过硫酸钠Na2S2O8(Sigma-Aldrich)用作氧化剂。Sylgard树脂(Aldrich)分别用作胶囊材料。把Sylgard树脂与Sylgard固化剂和粉状氧化剂混合,然后剧烈混合,以获得均一的混合物。把所获得的氧化剂与树脂的混合物倾倒在特定的基体上。基体由不锈钢箔制成。在平的箔中,制造许多半球形式的凹槽(直径几个毫米)。
在把氧化剂与树脂的混合物倾倒在基体上后,把过量的混合物擦掉,仅留下被容纳在凹槽中的混合物。把基体在室温下放置24小时。取出胶囊并使用。在两种氧化剂的情况下,氧化剂在混合物中的浓度都是45%。
图9示出了KMnO4从所形成的胶囊释放的一个实例
用机械搅拌器搅拌0.15g胶囊分散在3L水中的悬浮液,并且以预定的时间间隔测量KMnO4的浓度。
与实施例2和实施例3相似,当加入胶囊时,KMnO4的浓度随时间缓慢地而连续地增加。结果清楚地表明胶囊化可以控制KMnO4的溶解。
实施例4)
氧化剂在无机壳中的胶囊化:
高锰酸钾KMnO4(Carus Chemical Company)或过硫酸钠Na2S2O8(Sigma-Aldrich)用作氧化剂。由多孔二氧化硅壳组成并具有2μm-5μm的尺寸的中空颗粒(Washin Chemical,日本)的内部空隙用氧化剂填充,如下所示。
过硫酸根和高锰酸根阴离子是负的,因此为了促进氧化剂在二氧化硅胶囊中的吸附,首先在浓度2000ppm的PEI(聚乙烯亚胺,分子量70000,Polyscience)的水溶液中在连续的搅拌下处理二氧化硅粉末1小时。将胶囊通过离心分离,用水洗涤并在室温下干燥。把干燥过的二氧化硅倾倒到钠氧化剂的饱和溶液中,保持24小时。最终,将含有氧化剂的二氧化硅粉末洗涤并干燥。
图10示出了KMnO4从所形成的胶囊释放的一个实例
用机械搅拌器搅拌0.5g胶囊分散在0.08L水中的悬浮液,并且以预定的时间间隔测量KMnO4的浓度。
KMnO4的溶解比在实施例1至实施例3中的溶解快。这是因为在这种情况下胶囊的壳是多孔的,而在实施例1至实施例3中壳是密致的。KMnO4的溶解被限制,表明通过壳材料的孔结构控制释放的可能性。
实施例1至实施例4的结果的比较还表明,通过改变胶囊材料的类型和胶囊中的氧化剂的量可以有效控制氧化剂释放的速率。
实施例5)
光催化胶囊制备
由多孔二氧化硅壳组成的中空颗粒从日本的Washin Chemical购买。作为光催化剂的实例,TiO2通过两种方法被沉积在表面上。在第一种方法中,把商业TiO2粉末(P25,Evonic,之前的Degussa)和中空颗粒分散在水中或乙醇中。将溶液的pH控制至2<pH<5,使得二氧化硅和TiO2具有相反的表面电荷。在第二种方法中,把中空二氧化硅颗粒分散到2%异丙氧基钛和98%乙醇的混合物溶液中。在这两种情况中,把分散液搅拌1小时,并然后将颗粒从溶液移出,洗涤,干燥并在250℃-600℃煅烧一小时。
通过这两种方法,TiO2被沉积在中空颗粒上。图11示出了被改性的中空颗粒和通过混合商业中空颗粒和TiO2粉末制备的表面的EDX分析的结果。球形颗粒的形状通过改性没有改变。EDS分析显示硅和钛在颗粒表面存在,这表明TiO2被沉积在中空颗粒上。
实施例6)
氧化剂和光催化剂的结合
把腐殖酸钠盐(HANa)以50mg/l的浓度溶解在水中。使氧化剂和光催化剂与HANa溶液混合并且使混合物溶液暴露于可见光(VIS)或UV光一小时。Na2S2O8用作氧化剂并且TiO2(Degussa,P25)用作光催化剂。卤素灯和氙灯分别用作VIS和UV源。用UV-VIS光谱法测量施加光之前和之后HANa的浓度。使用在254nm处的吸光度跟踪HANa浓度。
表1汇总了结果。当在溶液中不存在氧化剂或TiO2时,HANa是稳定的并且不被UV或VIS辐射分解。如表1所示,氧化剂(Na2S2O8)和辐射分解HANa,但是仅分解到有限程度。HANa的浓度在UV光下比在VIS光下减少更多,这可能是由于在UV下形成更强的氧化剂。在辐射下,单独的光催化剂(TiO2)也可以分解HANa。因为使用UV光活化TiO2,因此去除速率也比使用VIS光高。在溶液中仅存在氧化剂或仅存在TiO2时的情况下,在可见光和UV下,HANa在一小时后的分解分别小于3%和20%,这表明通过氧化剂和通过光催化剂氧化HANa的困难性。
相反,当把氧化剂和催化剂二者都加入溶液时,HANa分解速率极大增加。在使溶液暴露于UV光1小时后,多于90%的HANa被去除。氧化剂和光催化剂的结合在VIS光下也分解HANa。在使溶液暴露于VIS光1小时后,多于30%的HANa被去除。
结果清楚地表明混合氧化剂和光催化剂的协同效应。
表1
在所有情况下:50mg/l腐殖酸钠盐,照明的时间1h。注意在TiO2和过硫酸盐之间的强协同效应。辐射强度:UV-48mW/cm2,VIS-88mW/cm2
Figure BPA00001331570600101

Claims (17)

1.一种用于去除液体中的有机物尤其是去除水中的稀的、有毒的有机物的方法,其特征在于:
使所述液体与结合光催化膜(3)的含有氧化剂的微胶囊(2)接触。
2.根据权利要求1所述的方法,其中所述微胶囊(2)被固定在所述膜(3)上,并且所述液体被压力压动穿过所述膜。
3.根据权利要求2所述的方法,其中包括筛网过滤器(9),并且所述液体被压力压动穿过所述筛网过滤器。
4.根据权利要求1所述的方法,其中所述微胶囊(2)被固定在所述膜(3)上和筛网过滤器(9)上,
所述液体沿所述膜流动,
气体从所述膜的另一侧供给,所述膜充当液相和气相之间的接触器。
5.根据权利要求1所述的方法,其中所述微胶囊(2)被固定在所述膜(3)上并且所述膜充当液相和气相之间的接触器,并且电场被施加。
6.根据权利要求1至5中任一项所述的方法,其中所述胶囊的壳由多孔材料制成。
7.根据权利要求1至5中任一项所述的方法,其中所述胶囊的多孔壳由光催化材料制成。
8.根据权利要求7所述的方法,其中所述光催化剂优选选自氧化物、硝酸盐、硫化物、碳化物、金属络合物盐、有机半导体和金属、其混合物以及这些材料与例如N、S、Pt及其他的离子和金属的掺杂物。
9.根据权利要求1至8中任一项所述的方法,其中所述胶囊被O2、空气、富氧空气、臭氧、H2O2、高锰酸钾(KMnO4)、过硫酸钠(Na2S2O8)、碘(I)或任何其他的氧化物质填充。
10.根据权利要求1所述的方法,其中所述胶囊存在于膜孔中或膜表面处。
11.根据权利要求1所述的方法,其中所述胶囊存在于所述液体中。
12.根据权利要求1所述的方法,其中所述胶囊既存在于所述液体中又存在于所述膜上。
13.一种用于去除液体中的有机物尤其是去除水中的稀的、有毒的有机物的体系,其特征在于:
所述体系包括与含有氧化剂的微胶囊(2)结合的光催化膜(3)。
14.根据权利要求13所述的体系,其中所述微胶囊(2)被固定在所述膜(3)上。
15.根据权利要求13所述的体系,其中所述微胶囊(2)被固定在所述膜(3)上和筛网过滤器(9)上。
16.根据权利要求13所述的体系,其中所述微胶囊(2)被固定在筛网过滤器(9)上。
17.根据权利要求13所述的体系,其中所述微胶囊(2)被固定在所述膜(3)上并且所述膜充当液相和气相之间的接触器,并且电场被施加。
CN200980137216.XA 2008-08-18 2009-08-18 用于去除液体中的有机物的方法和体系 Pending CN102159507A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO20083578A NO328918B1 (no) 2008-08-18 2008-08-18 Fremgangsmate og system for fjerning av organisk materiale i vaesker
NO20083578 2008-08-18
PCT/NO2009/000291 WO2010021552A1 (en) 2008-08-18 2009-08-18 Process and system for removal of organics in liquids

Publications (1)

Publication Number Publication Date
CN102159507A true CN102159507A (zh) 2011-08-17

Family

ID=41707321

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980137216.XA Pending CN102159507A (zh) 2008-08-18 2009-08-18 用于去除液体中的有机物的方法和体系

Country Status (7)

Country Link
US (1) US20110210080A1 (zh)
EP (1) EP2326597B1 (zh)
JP (1) JP2012500115A (zh)
CN (1) CN102159507A (zh)
ES (1) ES2531025T3 (zh)
NO (1) NO328918B1 (zh)
WO (1) WO2010021552A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106517405A (zh) * 2016-10-28 2017-03-22 东华大学 一种包覆金属配合物的磁性微胶囊的制备方法
CN107867748A (zh) * 2016-09-28 2018-04-03 南京工业大学 一种有机半导体二苯基蒽唑啉化合物光催化氧化处理亚甲基蓝废水的方法
CN113195120A (zh) * 2018-10-10 2021-07-30 格拉斯波特生物有限公司 有机废物的处理
CN114260001A (zh) * 2021-11-11 2022-04-01 宁夏浦士达环保科技有限公司 一种活性炭复活方法
US11814304B2 (en) * 2018-11-28 2023-11-14 Photoscience Japan Corporation Ultraviolet treatment method and system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130034464A1 (en) * 2011-08-03 2013-02-07 Src, Inc. Active decontamination microcapsule filtration media
US9302227B2 (en) * 2011-09-02 2016-04-05 Membrane Technology And Research, Inc. Membrane separation assembly for fuel gas conditioning
WO2014144718A1 (en) * 2013-03-15 2014-09-18 Carus Corporation Sustained release reactant blends
KR101567388B1 (ko) * 2013-07-02 2015-11-10 한국과학기술연구원 중공코어 및 기공성 쉘층을 가지는 금속산화물 복합체 및 그 제조방법
CN109772454B (zh) * 2019-02-28 2021-07-27 清华大学深圳研究生院 光催化膜及其制备方法和对消毒副产物前体物的降解应用
CN113003652A (zh) * 2021-03-03 2021-06-22 贵州大学 一种高效活化过硫酸盐降解水中有机污染物的方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT389099B (de) * 1987-09-08 1989-10-10 Simmering Graz Pauker Ag Verfahren und vorrichtung zur reinigung einer mit organischen und/oder anorganischen fremdstoffen belasteten fluessigkeit, sowie verwendung einer halbleiterschicht
JPH09225321A (ja) * 1995-04-14 1997-09-02 Sekisui Chem Co Ltd 光触媒体
JP2888185B2 (ja) * 1996-01-24 1999-05-10 日本電気株式会社 紫外線酸化装置
RU2117517C1 (ru) * 1996-07-16 1998-08-20 Институт физиологически активных веществ РАН Способ очистки воды от растворенных органических веществ
US6117337A (en) * 1997-01-31 2000-09-12 Lynntech, Inc. Enhanced photocatalytic oxidation of organics using a porous titanium dioxide membrane
US5779912A (en) 1997-01-31 1998-07-14 Lynntech, Inc. Photocatalytic oxidation of organics using a porous titanium dioxide membrane and an efficient oxidant
US6136186A (en) * 1997-01-31 2000-10-24 Lynntech, Inc. Photocatalytic oxidation of organics using a porous titanium dioxide membrane and an efficient oxidant
JP2000334446A (ja) * 1999-05-27 2000-12-05 Takuma Co Ltd 水処理方法及び水処理装置
NO313994B1 (no) 2001-03-12 2003-01-13 Due Miljoe As Våtoksidasjon ved hjelp av en porös katalytisk kontaktor
JP2003096399A (ja) 2001-09-25 2003-04-03 Washin Chemical Industry Co Ltd 光触媒カプセル含有コーティング組成物及び光触媒カプセル含有塗膜構造体
JP4048273B2 (ja) * 2002-02-27 2008-02-20 独立行政法人産業技術総合研究所 紫外・可視光活性触媒
JP3681365B2 (ja) * 2002-08-06 2005-08-10 エア・ウォーター株式会社 光触媒反応による水浄化方法および装置
US20050035066A1 (en) * 2003-08-13 2005-02-17 Martin Perry L. Combining a solvent-activated reactor and a halogen for enhanced oxidation
ITMI20040058A1 (it) * 2004-01-19 2004-04-19 Maria Letizia Stefanelli Membrane fotocatalitiche
JP4738851B2 (ja) 2005-03-14 2011-08-03 大東化成工業株式会社 光触媒担持体の製造方法
JP2007039268A (ja) * 2005-08-02 2007-02-15 Casio Comput Co Ltd 改質方法及び燃料供給装置
EP1971426A1 (de) * 2006-01-11 2008-09-24 P & W Invest Vermögensverwaltungsgesellschaft mbH Hüllenmembran zur abgabe eines eingeschlossenen wirkstoffs, ein verfahren zur herstellung sowie deren verwendung
MX337857B (es) * 2006-05-15 2016-03-16 Univ Virginia Commonwealth Metodos y composiciones para la produccion y transporte controlados y sostenidos de peroxidos.
US20100133182A1 (en) 2006-12-20 2010-06-03 Nanyang Technological University Microspheric tio2 photocatalyst

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107867748A (zh) * 2016-09-28 2018-04-03 南京工业大学 一种有机半导体二苯基蒽唑啉化合物光催化氧化处理亚甲基蓝废水的方法
CN107867748B (zh) * 2016-09-28 2020-11-17 南京工业大学 一种有机半导体二苯基蒽唑啉化合物光催化氧化处理亚甲基蓝废水方法
CN106517405A (zh) * 2016-10-28 2017-03-22 东华大学 一种包覆金属配合物的磁性微胶囊的制备方法
CN113195120A (zh) * 2018-10-10 2021-07-30 格拉斯波特生物有限公司 有机废物的处理
US11814304B2 (en) * 2018-11-28 2023-11-14 Photoscience Japan Corporation Ultraviolet treatment method and system
CN114260001A (zh) * 2021-11-11 2022-04-01 宁夏浦士达环保科技有限公司 一种活性炭复活方法
CN114260001B (zh) * 2021-11-11 2024-05-24 宁夏浦士达环保科技有限公司 一种活性炭复活方法

Also Published As

Publication number Publication date
WO2010021552A1 (en) 2010-02-25
NO328918B1 (no) 2010-06-14
NO20083578L (no) 2010-02-19
US20110210080A1 (en) 2011-09-01
JP2012500115A (ja) 2012-01-05
EP2326597A4 (en) 2013-06-12
ES2531025T3 (es) 2015-03-09
EP2326597B1 (en) 2014-11-19
EP2326597A1 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
CN102159507A (zh) 用于去除液体中的有机物的方法和体系
Bethi et al. Nanomaterials-based advanced oxidation processes for wastewater treatment: a review
Kumari et al. Photo-catalytic membrane reactors for the remediation of persistent organic pollutants–A review
Selvaraj et al. Application and prospects of carbon nanostructured materials in water treatment: A review
Ganiyu et al. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review
Shchukin et al. Photocatalytic processes in spatially confined micro-and nanoreactors
Qu et al. Applications of nanotechnology in water and wastewater treatment
Molinari et al. Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification
Khin et al. A review on nanomaterials for environmental remediation
Mohmood et al. Nanoscale materials and their use in water contaminants removal—a review
Sarasidis et al. A hybrid photocatalysis–ultrafiltration continuous process: The case of polysaccharide degradation
Chauhan et al. Removal of pharmaceutical contaminants in wastewater using nanomaterials: a comprehensive review
Malakootian et al. Preparation and characterization of TiO2 incorporated 13X molecular sieves for photocatalytic removal of acetaminophen from aqueous solutions
Rienzie et al. Nanotechnology applications for the removal of environmental contaminants from pharmaceuticals and personal care products
Naresh Yadav et al. ZnO nanophotocatalysts coupled with ceramic membrane method for treatment of Rhodamine-B dye waste water
Kumar Smart and innovative nanotechnology applications for water purification
Sinha et al. A comprehensive appraisal on status and management of remediation of DBPs by TiO2 based-photocatalysts: Insights of technology, performance and energy efficiency
Khader et al. Current trends for wastewater treatment technologies with typical configurations of photocatalytic membrane reactor hybrid systems: A review
Shmeis Nanotechnology in wastewater treatment
Kallawar et al. Nanomaterial-based photocatalytic membrane for organic pollutants removal
Kumar et al. Advancing pharmaceutical wastewater treatment: A comprehensive review on application of catalytic membrane reactor-based hybrid approaches
Bhanvase et al. Nanomaterials for wastewater treatment: concluding remarks
Fu et al. Nano-ceramic membranes combined with ozonation for water treatment: Fundamentals and engineering applications
Bagal et al. The process for the removal of micropollutants using nanomaterials
Senthil Kumar et al. Nanochemicals and effluent treatment in textile industries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110817