CN102142197A - 基于全方位计算机视觉的智能交通信号灯控制装置 - Google Patents

基于全方位计算机视觉的智能交通信号灯控制装置 Download PDF

Info

Publication number
CN102142197A
CN102142197A CN 201110081674 CN201110081674A CN102142197A CN 102142197 A CN102142197 A CN 102142197A CN 201110081674 CN201110081674 CN 201110081674 CN 201110081674 A CN201110081674 A CN 201110081674A CN 102142197 A CN102142197 A CN 102142197A
Authority
CN
China
Prior art keywords
sampled point
phase place
phase
signal lamp
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201110081674
Other languages
English (en)
Other versions
CN102142197B (zh
Inventor
汤一平
孟炎
奚亮亮
姜军
孙军
宗明理
Original Assignee
汤一平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 汤一平 filed Critical 汤一平
Priority to CN2011100816745A priority Critical patent/CN102142197B/zh
Publication of CN102142197A publication Critical patent/CN102142197A/zh
Application granted granted Critical
Publication of CN102142197B publication Critical patent/CN102142197B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种基于全方位计算机视觉的智能交通信号灯控制装置,包括安装在路口中间上方的用于获取整个路口交通状态全景视频图像的摄像装置、用于根据摄像装置的全景视频数据进行检测路口等候通过车辆的排队长度和出口的拥堵状态、决定信号灯控制策略以及控制信号灯切换动作的微处理器,根据检测各相位入口的车辆排队长度以及出口处的拥堵状态来确定各相位的信号灯控制策略对交通信号灯进行智能控制,使路口有良好的秩序,减少或完全消除可能引起交通事故的冲突点,并使得路口的运行指标最佳。

Description

基于全方位计算机视觉的智能交通信号灯控制装置
技术领域
[0001] 本发明属于全方位视觉传感器技术、数字图像处理技术和嵌入式系统在信号灯控 制方面的应用,尤其是一种基于全方位计算机视觉的智能交通信号灯控制装置在智能交通 方面的应用。
背景技术
[0002] 当今交通问题已经成为全球性的“城市通病”,而交通拥堵是城市“交通病症”的主 要表现。解决城市交通拥堵的“病因”必须从多方面着手,比如为出行者提供实时的动态交 通诱导和静态交通诱导的信息,另外采用优秀的智能化交通信号灯的控制装置也能有效的 缓解交通拥堵现状。
[0003] 目前交通信号灯一般都是根据路口车辆的多少预设固定的红绿灯转换周期,对于 城际主干道路采用绿波带的控制策略来设定信号灯的转换周期。由于道路上的路况千变万 化,这种缺乏实时检测道路路况来控制交通信号灯的方式在某些情况下会极大地降低交通 效率,比如在某一路口的出口处发生拥堵时再开放相对应的入口通行的信号会引起更大面 积的道路拥堵;比如在某一路口的入口处的等候通过路口的车辆排队长度远远超过该路口 的其他入口处的等候通过路口的车辆排队长度情况下仍然采用固定的信号灯转换周期会 使得某一行驶方向道路上的交通发生更大规模的拥堵。总之,这种缺乏实时检测道路路况 来控制交通信号灯的方式显然不适应目前智能交通的基本要求。
[0004] 交通信息采集技术被认为是智能交通中一项重中之重的关键技术,目前常用的交 通信息采集技术有地感线圈、磁敏传感器、超声波传感器、微波、GPS和视觉传感器;由于地 感线圈、磁敏、超声波、微波等交通信息检测传感器需要埋设在道路地下面,安装与维护时 必须破坏原有路面,影响了道路交通,同时我国的道路由于车辆的超载等原因造成的路面 损坏必须时常对埋在道路下面的传感器进行维护;另外这些检测手段只能感知出道路上的 某个点或者某条线上的所经过的车辆,因此只能在传感器的设置地点的通过车辆的速度间 接地推定拥堵状况;因此上述的检测手段存在着安装维护不方便、投资成本高、抗干扰能力 差和感知范围有限等缺陷。视觉传感器则是一种非接触式的交通流检测手段,它模拟人类 视觉原理,融合计算机技术和图像处理技术,通过视频信号来检测交通流,是近年来逐步发 展起来的新型道路交通检测系统。但是目前对道路交通状态的视频检测普遍采用分析跟踪 道路上车辆的检测和统计方法,这种检测方法需要花费很大计算资源,使得一般的嵌入式 系统无法胜任其检测计算工作。另外,目前采用的摄像机由于视觉范围有限,难以获得道路 上较大范围内交通状态视频图像,尤其是在十字路口整个全景视频图像方面。
[0005] 中国发明专利申请号为201010152473. 5公开了基于图像处理的交通信号智能控 制系统及方法,该系统采用4个对道路4个方向拍摄视频图像的CCD图像传感器,根据4个 图像传感器拍摄的道路情况分析车流量大小,然后根据车流量的大小来控制信号灯的转换 时间周期。该专利有多处技术没有公开披露,比如采用何种方法分析车流量,如何将判断某 车道上的车流量大小等等重要细节,一般来说,按照专利文件中的说明通过对图像的二值化处理是不能直接获得车流量信息的;此外这种信号灯控制方法存在着一定缺陷,通过车 流量来直接控制信号灯在某些情况下会失效,比如通过路口所有方向的车流量相等情况下 在某一个车道上等候通过的车辆排队长度远超过其他车道情况;另外,没有检测某一路口 的出口处是否发生拥堵,使得在该情况发生时信号灯的控制部分或者完全失效;问题关键 是没有直接检测路况,即道路的拥堵状态,严格意义上来说,检测车流量于检测道路的拥堵 状态是两个不同的概念。另外,该专利的实施需要在道口上安装4个图像传感器和4个图 像分析处理器,实施成本比较高,同时也会出现4个视觉传感器的图像信息的融合问题。
[0006] 中国发明专利申请号为200610017561. 8公开了一种自适应交通信号灯智能控制 方法及实现该方法的装置,该发明主要通过车辆探测器获取道口有车/无车状态来实现对 信号灯的控制。由于这种车辆探测器只能获得某一条线上的信息,造成了道路状态信息的 不充分,即无法同时探测到路口所有出口和入口的拥堵状态或者车辆排队长度,使得在某 种情况下信号灯的自适应控制失效。
[0007] 中国发明专利申请号为201010023041. 4公开了一种交通信号灯智能控制系统及 其控制方法,该发明通过图像处理方式获得车辆图像的边缘特征,然后根据边缘特征来识 别车辆的排队长度,这种检测方法有一个致命的弱点,边缘信息表征是某一条轮廓线,而用 它来代替整个车道面的检测会造成大量的误检测,比如道路上的裂缝、遗弃物和横穿的自 行车都有可能成为检测的边缘信息;此外,该发明没有提出根据路口的交通状态实施不同 的信号灯控制策略以及对道路出口处的检测和控制信号灯的方法。
[0008] 其他一些中国发明专利,如申请号为200710303841. X的基于地感线圈的防拥堵 交通信号灯控制系统、申请号为200710303843. 9的采用地感线圈检测路口拥堵状态的简 易方法及采用这种方法的交通信号灯控制系统,一般来说,地感线圈只能检测出道路上某 一条线上有无车辆,而对于信号灯的控制希望能得到整个路口的交通状态信息,另外,这种 接触式的感知方式对路面不友好且需要经常维护。
[0009] 实时、准确的交通流信息采集可以使智能交通系统及时获得交通状况信息,对交 通状况进行有效管理,并发出诱导信息,从而自动调节车流,减少车辆在道路顺畅时在红灯 前停留的时间,安排疏导交通、肇事报故等。预测未来的交通量和道路交通状况,为制定交 通规划、道路网规划提供依据。智能交通管理在交通控制、交通管理决策等诸多方面都要实 现由定性分析到定量研究,这种质的飞跃所依据的交通信息就包括了交通流采集的动态信 息。此外,通过对交通数据和交通状况信息的分析,可以广泛开展城市交通的理论研究,进 行各种工程设施、管理设施实施情况的前后对比,判断交通措施的效果等。总之,提高采集 的交通流数据的准确性和实时性,对城市交通管理和城市道路建设都十分重要,对构建以 人为本的、节能的和谐社会有着非常积极的意义。
[0010] 一种优秀的信号灯控制装置设计必须遵循6个原则:1)必须根据路口的交通状态 实施不同的信号灯控制策略,且有优先顺序;幻检测的可靠性高、检测的面要广、能同时实 时检测路口所有车道的入口和出口状态;3)维护和实施方便;4)具有较高的性价比,便于 在嵌入式系统上实现力)能作为城市交通状态的检测点;6)在路口发生异常情况时能直接 将异常信息+时间信息+空间位置信息并同现场的图像信息通过通信网络发送给交通管理 部门,以便交警及时处理交通事故以及疏导交通。
[0011 ] 对交叉口实行信号控制的基本目标是:用灯色信号合理分配入口车道通行权,指挥交通流的通行或停止,使路口有良好的秩序,减少或完全消除可能引起交通事故的冲突 点,并使得路口的运行指标最好。常用的信号控制效果的评价指标有:延误时间、平均排队 长、平均起停次数、通行能力。交通信号控制的评价函数可以由设计者根据需要进行选择。
[0012] 在设计信号等控制策略时有三个重要参数必须考虑,信号灯周期、绿信比和相位 差;理想情况下一个信号灯周期长应该设置为每一个相位的绿灯时间刚好使该相位各入口 处等待车队放行完毕;交通信号控制的目标就是合理分配各相位的绿灯时间(绿信比),尽 量使各方向停车次数、等待延误时间减至最小;相位差是相邻路口同一相位绿灯(或红灯) 起始时间之差,是对一条干线上的交通流或一个网络内的交通流进行控制的重要参量,绿 波带的控制策略就是基于相位差的控制。
[0013] 一般信号灯的最短周期长度不少于36秒,最长周期长度一般不超过120秒,不同 交通流情况对周期地要求也必尽相同。当交通需求较大时,需要较长的周期,反之可以设置 较短的周期;用公式计算出保证路口不堵塞的一个最小周期值;
[0014]
Figure CN102142197AD00131
[0015] 式中,C为周期时长,Cl1和d2分别为两个相位的交通到达率,S1和&分别为两个 相位的通行能力,L1和L2为损失时间;
[0016]
(V+V)
若交通流的需求过高
Figure CN102142197AD00132
它者大于1时),堵塞现象将
成为不可避免的,就要根
Figure CN102142197AD00133
绿信比的大小对于商 作用,通过合理分配各相纟 延误时间减至最小;某一
Figure CN102142197AD00134
il选择周期长度。 总等待时间有着举足轻重的 量使各方向停车次数、等待 I:方法如公式(24)
(24)
[0017] 式中,C为周期时长,Cl1为某一相位的交通到达率,S1为某一相位的通行能力,L1为 某一相位的损失时间,λ工为某一相位的绿信比,λ 2为某一相位的相反相位的绿信比;
[0018] 作为信号灯的控制策略大致上可以分为定时信号、定周期变绿信比和变周期变绿 信比等三种控制策略;由于定时信号控制策略实现方法简单、控制器产品价格低廉,目前在 我国很多交叉口的信号灯控制均采用定时信号控制策略;
[0019] 点控方式是指道路交叉口的信号灯各自互相不相关的独立运行的方式。点控方式 适用于相邻路口间距离较远,线控无多大效果或者因各相位交通需求变动显著,其交叉口 的周期长和绿信比的独立控制比线控更有效的情况。目前以及今后很长一段时间内我国的 极大多数交通信号灯的控制需要采用点控方式。作为点控方式有两个最重要的问题而且最 基本的问题是:1)实时准确地检测各相位的车辆排队长度和各相位的出口处状态;幻根据 各相位的车辆排队长度以及出口处的状态确定各相位的信号灯控制策略;信号灯控制策略必须尽可能满足信号控制的基本目标,其中变周期变绿信比控制策略最适合信号灯的点控 方式;
[0020] 实现实施方便的关键是要采用不破坏路面或者不涉及路面施工的一种道路友好 型的、非接触式的、大面积的、实时的路口出入口状态检测手段,同时尽可能利用现有的设 备和投资;实时准确地检测各相位入口的车辆排队长度和各相位出口处的拥堵状态;根据 各相位入口的车辆排队长度以及出口处的拥堵状态确定各相位的信号灯控制策略。
发明内容
[0021] 为了克服已有的交通信号灯控制装置的检测的局限性大、实施投资和维护成本 高、接触性的检测手段对道路和车辆不友好、难以实时检测等候排队通过车辆的排队长度 以及道路出口的拥堵状态,无法根据车辆的排队长度以及道路出口的拥堵状态实时调整信 号灯的控制周期以及绿信比等不足,本发明提供一种具有检测范围广、检测精度高、检测实 时性好、实施成本低、根据路口状态的检测结果实时调整信号灯的控制策略,使路口有良好 的秩序,减少或完全消除可能引起交通事故的冲突点,并使得路口的运行指标最佳的基于 全方位计算机视觉的智能交通信号灯控制装置。
[0022] 本发明解决其技术问题所采用的技术方案是:
[0023] 一种基于全方位计算机视觉的智能交通信号灯控制装置,包括安装在路口中间上 方的用于获取整个路口交通状态全景视频图像的摄像装置、用于根据摄像装置的全景视频 数据进行检测路口等候通过车辆的排队长度和出口的拥堵状态、决定信号灯控制策略以及 控制信号灯切换动作的微处理器,所述的微处理器包括:
[0024] 全景图像获取模块,用于获取初始化信息和路口的全景视频图像,包括系统初始 化单元和图像获取单元;
[0025] 系统初始化单元,用于将数据指标信息、路口相位控制顺序编排、路口相位车辆排 队长度检测区域、路口相位出口处拥堵检测区域、相位各车道和各车道的采样点定制数据 和检测区域采样点空间位置信息读入到动态存储单元中,以备后续处理过程中调用;
[0026] 图像获取单元,用于读取从摄像装置传过来的视频图像信息并将视频图像信息保 存在动态存储单元中;
[0027] 采样点、车道和车道行驶方向定制模块,用于定义道路上的采样点的相位属性、车 道方向变更属性、在车道纵向方向上的空间位置属性和在车道横向方向上的空间位置属 性;
[0028] 车辆排队长度检测模块,用于检测路口某一时刻某一相位i某一车道j的车辆排 队长度;
[0029] 相位出口拥堵状态模块,用于检测相位出口处的拥堵状态,包括存在采样点的检 测单元、移动存在采样点的检测单元和静止存在采样点的检测单元;
[0030] 信号灯控制决策模块,用于根据相关相位的拥堵状态和相关相位的车辆排队长度 确定相关相位的信号灯切换和信号灯时间,具体过程如下:从存储单元中读取各种定制数 据和路口相位控制顺序,背景建模,初设第一个相位控制信号灯时间,判断倒计时定时时间 到否,如果到时就进入检测和控制流程;接着信号灯控制模块输出控制信号灯切换,根据信 号灯时间开始进行倒计时,根据目前相位控制顺序得到下一个相位控制顺序,相位控制顺序是由路口相位控制顺序编排模块来确定的;相位出口拥堵状态模块根据相位控制顺序编 号计算相关相位的拥堵状态,对于每个相位控制顺序都需要进行两个相关相位出口处的拥 堵状态;车辆排队长度检测模块根据相位控制顺序编号计算相关相位相关车道的车辆排队 长度,对于每个相位控制顺序都需要进行相关相位中两个或者两个以上车道上的车辆排队 长度;信号灯控制决策模块根据相关相位的拥堵状态和相关相位的车辆排队长度确定相关 相位的信号灯切换和信号灯时间,然后返回继续下一个相位控制顺序控制;
[0031] 信号灯控制模块,用于根据信号灯控制决策模块的决策结果实现路口信号灯的智 能控制;
[0032] 所述的摄像装置通过所述的视频接口与所述的微处理器连接,将路口交通状态检 测和信号灯控制计算结果通过通信单元发送给信号灯控制单元和交通状态发布单元。
[0033] 在所述的采样点、车道和车道行驶方向定制模块中,定义道路上的采样点的相位 属性、车道方向变更属性、在车道纵向方向上的空间位置属性和在车道横向方向上的空间 位置属性;采样点的命名方式采用四维数组s(i,j,k,l)来表示一个采样点,其中i为相位 属性参数值,j为车道方向变更属性参数值,k为在某车道纵向方向上的空间位置属性参数 值,从摄像机的近处开始以增大顺序方式进行编号,离摄像机距离越远k值越大,将k < Ts 时作为近距离,Ts < k ^ Tm时作为中距离,Tm < k时作为远距离,其中,Ts为排队长度的判 断第一基准线,Tm为排队长度的判断第二基准线;1为在某车道横向方向上的空间位置属性 参数值,数据范围为0〜4 ;对于采样点的相位属性参数值i,规定与上述路口的相位命名方 式相同,即1相位的相位属性参数值i = 1,2相位的相位属性参数值i = 2,3相位的相位 属性参数值i = 3,4相位的相位属性参数值i = 4 ;对于车道方向变更属性参数值j,规定 左转的车道方向变更属性参数值j = 1,离左转的车道最近的直行车道的车道方向变更属 性参数值j = 2,如果还有直行车道的话就按顺序3、4代号编码,规定右转的车道方向变更 属性参数值j = 0,相位出口的车道方向变更属性参数值j = -1 ;在定制好车道后接着定制 检测采样点,相邻采样点之间的空间实际距离为0. 5米,采样点以车道方向自动生成,如果 车道的横向宽度为2. 5米的话,则在每个车道横向方向均勻生成5个采样点,纵向方向上从 视频图像上的道路开始端到末端自动生成若干个采样点,如果从视频图像上的道路开始端 到末端在实际道路空间上的距离为60米,则在车道纵向方向上均勻生成120个采样点,生 成好的每个采样点都用四维数组S(i,j, k,1)来表达,由于视觉的关系在成像图像上的采 样点近处疏、远处密,但是各采样点的实际空间间隔距离都是相同的;定制好的采样点的行 驶方向属性、车道方向变更属性、在车道纵向方向上的空间位置属性和在车道横向方向上 的空间位置属性的等信息保存在存储单元中。
[0034] 在所述的路口相位控制顺序编排模块中,定制路口的相位以及相位的信号灯控制 顺序,原则上以信号灯的东侧方向开始编排,将信号灯的东侧路口命名为1相位、信号灯的 南侧路口命名为2相位、信号灯的西侧路口命名为3相位、信号灯的北侧路口命名为4相 位,对于十字路口信号灯的控制循环顺序采用31-13相位、34-12相位、42-M相位和23-41 相位顺时针方向进行编排,并将开始相位作为31-13相位,即TO-EW相位作为31-13相位、 WN-ES相位作为34-12相位、NS-SN相位作为42-¾相位、SW-NE相位作为23-41相位;相位 切换序列为 31-13 — 34-12 — 42-24 — 23-41 — 31-13…,31-13 — 34-12 — 42-24 — 23-41 为一个信号灯变化周期;对于3叉路口以及5叉路口采用同样命名方式;定制好的路口的相位以及相位的信号灯控制顺序等信息存放在系统的存储单元中,系统初始化以及定制相 位各车道和各车道的采样点时读取路口的相位以及相位的信号灯控制顺序等信息。
[0035] 在所述的车辆排队长度检测模块中,检测路口某一时刻某一相位i某一车道j的 车辆排队长度,包括存在采样点的检测单元、存在采样块的检测单元和车辆排队长度判定 单元;其中相位i是由信号灯控制顺序来确定的,一般有两个相关相位,相位中的车道j是 由信号灯控制顺序的相位车道方向变更属性来确定的;
[0036] 所述的存在采样点的检测单元,用于检测在某一相位i某一车道j上的前景对象 点;所述的存在采样点的检测单元的检测计算流程Μ〜证如下:
[0037] 在的计算步骤中,按照从全景视觉传感器在道路上的位置到各采样点所对应 的道路上实际位置的距离来设定阈值TH1,阈值THl是为了在后面对采样点的二值化处理 时作为判断标准而设置的;
[0038] 在Sb的计算步骤中,将tn时刻所获得的全景图像按采样点所对应的像素加工成 采样点图像,在采样点图像上的采样点所对应的各像素的灰度值是以8位数据表示的;
[0039] 在Sc的计算步骤中,计算基准灰度图像与所述的采样点图像之间的差值,得到两 幅图像的差分图像;
[0040] 在Sd的计算步骤中,进行基准灰度图像的背景建模,用公式(1)来不断更新tn时 刻的基准灰度图像Bn得到tn+Ι时刻的基准灰度图像Bn+1 :
[0041] Bn+1 = Bn+ Φ X (Xn-Bn)
[0042] 式中,Xn为tn时刻的采样图像中的各采样点的灰度值,Bn为tn时刻的基准灰度 图像的各采样点的灰度值,Bn+1为tn+Ι时刻的基准灰度图像的各采样点的灰度值,Φ为一 数值很小的系数;
[0043] 首先计算道路上的各采样点的(Xn-Bn)值,然后在取其值的绝对值|Χη-Βη|,如果该 绝对值IXn-BnI大于规定的阈值ΤΗ2同时该采样点的Bn值与该采样点最近的非存在采样点 的灰度值的绝对值小于规定的阈值ΤΗ3,就判定为有前景对象进入到该采样点上,这时该采 样点的更新就以与该采样点最近的非存在采样点的灰度值作为Βη+1 ;其余采样点的背景建 模均按公式(1)进行更新处理;
[0044] 在%和Sf计算步骤中,用在&步骤中所设定的各阈值TH进行二值化处理,得到 存在采样点二值化图像Fn ;在二值化图像Fn中所有采样点将分为「0」或者「1」两种状态, 「1」的表示该采样点上有前景对象存在,即存在采样点;「0」的表示该采样点上不存在前景 对象,即非存在采样点;
[0045] 对于31-13相位信号灯控制的3相位侧的信号灯控制,其绿灯长度是由1相位和 3相位路口中的车道方向变更属性参数值j > 1的车道的最长等候车辆排队长度状态来确 定的,采用四维数组S(i,j, k,1)来表示一个采样点,因此,只要遍历i = 1、j > 1和i = 3、j > 1的所有采样点,对于仅有一条直行车道的情况,只要遍历1相位的120个采样点和 3相位的120个采样点;
[0046] 所述的存在采样块的检测单元,用于检测在某车道上存在采样点的连续情况,在 存在采样块的检测单元中,采用道路上的一般轿车大小作为匹配检测模版对存在采样点进 行匹配检测并对车辆进行计数,如果一般轿车大小在车辆的横向方向上占有3个采样点、 在车辆的纵向方向上占有5个采样点,那么就以3X5采样点的模版从路口停车线到检测末端对进行匹配检测,匹配开始是设定CarNUm(i) = 0,当匹配到存在采样块时就判定为在该 位置上有车;对于31-13相位信号灯控制的3相位侧的信号灯控制,即从i = 1、j > 1和 k = 0开始进行匹配检测,由于车道横向方向上有5个采样点,即在某一车道同一个横向方 向1的范围是0〜4,从1的范围0〜2开始,然后1〜3,接着2〜4,每个横向方向上进行 三次匹配检测,匹配检测的方法是通过统计计算3X5采样点的模版中有多少存在采样点 的情况进行判断的,如果匹配模版中有50%以上的存在采样点,即在3X5采样点的模版中 有7个以上的存在采样点就判定为该区域为存在采样块;当某一车道同一个横向方向1检 测结束后,如果在上述匹配检测中存在着一个和一个以上的存在块满足匹配检测模版情况 时,CarNum(I) = CarNum(I)+1, k = k+5 ;否则k = k+Ι ;接着继续进行匹配检测直至到某一 车道上的末端位置,得到在1相位直行车道上的排队车辆数CarNum(I);当遍历了 1相位的 存在采样块的匹配检测后,按照上述算法遍历3相位的存在采样块的匹配检测,即从i = 3、 j > i和k = 0开始进行匹配检测,最后得到在3相位直行车道上的排队车辆数CarNum(3);
[0047] 所述的车辆排队长度判定单元,用于根据两个相关相位的出口拥堵状态以及入口 最长排队车辆数来确定该相位的绿灯时间长度;判定规则如下:当两个相关相位中没有一 个相位或者相位的出口以上发生拥堵情况下,取两个相关相位中的最大排队车辆数作为两 个相位的车辆排队长度;当两个相关相位中有一个相位的出口发生拥堵情况下,将该相位 所对应的入口的车辆排队长度设置为0,将另一个相位作为车辆排队长度;当两个相关相 位的出口均发生拥堵情况下,将两个相位所对应的入口的车辆排队长度均设置为0 ;这里 将排队长度小于等于3辆车辆的情况作为短排队长度,以Short表示;将排队长度大于3辆 小于8辆车辆的情况作为中排队长度,以Medium表示;将8辆包括8辆车辆以上的情况作 为长排队长度,以Long表示;因此,对于每个相位信号灯控制的输入状态有4个,其中,0表 示有拥堵、Short表示短排队长度、Medium表示中排队长度、Long表示长排队长度;比如对 于31-13相位信号灯控制,如果1相位和3相位的出口处均无发生拥堵的情况下,在1相位 的排队车辆数CarNum(I) = 5、3相位的排队车辆数CarNumCB) = 9,根据判定规则取最大排 队车辆数为9辆,属于长排队长度,就设定31-13相位信号灯控制的输入状态为Long。
[0048] 在所述的相位出口拥堵状态模块中,检测相位出口处的拥堵状态,包括所述的存 在采样点的检测单元、移动存在采样点的检测单元和静止存在采样点的检测单元,规定某 相位出口处纵向在停车线的延长线与离该延长线的8米处内所包括的区域内静止采样点 的数目与该区域内的总采样点的数目之比大于阈值TH4,就判定为该相位出口发生拥堵; 其中相位i是由信号灯控制顺序来确定的,有两个相关相位;对于1相位和3相位车辆相互 直行的情况,就要检测1相位出口的车道方向变更属性参数值j = "I的车道拥堵状态和3 相位出口的车道方向变更属性参数值j = -1的车道拥堵状态;对于1相位出口处的拥堵检 测,首先从i = Uj = -l、k = 0到i = 1、j = -l、k= 15范围内检测所有采样点是否是 静止采样点,然后再计算静止采样点与存在采样点的比值Ra,如果比值Ra大于阈值TH4就 判定为1相位出口处发生拥堵;对于3相位出口处的拥堵检测,首先从i = 3、j = -l、k = 0到i = 3、j = -1、k = 15范围内检测所有采样点是否是静止采样点,然后再计算静止采 样点与存在采样点的比值Ra,如果比值Ra大于阈值TH4就判定为1相位出口处发生拥堵;
[0049] 对于相位出口处的采样点从有无前景对象的角度来看存在两种状态,存在采样 点,即存在着前景对象的采样点;非存在采样点,即不存在着前景对象的采样点;对于存在采样点,从时间序列的角度来分,分为静止存在采样点和移动存在采样点;相位出口处的拥 堵的检测核心是要检测出静止存在采样点;但是要从图像中直接检测出静止存在采样点存 在着很大困难,从图像序列中检测并计算出移动存在采样点,然后根据存在采样点和移动 存在采样点计算得到静止存在采样点,最后根据静止存在采样点的分布情况得到相位出口 处的拥堵状态;
[0050] 所述的移动存在采样点的检测模块,用于检测在相位出口处的移动对象物的前景 采样点;对同一场景下不同时刻拍摄的图像进行差分能得到两幅图像中的变化部分的像素 点,即得到差分图像,计算方法如公式⑵所示;
[0051] Zln(i) = Xn(i)_Xn_a (i) (2)
[0052] 式中,Xn(i)为tn时刻的i相位出口处的采样图像中的各采样点的灰度值,Xn_a⑴ 为tn_a时刻的i相位出口处的采样图像中的各采样点的灰度值,Zln(i)为差分采样图,这 里称为第一差分采样图,它表示了经历了 α时间后的道路上各采样点变化情况;在第一差 分采样图中包括了采样点的两种状态的变化情况,即从「1」到「0」或者从「0」到「1」的变 化,要确认是否是移动存在采样点,还需要观测、和tn+e时刻的采样图像中的各采样点的 灰度的变化情况,即得到第二差分采样图,计算方法如公式(3)所示;
[0053] Z2n(i) = Xn(i)-Xn+0 (i)
[0054] 式中,Xn(i)为tn时刻的i相位出口处的采样图像中的各采样点的灰度值,Xn+e⑴ 为tn+e时刻的i相位出口处的采样图像中的各采样点的灰度值,Z2n(i)为差分采样图,这 里称为第二差分采样图,它表示了经历了 β时间后的i相位出口处的各采样点变化情况;
[0055] 接着,分别用阈值THl对第一差分采样图Zln(i)和用阈值TH2对第二差分采样图 Z2n(i)进行处理,分别得到第一特征提取采样图Tln(i)和第二特征提取采样图T2n(i);移 动存在采样点必定存在于第一特征提取采样图Tln(i)和第二特征提取采样图T2n(i)之中, 因此对第一特征提取采样图Tln(i)和第二特征提取采样图T2n(i)进行与运算求得图像中 的移动存在采样点,计算公式如(4)所示;
[0056] Yn(i) = Tln(i) Λ (4)
[0057] 式中,Tln(i)为i相位出口处的第一特征提取采样图,为i相位出口处的 第二特征提取采样图,Yn(i)为i相位出口处的包含有移动采样点的二值采样图;
[0058] 所述的静止存在采样点的检测单元,用于检测路口出口静止前景对象的信息特征 点;根据常识,当道路发生拥堵时路口的出口处都挤满了车辆,出口处的这些车辆都处于相 对静止状态,这时处于相对静止状态的车辆将以相对集中的多个静止存在采样点的方式表 现出来;
[0059] i相位出口处的存在采样点二值采样图Fn(i)中包含着i相位出口处的移动存在 采样点的二值采样图Yn(i)和i相位出口处的静止存在采样点的二值采样图,因此通 过公式(¾计算出i相位出口处的静止存在采样点的二值采样图;
[0060] Sn (i) =Fn(i)-Yn(i) (5)
[0061] 式中,Sn(i)为i相位出口处的静止存在采样点二值采样图,Fn(i)为i相位出口 处的存在采样点二值采样图,Yn(i)为i相位出口处的移动采样点二值图;
[0062] 用公式(6)计算静止采样点与存在采样点的比值Ra的百分比;
[0063] Ra(i) = (Sn(i)/Fn(i)) XlOO (6)
Figure CN102142197AD00191
[0064] 式中七⑴为i相位出口处的静止存在采样点的总数,由公式(5)计算结果得到; Fn(i)为i相位出口处的存在采样点的总数,由所述的存在采样点的检测单元计算结果得 到;Ra(i)为i相位出口处的静止存在采样点的总数与存在采样点的总数的百分比;
[0065] 如果Ra(i)彡TH4就判定为i相位出口处发生拥堵,将i相位信号灯控制输入状 态设置成SCSI⑴=-1。
[0066] 所述的信号灯控制决策模块中,根据相关相位的拥堵状态和相关相位的车辆排队 长度确定相关相位的信号灯切换和信号灯时间;根据表1所示的检测相位与控制相位的关 系表、所述的车辆排队长度检测模块和所述的相位出口拥堵状态模块检测结果来确定某相 位是否可以切换成绿灯、以及在确定切换成绿灯情况下进一步确定绿灯长度;
[0067]
[0068]
[0069]表 1
[0070] 在所述的车辆排队长度判定单元中,对相关相位的拥堵状态和相关相位的车辆排 队长度信息进行了融合,直接得到了每个相位信号灯控制的输入状态,用scsi(i) = -1表 示有拥堵、用SCSI (i) =Siort表示短排队长度、用SCSI (i) = Medium表示中排队长度、用 SCSI (i) = Long表示长排队长度;因此用公式(7)来计算某相位信号灯的控制决策输出结 果,[0071]
Figure CN102142197AD00201
[0072] 式中,SCSO(i)为某相位信号灯的控制决策输出结果,O表示没有绿灯相位控制时 间,即保持红灯状态、(¾表示短绿灯相位控制时间,本设置在15秒左右;(^表示中绿灯相位 控制时间,设置在40秒左右;G^表示长绿灯相位控制时间,设置在60秒左右;SCSI (i)为某 相位信号灯的控制决策输入状态,与该相位的拥堵以及排队长度有关。
[0073] 在所述的信号灯控制模块中,根据所述的信号灯控制决策模块的决策结果对路口 信号灯进行智能控制;由于绿灯和红灯正好是反向关系,利用这个关系可以将计算问题得 到简化;如果要考虑黄灯,则在绿灯的倒计时的若干秒前插入黄灯亮时间T,即在绿灯的最 后的几秒用黄灯来替代,一般来说黄灯的设定时间在1〜2秒之间;根据公式(7)每个相位 信号灯控制的输入状态来确定相位绿灯控制时间,相位长绿灯控制时间Gp相位中绿灯控 制时间(V相位短绿灯控制时间& ;对于典型的十字路口的相位短绿灯控制时间&设置在 15秒左右、相位中绿灯控制时间设置在40秒左右、相位长绿灯控制时间G^设置在60秒 左右ο
[0074] 本发明的技术构思为:因此,研制一种新型的基于全方位计算机视觉的智能交通 信号灯控制装置,首先通过全方位视觉传感器获取交叉路口的全景视频图像;然后通过全 方位计算机视觉技术实时准确地检测路口各相位入口的车辆排队长度和各相位出口处的 拥堵状态;最后根据各相位入口的车辆排队长度以及出口处的拥堵状态确定各相位的信号 灯控制策略对交通信号灯进行智能控制,使路口有良好的秩序,减少或完全消除可能引起 交通事故的冲突点,并使得路口的运行指标最佳。
[0075] 本发明的有益效果主要表现在:具有检测范围广、检测精度高、检测实时性好、实 施成本低、根据路口状态的检测结果实时调整信号灯的控制策略,通过网络能够与先进的 交通控制系统等动态智能交通模块衔接,实现更多的智能交通控制与诱导功能。
附图说明
[0076] 图1为基于全方位计算机视觉的智能交通信号灯控制装置的车辆排队检测与控 制信号灯的示意图;
[0077] 图2为基于全方位计算机视觉的智能交通信号灯控制装置的检测道路拥堵状态 的示意图;
[0078] 图3为典型的十字交叉路口信号灯控制的相位循环控制图;
[0079] 图4为基于全方位计算机视觉的智能交通信号灯控制装置的硬件构成框图;
[0080] 图5为采样点分类树结构图;
[0081] 图6为检测某相位出口处拥堵状态的流程图;
[0082] 图7为检测某相位入口处的某车道车辆排队长度的流程图;
[0083] 图8为基于全方位计算机视觉的智能交通信号灯控制装置的检测与控制信号灯 的软件处理框图;
[0084] 图9为一种无死角的全方位视觉传感器的原理图;[0085] 图10为无死角的全方位视觉传感器的成像示意图;
[0086] 图11为摄像部件镜头与广角镜头的位置关系图;
[0087] 图12为全方位视觉传感器的成像原理图。
具体实施方式
[0088] 下面结合附图对本发明作进一步描述。
[0089] 实施例1
[0090] 参照图1〜图12,一种基于全方位计算机视觉的智能交通信号灯控制装置,包括 安装在路口中间上方的用于获取整个路口交通状态全景视频图像的摄像装置、用于根据 摄像装置的全景视频数据进行检测路口等候通过车辆的排队长度和出口的拥堵状态、决 定信号灯控制策略以及控制信号灯切换动作的微处理器,所述的微处理器包括微处理器 系统硬件和微处理器软件,其特征在于:所述的微处理器硬件由CPU、图像存储器、输入单 元、显示单元、存储单元、传送单元、通信单元、视频接口、RAM (Random Access Memory)和 ROM (Read-only Memory)构成,如附图4所示;所述的摄像装置通过所述的视频接口与所述 的微处理器连接,所述的传送单元将路口交通状态检测和信号灯控制计算结果通过所述的 通信单元发送给信号灯控制单元和交通状态发布单元;所述的微处理器软件包括:
[0091] 全景图像获取模块,用于获取初始化信息和路口的全景视频图像,包括系统初始 化单元和图像获取单元;
[0092] 系统初始化单元,用于将数据指标信息、路口相位控制顺序编排、路口相位车辆排 队长度检测区域、路口相位出口处拥堵检测区域、相位各车道和各车道的采样点定制数据 和检测区域采样点空间位置信息读入到动态存储单元中,以备后续处理过程中调用;
[0093] 图像获取单元,用于读取从摄像装置传过来的视频图像信息并将视频图像信息保 存在动态存储单元中;
[0094] 采样点、车道和车道行驶方向定制模块,用于定义道路上的采样点的相位属性、车 道方向变更属性、在车道纵向方向上的空间位置属性和在车道横向方向上的空间位置属 性;采样点的命名方式采用四维数组s(i,j,k,1)来表示一个采样点,其中i为相位属性 参数值,j为车道方向变更属性参数值,k为在某车道纵向方向上的空间位置属性参数值, 从摄像机的近处开始以增大顺序方式进行编号,离摄像机距离越远k值越大本发明中将 k彡Ts时作为近距离,Ts < k ^ Tm时作为中距离,Tm < k时作为远距离,其中,Ts为排队长 度的判断第一基准线,Ί„为排队长度的判断第二基准线;1为在某车道横向方向上的空间位 置属性参数值,数据范围为0〜4 ;对于采样点的相位属性参数值i,规定与上述路口的相位 命名方式相同,即1相位的相位属性参数值i = 1,2相位的相位属性参数值i = 2,3相位 的相位属性参数值i = 3,4相位的相位属性参数值i = 4 ;对于车道方向变更属性参数值 j,规定左转的车道方向变更属性参数值j = 1,离左转的车道最近的直行车道的车道方向 变更属性参数值j = 2,如果还有直行车道的话就按顺序3、4代号编码,规定右转的车道方 向变更属性参数值j = 0,相位出口的车道方向变更属性参数值j = -1 ;在定制好车道后接 着定制检测采样点,相邻采样点之间的空间实际距离为0. 5米,采样点以车道方向自动生 成,如果车道的横向宽度为2. 5米的话,则在每个车道横向方向均勻生成5个采样点,纵向 方向上从视频图像上的道路开始端到末端自动生成若干个采样点,如果从视频图像上的道路开始端到末端在实际道路空间上的距离为60米,则在车道纵向方向上均勻生成120个采 样点,生成好的每个采样点都用四维数组S(i,j,k,1)来表达,由于视觉的关系在成像图像 上的采样点近处疏、远处密,但是各采样点的实际空间间隔距离都是相同的;定制好的采样 点的行驶方向属性、车道方向变更属性、在车道纵向方向上的空间位置属性和在车道横向 方向上的空间位置属性的等信息保存在存储单元中;
[0095] 路口相位控制顺序编排模块,用于定制路口的相位以及相位的信号灯控制顺序, 原则上以信号灯的东侧方向开始编排,将信号灯的东侧路口命名为1相位、信号灯的南侧 路口命名为2相位、信号灯的西侧路口命名为3相位、信号灯的北侧路口命名为4相位, 对于图2所示的十字路口信号灯的控制循环顺序采用31-13相位、34-12相位、42-¾相 位和23-41相位顺时针方向进行编排,并将开始相位作为31-13相位,即TO-EW相位作 为31-13相位、WN-ES相位作为34-12相位、NS-SN相位作为42-¾相位、Sff-NE相位作为 23-41相位,如附图3所示;相位切换序列为31-13 — 34-12 — 42-24 — 23-41 — 31-13..., 31-13 — 34-12 — 42-24 — 23-41为一个信号灯变化周期;对于3叉路口以及5叉路口采 用同样命名方式;定制好的路口的相位以及相位的信号灯控制顺序等信息存放在系统的存 储单元中,系统初始化以及定制相位各车道和各车道的采样点时读取路口的相位以及相位 的信号灯控制顺序等信息;
[0096] 所述的基于全方位计算机视觉的智能交通信号灯控制装置的工作原理是:首先从 存储单元中读取各种定制数据和路口相位控制顺序,背景建模,初设第一个相位控制信号 灯时间,如附图8所示Pl步骤,判断倒计时定时时间到否,如果到时就进入检测和控制流 程;接着信号灯控制模块输出控制信号灯切换,根据信号灯时间开始进行倒计时,根据目前 相位控制顺序得到下一个相位控制顺序,相位控制顺序是由路口相位控制顺序编排模块来 确定的,如附图8所示P2步骤;进一步,相位出口拥堵状态模块根据相位控制顺序编号计算 相关相位的拥堵状态,一般来说对于每个相位控制顺序都需要进行两个相关相位出口处的 拥堵状态,如附图8所示P3步骤;更进一步,车辆排队长度检测模块根据相位控制顺序编号 计算相关相位相关车道的车辆排队长度,一般来说对于每个相位控制顺序都需要进行相关 相位中两个或者两个以上车道上的车辆排队长度,如附图8所示P4步骤;最后,信号灯控制 决策模块根据相关相位的拥堵状态和相关相位的车辆排队长度确定相关相位的信号灯切 换和信号灯时间,然后返回到P2步骤继续下一个相位控制顺序控制;
[0097] 这里为了简单说明信号灯的控制策略,一个典型的十字路口的4个相位如附图3 所示,省去黄灯的解释,当NS-SN相位绿灯时,Sff-NE相位、TO-EW相位和WN-ES相位均为红 灯;当NS-SN相位由绿灯切换为红灯时,SW-NE相位由红灯切换为绿灯,WE-EW相位和WN-ES 相位均保持为红灯;当SW-NE相位由绿灯切换为红灯,WE-EW相位由红灯切换为绿灯,WN-ES 相位和NS-SN相位均保持为红灯;当TO-EW相位由绿灯切换为红灯时,WN-ES相位由红灯切 换为绿灯,NS-SN和SW-NE相位均保持为红灯;接着进入下一个信号灯控制周期;本发明中 采用了根据各相位的排队长度实施变周期的信号灯控制策略,最短的绿灯时间能保证3辆 以下包括3辆轿车通过路口,一般将其设置在15秒左右,用符号表示;对于中等排队长度 的绿灯时间能保证3辆以上8辆以下的轿车通过路口,一般将其设置在45秒左右,用符号
表示;对于较长排队长度的绿灯时间能保证8辆以上轿车通过路口,一般将其设置在60 秒左右,用符号表示;很明显,实施变周期的信号灯控制策略完全依赖于等候车辆排队长度的准确检测;
[0098] 道路的出口处的拥堵会造成整个路口的交通瘫痪,信号灯控制策略中必须将道路 出口的拥堵作为一个输入状态值,一旦发现某个路口的出口发生就必须禁止所有车辆再 进入该出口,如附图2所述,当检测到出口 W。发生拥堵时,就将必须强制将TO-EW相位和 Sff-NE相位的绿灯切换成红灯;道路的出口处的拥堵的判断标准是处于静止状态车辆数目 是否超过了一个规定的值;
[0099] 本发明中采用了变周期的信号灯控制策略;在N-I相位信号灯切换前根据N相位 等候车辆的排队长度决定N相位的绿灯时间,换句话说,可以在N-I相位信号灯保持期间内 完成下一个顺序相位N的等候车辆排队长度的检测以及其行驶出口的拥堵检测;对于本发 明中的1相位和3相位车辆相互直行的情况,只要检测车道方向变更属性参数值j > 1的 车道的等候车辆排队长度状态以及相位出口的车道方向变更属性参数值j = -ι的车道拥 堵状态;本发明用表1来进行归纳,比如对于31-13相位信号灯控制的3相位侧的信号灯控 制,其绿灯长度是由1相位和3相位路口中的车道方向变更属性参数值j > 1的车道的最 长等候车辆排队长度状态来确定的,车道的最长等候车辆排队长度状态是由车辆排队长度 检测模块进行检测完成的,而是否切换成绿灯是由1相位路口的车道方向变更属性参数值 j = -ι的车道的拥堵状态来确定的,车道的拥堵状态是由车道的拥堵状态模块进行检测完 成的;
[0100]
Figure CN102142197AD00241
[0101]表 1
[0102] 所述的车辆排队长度检测模块,用于检测路口某一时刻某一相位i某一车道j的 车辆排队长度,包括存在采样点的检测单元、存在采样块的检测单元和车辆排队长度判定 单元,如附图7所示;
[0103] 所述的存在采样点的检测单元,用于检测在某一相位i某一车道j上的前景对象 点;所述的存在采样点的检测单元的检测计算流程Μ〜证如下:
[0104] 在的计算步骤中,按照从全景视觉传感器在道路上的位置到各采样点所对应 的道路上实际位置的距离来设定阈值TH1,阈值THl是为了在后面对采样点的二值化处理 时作为判断标准而设置的;
[0105] 在Sb的计算步骤中,将tn时刻所获得的全景图像按采样点所对应的像素加工成 采样点图像,在采样点图像上的采样点所对应的各像素的灰度值是以8位数据表示的;
[0106] 在Sc的计算步骤中,计算基准灰度图像与所述的采样点图像之间的差值,得到两 幅图像的差分图像;
[0107] 在Sd的计算步骤中,进行基准灰度图像的背景建模,用公式(1)来不断更新tn时 刻的基准灰度图像Bn得到tn+Ι时刻的基准灰度图像Bn+1 :
[0108] Bn+1 = Bn+ Φ X (Xn-Bn)
[0109] 式中,Xn为tn时刻的采样图像中的各采样点的灰度值,Bn为tn时刻的基准灰度图像的各采样点的灰度值,Bn+1为tn+Ι时刻的基准灰度图像的各采样点的灰度值,Φ为一 数值很小的系数;
[0110] 在计算时,首先计算道路上的各采样点的(Xn-Bn)值,然后在取其值的绝对值 Ixn-BnI,如果该绝对值Ixn-BnI大于规定的阈值ΤΗ2同时该采样点的Bn值与该采样点最近 的非存在采样点的灰度值的绝对值小于规定的阈值ΤΗ3,就判定为有前景对象进入到该采 样点上,这时该采样点的更新就以与该采样点最近的非存在采样点的灰度值作为Βη+1 ;其余 采样点的背景建模均按公式(1)进行更新处理;
[0111] 在%和Sf计算步骤中,用在步骤中所设定的各阈值TH进行二值化处理,得到 存在采样点二值化图像Fn ;在二值化图像Fn中所有采样点将分为「0」或者「1」两种状态, 「1」的表示该采样点上有前景对象存在,即存在采样点;「0」的表示该采样点上不存在前景 对象,即非存在采样点;
[0112] 比如对于31-13相位信号灯控制的3相位侧的信号灯控制,其绿灯长度是由1相 位和3相位路口中的车道方向变更属性参数值j >1的车道的最长等候车辆排队长度状态 来确定的,本发明中采用四维数组S(i,j,k,1)来表示一个采样点,因此,只要遍历i = 1、 j > i和i = 3、j > ι的所有采样点,对于附图2所示的仅有一条直行车道的情况,只要遍 历1相位的120个采样点和3相位的120个采样点,这样的计算量的要求能容易在嵌入式 系统上实现;
[0113] 所述的存在采样块的检测单元,用于检测在某车道上存在采样点的连续情况,在 存在采样块的检测单元中,本发明中采用道路上的一般轿车大小作为匹配检测模版对存在 采样点进行匹配检测并对车辆进行计数,如果一般轿车大小在车辆的横向方向上占有3个 采样点、在车辆的纵向方向上占有5个采样点,那么就以3X5采样点的模版从路口停车线 到检测末端对进行匹配检测,匹配开始是设定CarNUm(i) = 0,当匹配到存在采样块时就判 定为在该位置上有车;对于31-13相位信号灯控制的3相位侧的信号灯控制,即从i = 1、 j > i和k = 0开始进行匹配检测,由于车道横向方向上有5个采样点,即在某一车道同一 个横向方向1的范围是0〜4,从1的范围0〜2开始,然后1〜3,接着2〜4,每个横向方 向上进行三次匹配检测,匹配检测的方法是通过统计计算3X5采样点的模版中有多少存 在采样点的情况进行判断的,如果匹配模版中有50%以上的存在采样点,即在3X5采样点 的模版中有7个以上的存在采样点就判定为该区域为存在采样块;当某一车道同一个横向 方向1检测结束后,如果在上述匹配检测中存在着一个和一个以上的存在块满足匹配检测 模版情况时,CarNum(I) = CarNum(I)+1, k = k+5 ;否则k = k+Ι ;接着继续进行匹配检测直 至到某一车道上的末端位置,得到在1相位直行车道上的排队车辆数CarNum(I);当遍历了 1相位的存在采样块的匹配检测后,按照上述算法遍历3相位的存在采样块的匹配检测,即 从i = 3、j > 1和k = 0开始进行匹配检测,最后得到在3相位直行车道上的排队车辆数 CarNum (3);
[0114] 所述的车辆排队长度判定单元,用于根据两个相关相位的出口拥堵状态以及入口 最长排队车辆数来确定该相位的绿灯时间长度;判定规则如下:当两个相关相位中没有一 个相位或者相位的出口以上发生拥堵情况下,取两个相关相位中的最大排队车辆数作为两 个相位的车辆排队长度;当两个相关相位中有一个相位的出口发生拥堵情况下,将该相位 所对应的入口的车辆排队长度设置为0,将另一个相位作为车辆排队长度;当两个相关相位的出口均发生拥堵情况下,将两个相位所对应的入口的车辆排队长度均设置为0 ;这里 将排队长度小于等于3辆车辆的情况作为短排队长度,以Short表示;将排队长度大于3辆 小于8辆车辆的情况作为中排队长度,以Medium表示;将8辆包括8辆车辆以上的情况作 为长排队长度,以Long表示;因此,对于每个相位信号灯控制的输入状态有4个,其中,0表 示有拥堵、Short表示短排队长度、Medium表示中排队长度、Long表示长排队长度;比如对 于31-13相位信号灯控制,如果1相位和3相位的出口处均无发生拥堵的情况下,在1相位 的排队车辆数CarNum(I) = 5、3相位的排队车辆数CarNumCB) = 9,根据判定规则取最大排 队车辆数为9辆,属于长排队长度,就设定31-13相位信号灯控制的输入状态为Long ;
[0115] 所述的相位出口拥堵状态模块,用于检测相位出口处的拥堵状态,包括所述的存 在采样点的检测单元、移动存在采样点的检测单元和静止存在采样点的检测单元,本发明 中规定某相位出口处纵向在停车线的延长线与离该延长线的8米处内所包括的区域内静 止采样点的数目与该区域内的总采样点的数目之比大于阈值TH4,就判定为该相位出口发 生拥堵;对于本发明中的1相位和3相位车辆相互直行的情况,就要检测1相位出口的车 道方向变更属性参数值j = "I的车道拥堵状态和3相位出口的车道方向变更属性参数值 j = -1的车道拥堵状态;对于1相位出口处的拥堵检测,首先从i = 1、j = -l、k = 0到i = Uj = -Uk= 15范围内检测所有采样点是否是静止采样点,然后再计算静止采样点与 存在采样点的比值Ra,如果比值Ra大于阈值TH4就判定为1相位出口处发生拥堵;对于3 相位出口处的拥堵检测,首先从i = 3、j = -l、k = 0到i = 3、j = -Uk = 15范围内检 测所有采样点是否是静止采样点,然后再计算静止采样点与存在采样点的比值Ra,如果比 值Ra大于阈值TH4就判定为1相位出口处发生拥堵;
[0116] 对于相位出口处的采样点从有无前景对象的角度来看存在两种状态,存在采样 点,即存在着前景对象的采样点;非存在采样点,即不存在着前景对象的采样点;对于存在 采样点,从时间序列的角度来分,可以分为静止存在采样点和移动存在采样点,如附图5所 示;相位出口处的拥堵的检测核心是要检测出静止存在采样点;但是要从图像中直接检测 出静止存在采样点存在着很大困难,本发明中从图像序列中检测并计算出移动存在采样 点,然后根据存在采样点和移动存在采样点计算得到静止存在采样点,最后根据静止存在 采样点的分布情况得到相位出口处的拥堵状态;
[0117] 所述的移动存在采样点的检测模块,用于检测在相位出口处的移动对象物的前景 采样点;对同一场景下不同时刻拍摄的图像进行差分能得到两幅图像中的变化部分的像素 点,即得到差分图像,计算方法如公式⑵所示;
[0118] Zln(i) = Xn(i)-Xn_a (i) (2)
[0119] 式中,Xn⑴为tn时刻的i相位出口处的采样图像中的各采样点的灰度值,Xn_a(i) 为tn_a时刻的i相位出口处的采样图像中的各采样点的灰度值,Zln(i)为差分采样图,这 里称为第一差分采样图,它表示了经历了 α时间后的道路上各采样点变化情况;在第一差 分采样图中包括了采样点的两种状态的变化情况,即从「1」到「0」或者从「0」到「1」的变 化,要确认是否是移动存在采样点,还需要观测、和tn+e时刻的采样图像中的各采样点的 灰度的变化情况,即得到第二差分采样图,计算方法如公式(3)所示;
[0120] Z2n(i) = Xn(i)-Xn+0 (i) (3)
[0121] 式中,Xn⑴为tn时刻的i相位出口处的采样图像中的各采样点的灰度值,Xn+e(i)为tn+e时刻的i相位出口处的采样图像中的各采样点的灰度值,Z2n(i)为差分采样图,这 里称为第二差分采样图,它表示了经历了 β时间后的i相位出口处的各采样点变化情况;
[0122] 接着,分别用阈值THl对第一差分采样图Zln(i)和用阈值TH2对第二差分采样图 Z2n(i)进行处理,分别得到第一特征提取采样图Tln(i)和第二特征提取采样图T2n(i);移 动存在采样点必定存在于第一特征提取采样图Tln(i)和第二特征提取采样图T2n(i)之中, 因此对第一特征提取采样图Tln(i)和第二特征提取采样图T2n(i)进行与运算求得图像中 的移动存在采样点,计算公式如(4)所示;
[0123] Yn(i) = Tln(i) Λ (4)
[0124] 式中,Tln(i)为i相位出口处的第一特征提取采样图,为i相位出口处的 第二特征提取采样图,Yn(i)为i相位出口处的包含有移动采样点的二值采样图;
[0125] 所述的静止存在采样点的检测单元,用于检测路口出口静止前景对象的信息特征 点;根据常识,当道路发生拥堵时路口的出口处都挤满了车辆,出口处的这些车辆都处于相 对静止状态,这时处于相对静止状态的车辆将以相对集中的多个静止存在采样点的方式表 现出来;
[0126] i相位出口处的存在采样点二值采样图Fn(i)中包含着i相位出口处的移动存在 采样点的二值采样图Yn(i)和i相位出口处的静止存在采样点的二值采样图,因此通 过公式(¾计算出i相位出口处的静止存在采样点的二值采样图;
[0127] Sn (i) =Fn(i)-Yn(i) (5)
[0128] 式中,Sn(i)为i相位出口处的静止存在采样点二值采样图,Fn(i)为i相位出口 处的存在采样点二值采样图,Yn(i)为i相位出口处的移动采样点二值图;
[0129] 用公式(6)计算静止采样点与存在采样点的比值Ra的百分比;
[0130] Ra(i) = (Sn(i)/Fn(i)) XlOO (6)
[0131] 式中,¾⑴为i相位出口处的静止存在采样点的总数,由公式(5)计算结果得到; Fn(i)为i相位出口处的存在采样点的总数,由所述的存在采样点的检测单元计算结果得 到;Ra(i)为i相位出口处的静止存在采样点的总数与存在采样点的总数的百分比;
[0132] 如果Ra(i)彡TH4就判定为i相位出口处发生拥堵,将i相位信号灯控制输入状 态设置成SCSI (i) = -1 ;
[0133] 信号灯控制决策模块,用于根据相关相位的拥堵状态和相关相位的车辆排队长度 确定相关相位的信号灯切换和信号灯时间;根据表1所示的检测相位与控制相位的关系 表、所述的车辆排队长度检测模块和所述的相位出口拥堵状态模块检测结果来确定某相位 是否可以切换成绿灯、以及在确定切换成绿灯情况下进一步确定绿灯长度;本发明中,在所 述的车辆排队长度判定单元中对相关相位的拥堵状态和相关相位的车辆排队长度信息进 行了融合,直接得到了每个相位信号灯控制的输入状态,用SCSI (i) = -1表示有拥堵、用 SCSI(i) = Short表示短排队长度、用SCSI (i) = Medium表示中排队长度、用SCSI (i)= Long表示长排队长度;因此用公式(7)来计算某相位信号灯的控制决策输出结果,[0135] 式中,SCSO⑴为某相位信号灯的控制决策输出结果,0表示没有绿灯相位控制时 间,即保持红灯状态、(¾表示短绿灯相位控制时间,一般设置在15秒左右;表示中绿灯相 位控制时间,设置在40秒左右;G^表示长绿灯相位控制时间,设置在60秒左右;SCSI (i)为 某相位信号灯的控制决策输入状态,与该相位的拥堵以及排队长度有关;
[0136] 信号灯控制模块,用于根据所述的信号灯控制决策模块的决策结果实现路口信号 灯的智能控制;由于绿灯和红灯正好是反向关系,利用这个关系可以将计算问题得到简化; 如果要考虑黄灯,则在绿灯的倒计时的若干秒前插入黄灯亮时间T,即在绿灯的最后的几秒 用黄灯来替代,一般来说黄灯的设定时间在1〜2秒之间;根据公式(7)每个相位信号灯控 制的输入状态来确定相位绿灯控制时间,相位长绿灯控制时间Gp相位中绿灯控制时间(iM、 相位短绿灯控制时间(¾ ;对于典型的十字路口的相位短绿灯控制时间(¾设置在15秒左右、 相位中绿灯控制时间设置在40秒左右、相位长绿灯控制时间G^设置在60秒左右;
[0137] 比如对于31-13相位信号灯控制,在所述的相位出口拥堵状态模块的检测结果是 3相位出口处发生拥堵,即SCSI(I) =_1,根据信号灯控制决策模块得到SCSO(I) =-1,即 判定1相位不切换为绿灯,即继续保持红灯状态;在1相位的排队车辆数CarNum⑴=9、3 相位的排队车辆数CarNUm(3) = 3,由于这时1相位不切换为绿灯,因此只考虑3相位的排 队车辆数,根据判定规则取最大排队车辆数为3辆,属于短排队长度,就判断3相位的绿灯 时间初步设定31-13相位信号灯控制的输入状态SCSI (3) = Siort,根据信号灯控制决策模 块得到SCSO(3) = Gs,即将3相位的绿灯时间设置在15秒左右;
[0138] 作为优选的一种方案:所述的摄像装置采用无死角的全方位视觉传感器,用于获 取交叉路口大面积道路状态的全景视频图像数据,安置在交叉路口的中间上方;所述的无 死角的全方位视觉传感器,希望所获得的交叉路口的视频图像在水平方向上不变形,因此 需要进行水平方向平均分辨率设计,以满足交叉路口顶视视频图像不变形要求;所以在全 方位视觉传感器设计上可以归结于折反射镜面曲线的设计,如附图12所示,空间上的一个 光源点P的入射光Vl在主反射镜面(Uf1U1))点上进行反射,反射光V2反射到次反射镜 面(t2,F2(t2))点上再进行反射,反射光V3以角度θ 1进入摄像装置的镜头,在摄像单元上 成像,摄像单元采用高清摄像芯片;
[0139] 根据成像原理,一次入射光线Vl与折反射主轴Z的夹角为Φ,一次反射光线V2与 折反射主轴ζ的夹角为θ 2,过P1A UpF1U1))的切线与t轴的夹角为0,法线与ζ轴的 夹角为ε ; 二次反射光线V3与折反射主轴Z的夹角为Qpap2A (t2,F2(t2))的切线与t 轴的夹角为ο,法线与Z轴的夹角为ε 基于上述关系可以得到公式(8):
[0140]
Figure CN102142197AD00281
[0141]其中
Figure CN102142197AD00282
[0142] 以下用F1表示F1U1), F2表示F2 (t2),式中,F1是一次折反射镜面曲线,F2是二次 折反射镜面曲线;[0143] 利用三角关系并进行简化整理,得到公式(9)、(10):
[0144] F1'2-2«^'-1 = 0 (9)
[0145] F^2 - IPF^ -1 = 0 (10)
[0146] 上式中,
[0147]
Figure CN102142197AD00291
[0149] 解公式(9)、(10)可以得到公式(11)、(12);
Figure CN102142197AD00292
[0152] 式中=F1为F1曲线的微分,F2为F2曲线的微分;
[0153] 所述的成像平面上的点与水平面上的点之间的关系来说具有某种线性关系,与视 点S的距离为C并与Z轴相垂直的水平面L上的任意点P,在成像平面上的有一个对应的像 素点P,如附图12所示,将水平面上的坐标用极坐标表示,这时水平面L上的任意点P (r,z) 可以用以下公式来表示,
[0154]
Figure CN102142197AD00293
[0155] 为了设计水平面上具有平均分辨率全方位视觉传感器,即水平方向不变形的全方 位视觉传感器,在水平面L上的任意点P与Z轴相垂直方向的坐标r和像素点ρ与Z轴的 距离t2/F2(t2)之间要保证具有线性关系。使得以下公式能成立,
[0156]
Figure CN102142197AD00294
[0157] 根据成像原理有以下关系成立,入射角用公式(15)表示,
[0158]
Figure CN102142197AD00295
[0159] 将公式(13)、(15)代入公式(14)并整理,得到在水平方向不变形的条件,用公式 (16)表示,
Figure CN102142197AD00296
[0161] 满足公式(16)的镜面曲线设计符合水平方向平均分辨率要求;
[0162] 更进一步,通过对公式(9)、(10)、(16)利用4阶Runge-Kutta算法求F1和F2的 数字解,这样计算得到的一次折反射镜面和二次折反射镜面曲线能实现水平方向平均分辨 率;
[0163] 进一步,设计透明外罩2,为了使得透明外罩2不会产生内壁的反射干扰光,如图9 所示。具体做法是将透明外罩设计成碗状,即设计成半圆球,这样能避免在透明外罩2发生 反射干扰光,全方位视觉传感器的结构如图9所示;
[0164] 更进一步,在一次折反射镜面的顶部留出一个小孔,摄像单元3通过该小孔能拍 摄到一次折反射镜面后面的图像信息,但是通过该小孔能拍摄到一次折反射镜面后面的图像信息的大部分二次折反射镜面上所折反射的图像,仍然有一些空间图像信息被二次折反 射镜面所遮挡;本发明中将广角镜头配置在二次折反射镜面上,设计广角镜头以及确定广 角镜头的位置是本发明的一个任务。图11是摄像部件镜头与广角镜头的位置关系图。在图 11中将广角镜头配置在一次折反射镜的前方和二次折反射镜面上,摄像部件镜头、广角镜 头、一次折反射镜和二次折反射镜的中心轴配置在同一轴心线上;通过一次折反射镜上的 圆孔在广角镜头与摄像部件镜头之间成像,称为第一成像点,该成像点通过摄像部件镜头 在视点处成像。这里将摄像部件镜头的焦点距离作为Π、广角镜头的焦点距离作为f2、摄 像部件镜头与摄像部件镜头的焦点的距离作为Si、从摄像部件镜头到第一成像点的焦点距 离作为S2、从广角镜头到第一成像点的距离作为S3、从广角镜头到实物点的距离作为S4, 根据镜头的成像公式可以得到以下关系式:
Figure CN102142197AD00301
[0168] 要使公式(19)成立的话,也就是将图11中的从第一折反射镜面后的摄像部件镜 头距离为d的地方配置广角镜头的话,就可以得到图10中图像中部所显示的广角成像图; 但是本发明中是将广角镜头配置在第二折反射镜面上,因此将摄像部件镜头与广角镜头的 之间的距离d作为一个约束条件,只有通过设计广角镜头的焦点距离f2来满足公式(19) 的要求;
[0169] 进一步,对于图11中将摄像部件镜头与广角镜头作为一个组合镜头来考虑的话, 其焦距f可以由下式来表示:
[0170]
Figure CN102142197AD00302
[0171] 另外,将合成镜头的直径作为D,其放大倍数可以由下式来表示:
[0172]
Figure CN102142197AD00303
[0173] 为了将合成镜头的视场与全方位视觉传感器的死角部分相吻合,在设计合成镜头 时需要满足以下公式:
[0174]
Figure CN102142197AD00304
[0175] 式中,θ ^是二次反射光线V3与折反射主轴Z的最大夹角;经过上述设计的全方 位视觉传感器拍摄出来的图像效果图如图11所示,从单个全方位视觉传感器来说消除了 原来全方位视觉传感器的死角部分,并且通过摄像部件镜头与广角镜头的组合方式加上第 一折反射镜面以及第二折反射镜面的设计,能有效地覆盖原来的全方位视觉传感器的死角 部分,附图2中圆内的范围均是全方位视觉的视场范围。

Claims (10)

1. 一种基于全方位计算机视觉的智能交通信号灯控制装置,其特征在于:包括安装在 路口中间上方的用于获取整个路口交通状态全景视频图像的摄像装置、用于根据摄像装置 的全景视频数据进行检测路口等候通过车辆的排队长度和出口的拥堵状态、决定信号灯控 制策略以及控制信号灯切换动作的微处理器,所述的微处理器包括:全景图像获取模块,用于获取初始化信息和路口的全景视频图像,包括系统初始化单 元和图像获取单元;系统初始化单元,用于将数据指标信息、路口相位控制顺序编排、路口相位车辆排队长 度检测区域、路口相位出口处拥堵检测区域、相位各车道和各车道的采样点定制数据和检 测区域采样点空间位置信息读入到动态存储单元中,以备后续处理过程中调用;图像获取单元,用于读取从摄像装置传过来的视频图像信息并将视频图像信息保存在 动态存储单元中;采样点、车道和车道行驶方向定制模块,用于定义道路上的采样点的相位属性、车道方 向变更属性、在车道纵向方向上的空间位置属性和在车道横向方向上的空间位置属性;车辆排队长度检测模块,用于检测路口某一时刻某一相位i某一车道j的车辆排队长度;相位出口拥堵状态模块,用于检测相位出口处的拥堵状态,包括存在采样点的检测单 元、移动存在采样点的检测单元和静止存在采样点的检测单元;信号灯控制决策模块,用于根据相关相位的拥堵状态和相关相位的车辆排队长度确 定相关相位的信号灯切换和信号灯时间,具体过程如下:从存储单元中读取各种定制数据 和路口相位控制顺序,背景建模,初设第一个相位控制信号灯时间,判断倒计时定时时间到 否,如果到时就进入检测和控制流程;接着信号灯控制模块输出控制信号灯切换,根据信号 灯时间开始进行倒计时,根据目前相位控制顺序得到下一个相位控制顺序,相位控制顺序 是由路口相位控制顺序编排模块来确定的;相位出口拥堵状态模块根据相位控制顺序编号 计算相关相位的拥堵状态,对于每个相位控制顺序都需要进行两个相关相位出口处的拥堵 状态;车辆排队长度检测模块根据相位控制顺序编号计算相关相位相关车道的车辆排队长 度,对于每个相位控制顺序都需要进行相关相位中两个或者两个以上车道上的车辆排队长 度;信号灯控制决策模块根据相关相位的拥堵状态和相关相位的车辆排队长度确定相关相 位的信号灯切换和信号灯时间,然后返回继续下一个相位控制顺序控制;信号灯控制模块,用于根据信号灯控制决策模块的决策结果实现路口信号灯的智能控制;所述的摄像装置通过所述的视频接口与所述的微处理器连接,将路口交通状态检测和 信号灯控制计算结果通过通信单元发送给信号灯控制单元和交通状态发布单元。
2.如权利要求1所述的基于全方位计算机视觉的智能交通信号灯控制装置,其特征在 于:在所述的采样点、车道和车道行驶方向定制模块中,定义道路上的采样点的相位属性、 车道方向变更属性、在车道纵向方向上的空间位置属性和在车道横向方向上的空间位置属 性;采样点的命名方式采用四维数组S(i,j,k,l)来表示一个采样点,其中i为相位属性参 数值,j为车道方向变更属性参数值,k为在某车道纵向方向上的空间位置属性参数值,从 摄像机的近处开始以增大顺序方式进行编号,离摄像机距离越远k值越大,将k < Ts时作 为近距离,Ts < k ^ Tm时作为中距离,Tm < k时作为远距离,其中,Ts为排队长度的判断第一基准线,Ί„为排队长度的判断第二基准线;1为在某车道横向方向上的空间位置属性参数 值,数据范围为0〜4 ;对于采样点的相位属性参数值i,规定与上述路口的相位命名方式相 同,即1相位的相位属性参数值i = 1,2相位的相位属性参数值i = 2,3相位的相位属性 参数值i = 3,4相位的相位属性参数值i = 4 ;对于车道方向变更属性参数值j,规定左转 的车道方向变更属性参数值j = 1,离左转的车道最近的直行车道的车道方向变更属性参 数值j = 2,如果还有直行车道的话就按顺序3、4代号编码,规定右转的车道方向变更属性 参数值j = 0,相位出口的车道方向变更属性参数值j = -1 ;在定制好车道后接着定制检测 采样点,相邻采样点之间的空间实际距离为0. 5米,采样点以车道方向自动生成,如果车道 的横向宽度为2. 5米的话,则在每个车道横向方向均勻生成5个采样点,纵向方向上从视频 图像上的道路开始端到末端自动生成若干个采样点,如果从视频图像上的道路开始端到末 端在实际道路空间上的距离为60米,则在车道纵向方向上均勻生成120个采样点,生成好 的每个采样点都用四维数组S(i,j, k,1)来表达,由于视觉的关系在成像图像上的采样点 近处疏、远处密,但是各采样点的实际空间间隔距离都是相同的;定制好的采样点的行驶方 向属性、车道方向变更属性、在车道纵向方向上的空间位置属性和在车道横向方向上的空 间位置属性的等信息保存在存储单元中。
3.如权利要求1或2所述的基于全方位计算机视觉的智能交通信号灯控制装置,其特 征在于:在所述的路口相位控制顺序编排模块中,定制路口的相位以及相位的信号灯控制 顺序,原则上以信号灯的东侧方向开始编排,将信号灯的东侧路口命名为1相位、信号灯的 南侧路口命名为2相位、信号灯的西侧路口命名为3相位、信号灯的北侧路口命名为4相 位,对于十字路口信号灯的控制循环顺序采用31-13相位、34-12相位、42-M相位和23-41 相位顺时针方向进行编排,并将开始相位作为31-13相位,即TO-EW相位作为31-13相位、 WN-ES相位作为34-12相位、NS-SN相位作为42-¾相位、SW-NE相位作为23-41相位;相位 切换序列为 31-13 — 34-12 — 42-24 — 23-41 — 31-13…,31-13 — 34-12 — 42-24 — 23-41 为一个信号灯变化周期;对于3叉路口以及5叉路口采用同样命名方式;定制好的路口的 相位以及相位的信号灯控制顺序等信息存放在系统的存储单元中,系统初始化以及定制相 位各车道和各车道的采样点时读取路口的相位以及相位的信号灯控制顺序等信息。
4.如权利要求1或2所述的基于全方位计算机视觉的智能交通信号灯控制装置,其特 征在于:在所述的车辆排队长度检测模块中,检测路口某一时刻某一相位i某一车道j的车 辆排队长度,包括存在采样点的检测单元、存在采样块的检测单元和车辆排队长度判定单 元;其中相位i是由信号灯控制顺序来确定的,一般有两个相关相位,相位中的车道j是由 信号灯控制顺序的相位车道方向变更属性来确定的;所述的存在采样点的检测单元,用于检测在某一相位i某一车道j上的前景对象点;所 述的存在采样点的检测单元的检测计算流程Μ〜证如下:在Μ的计算步骤中,按照从全景视觉传感器在道路上的位置到各采样点所对应的道 路上实际位置的距离来设定阈值TH1,阈值THl是为了在后面对采样点的二值化处理时作 为判断标准而设置的;在Sb的计算步骤中,将tn时刻所获得的全景图像按采样点所对应的像素加工成采样 点图像,在采样点图像上的采样点所对应的各像素的灰度值是以8位数据表示的;在&的计算步骤中,计算基准灰度图像与所述的采样点图像之间的差值,得到两幅图像的差分图像;在Sd的计算步骤中,进行基准灰度图像的背景建模,用公式(1)来不断更新tn时刻的 基准灰度图像Bn得到tn+Ι时刻的基准灰度图像Bn+1 :Βη+ι = Βη+Φ X (Xn-Bn) (1)式中,XnS tn时刻的采样图像中的各采样点的灰度值,Bn* tn时刻的基准灰度图像 的各采样点的灰度值,Bn+1为tn+Ι时刻的基准灰度图像的各采样点的灰度值,Φ为一数值 很小的系数;首先计算道路上的各采样点的(Xn-Bn)值,然后在取其值的绝对值|Χη-Βη|,如果该绝对 值IXn-BnI大于规定的阈值ΤΗ2同时该采样点的Bn值与该采样点最近的非存在采样点的灰 度值的绝对值小于规定的阈值ΤΗ3,就判定为有前景对象进入到该采样点上,这时该采样点 的更新就以与该采样点最近的非存在采样点的灰度值作为Βη+1 ;其余采样点的背景建模均 按公式(1)进行更新处理;在%和Sf计算步骤中,用在M步骤中所设定的各阈值TH进行二值化处理,得到存在 采样点二值化图像Fn ;在二值化图像Fn中所有采样点将分为「0」或者「1」两种状态,「1」的 表示该采样点上有前景对象存在,即存在采样点;「0」的表示该采样点上不存在前景对象, 即非存在采样点;对于31-13相位信号灯控制的3相位侧的信号灯控制,其绿灯长度是由1相位和3相位 路口中的车道方向变更属性参数值j > 1的车道的最长等候车辆排队长度状态来确定的, 采用四维数组S(i,j,k,l)来表示一个采样点,因此,只要遍历i = l、j > 1和i = 3、j > 1的所有采样点,对于仅有一条直行车道的情况,只要遍历1相位的120个采样点和3相位 的120个采样点;所述的存在采样块的检测单元,用于检测在某车道上存在采样点的连续情况,在存在 采样块的检测单元中,采用道路上的一般轿车大小作为匹配检测模版对存在采样点进行匹 配检测并对车辆进行计数,如果一般轿车大小在车辆的横向方向上占有3个采样点、在车 辆的纵向方向上占有5个采样点,那么就以3X5采样点的模版从路口停车线到检测末端对 进行匹配检测,匹配开始是设定CarNUm(i) = 0,当匹配到存在采样块时就判定为在该位置 上有车;对于31-13相位信号灯控制的3相位侧的信号灯控制,即从i = 1、j > 1和k = 0 开始进行匹配检测,由于车道横向方向上有5个采样点,即在某一车道同一个横向方向1的 范围是0〜4,从1的范围0〜2开始,然后1〜3,接着2〜4,每个横向方向上进行三次 匹配检测,匹配检测的方法是通过统计计算3X5采样点的模版中有多少存在采样点的情 况进行判断的,如果匹配模版中有50%以上的存在采样点,即在3X5采样点的模版中有7 个以上的存在采样点就判定为该区域为存在采样块;当某一车道同一个横向方向1检测结 束后,如果在上述匹配检测中存在着一个和一个以上的存在块满足匹配检测模版情况时, CarNum(I) = CarNum(1)+1, k = k+5 ;否则k = k+Ι ;接着继续进行匹配检测直至到某一车 道上的末端位置,得到在1相位直行车道上的排队车辆数CarNum(I);当遍历了 1相位的存 在采样块的匹配检测后,按照上述算法遍历3相位的存在采样块的匹配检测,即从i = 3、j > l·和k = 0开始进行匹配检测,最后得到在3相位直行车道上的排队车辆数CarNUm(3);所述的车辆排队长度判定单元,用于根据两个相关相位的出口拥堵状态以及入口最长 排队车辆数来确定该相位的绿灯时间长度;判定规则如下:当两个相关相位中没有一个相位或者相位的出口以上发生拥堵情况下,取两个相关相位中的最大排队车辆数作为两个相 位的车辆排队长度;当两个相关相位中有一个相位的出口发生拥堵情况下,将该相位所对 应的入口的车辆排队长度设置为0,将另一个相位作为车辆排队长度;当两个相关相位的 出口均发生拥堵情况下,将两个相位所对应的入口的车辆排队长度均设置为0 ;这里将排 队长度小于等于3辆车辆的情况作为短排队长度,以Siort表示;将排队长度大于3辆小 于8辆车辆的情况作为中排队长度,以Medium表示;将8辆包括8辆车辆以上的情况作为 长排队长度,以Long表示;因此,对于每个相位信号灯控制的输入状态有4个,其中,0表示 有拥堵、Short表示短排队长度、Medium表示中排队长度、Long表示长排队长度;比如对于 31-13相位信号灯控制,如果1相位和3相位的出口处均无发生拥堵的情况下,在1相位的 排队车辆数CarNum(I) = 5、3相位的排队车辆数CarNumCB) = 9,根据判定规则取最大排队 车辆数为9辆,属于长排队长度,就设定31-13相位信号灯控制的输入状态为Long。
5.如权利要求1或2所述的基于全方位计算机视觉的智能交通信号灯控制装置,其特 征在于:在所述的相位出口拥堵状态模块中,检测相位出口处的拥堵状态,包括所述的存在 采样点的检测单元、移动存在采样点的检测单元和静止存在采样点的检测单元,规定某相 位出口处纵向在停车线的延长线与离该延长线的8米处内所包括的区域内静止采样点的 数目与该区域内的总采样点的数目之比大于阈值TH4,就判定为该相位出口发生拥堵;其 中相位i是由信号灯控制顺序来确定的,有两个相关相位;对于1相位和3相位车辆相互 直行的情况,就要检测1相位出口的车道方向变更属性参数值j = "I的车道拥堵状态和3 相位出口的车道方向变更属性参数值j = -1的车道拥堵状态;对于1相位出口处的拥堵检 测,首先从i = 1、j = -l、k = 0到i = Uj = -l、k= 15范围内检测所有采样点是否是 静止采样点,然后再计算静止采样点与存在采样点的比值Ra,如果比值Ra大于阈值TH4就 判定为1相位出口处发生拥堵;对于3相位出口处的拥堵检测,首先从i = 3、j = -l、k = 0到i = 3、j = -1、k = 15范围内检测所有采样点是否是静止采样点,然后再计算静止采 样点与存在采样点的比值Ra,如果比值Ra大于阈值TH4就判定为1相位出口处发生拥堵;对于相位出口处的采样点从有无前景对象的角度来看存在两种状态,存在采样点,即 存在着前景对象的采样点;非存在采样点,即不存在着前景对象的采样点;对于存在采样 点,从时间序列的角度来分,分为静止存在采样点和移动存在采样点;相位出口处的拥堵的 检测核心是要检测出静止存在采样点;但是要从图像中直接检测出静止存在采样点存在着 很大困难,从图像序列中检测并计算出移动存在采样点,然后根据存在采样点和移动存在 采样点计算得到静止存在采样点,最后根据静止存在采样点的分布情况得到相位出口处的 拥堵状态;所述的移动存在采样点的检测模块,用于检测在相位出口处的移动对象物的前景采样 点;对同一场景下不同时刻拍摄的图像进行差分能得到两幅图像中的变化部分的像素点, 即得到差分图像,计算方法如公式(2)所示;Zln(i) = Xn(i)-Xn_a (i) (2)式中,Xn(i)为&时刻的i相位出口处的采样图像中的各采样点的灰度值,Xn_a(i)为 tn_a时刻的i相位出口处的采样图像中的各采样点的灰度值,Zln(i)为差分采样图,这里称 为第一差分采样图,它表示了经历了 α时间后的道路上各采样点变化情况;在第一差分采 样图中包括了采样点的两种状态的变化情况,即从确认是否是移动存在采样点,还需要观测&和tn+e时刻的采样图像中的各采样点的灰度的 变化情况,即得到第二差分采样图,计算方法如公式(3)所示; Z2n(i) = Xn(i)-Xn+0 (i) (3)式中,Xn(i)为&时刻的i相位出口处的采样图像中的各采样点的灰度值,Xn+e(i)为 tn+0时刻的i相位出口处的采样图像中的各采样点的灰度值,为差分采样图,这里称 为第二差分采样图,它表示了经历了 β时间后的i相位出口处的各采样点变化情况;接着,分别用阈值THl对第一差分采样图Zln(i)和用阈值TH2对第二差分采样图 Z2n(i)进行处理,分别得到第一特征提取采样图Tln(i)和第二特征提取采样图T2n(i);移 动存在采样点必定存在于第一特征提取采样图Tln(i)和第二特征提取采样图T2n(i)之中, 因此对第一特征提取采样图Tln(i)和第二特征提取采样图T2n(i)进行与运算求得图像中 的移动存在采样点,计算公式如(4)所示; Yn(i) = Tln(i) Λ I^n(i) (4)式中,Tln(i)为i相位出口处的第一特征提取采样图,T2n(i)为i相位出口处的第二 特征提取采样图,Yn(i)为i相位出口处的包含有移动采样点的二值采样图;所述的静止存在采样点的检测单元,用于检测路口出口静止前景对象的信息特征点; 根据常识,当道路发生拥堵时路口的出口处都挤满了车辆,出口处的这些车辆都处于相对 静止状态,这时处于相对静止状态的车辆将以相对集中的多个静止存在采样点的方式表现 出来;i相位出口处的存在采样点二值采样图Fn(i)中包含着i相位出口处的移动存在采样 点的二值采样图Yn(i)和i相位出口处的静止存在采样点的二值采样图,因此通过公 式(5)计算出i相位出口处的静止存在采样点的二值采样图; Sn (i) = Fn(i)-Yn(i) (5)式中,Sn(i)为i相位出口处的静止存在采样点二值采样图,FJi)为i相位出口处的 存在采样点二值采样图,Yn(i)为i相位出口处的移动采样点二值图; 用公式(6)计算静止采样点与存在采样点的比值Ra的百分比; Ra(i) = (Sn(i)/Fn(i)) XlOO (6)式中,为i相位出口处的静止存在采样点的总数,由公式(5)计算结果得到; Fn(i)为i相位出口处的存在采样点的总数,由所述的存在采样点的检测单元计算结果得 到;Ra(i)为i相位出口处的静止存在采样点的总数与存在采样点的总数的百分比;如果Ra⑴≥TH4就判定为i相位出口处发生拥堵,将i相位信号灯控制输入状态设 置成SCSI⑴=-1。
6.如权利要求1或2所述的基于全方位计算机视觉的智能交通信号灯控制装置,其特 征在于:所述的信号灯控制决策模块中,根据相关相位的拥堵状态和相关相位的车辆排队 长度确定相关相位的信号灯切换和信号灯时间;根据表1所示的检测相位与控制相位的关 系表、所述的车辆排队长度检测模块和所述的相位出口拥堵状态模块检测结果来确定某相 位是否可以切换成绿灯、以及在确定切换成绿灯情况下进一步确定绿灯长度;
Figure CN102142197AC00071
表1在所述的车辆排队长度判定单元中,对相关相位的拥堵状态和相关相位的车辆排队 长度信息进行了融合,直接得到了每个相位信号灯控制的输入状态,用SCSI(i) = -1表示 有拥堵、用SCSI (i) = Short表示短排队长度、用SCSI (i) = Medium表示中排队长度、用 SCSI(i) = Long表示长排队长度;因此用公式(7)来计算某相位信号灯的控制决策输出结 果,
Figure CN102142197AC00072
式中,SCSO(i)为某相位信号灯的控制决策输出结果,0表示没有绿灯相位控制时间, 即保持红灯状态、Gs表示短绿灯相位控制时间,本设置在15秒左右;表示中绿灯相位控 制时间,设置在40秒左右;G^表示长绿灯相位控制时间,设置在60秒左右;SCSI (i)为某相 位信号灯的控制决策输入状态,与该相位的拥堵以及排队长度有关。
7.如权利要求,6所述的基于全方位计算机视觉的智能交通信号灯控制装置,其特征 在于:在所述的信号灯控制模块中,根据所述的信号灯控制决策模块的决策结果对路口信 号灯进行智能控制;由于绿灯和红灯正好是反向关系,利用这个关系可以将计算问题得到简化;如果要考虑黄灯,则在绿灯的倒计时的若干秒前插入黄灯亮时间T,即在绿灯的最后 的几秒用黄灯来替代,一般来说黄灯的设定时间在1〜2秒之间;根据公式(7)每个相位信 号灯控制的输入状态来确定相位绿灯控制时间,相位长绿灯控制时间I、相位中绿灯控制 时间(V相位短绿灯控制时间& ;对于典型的十字路口的相位短绿灯控制时间&设置在15 秒左右、相位中绿灯控制时间设置在40秒左右、相位长绿灯控制时间G^设置在60秒左 右ο
8.如权利要求1或2所述的基于全方位计算机视觉的智能交通信号灯控制装置,其特 征在于:所述的摄像装置采用无死角的全方位视觉传感器,用于获取交叉路口大面积道路 状态的全景视频图像数据,安置在交叉路口的中间上方;所述的无死角的全方位视觉传感 器采用水平方向平均分辨率设计,空间上的一个光源点P的入射光Vl在主反射镜面(tl, F1U1))点上进行反射,反射光V2反射到次反射镜面(t2,F2 (t2))点上再进行反射,反射光 V3以角度θ 1进入摄像装置的镜头,在摄像单元上成像,摄像单元采用高清摄像芯片;根据成像原理,一次入射光线Vl与折反射主轴Z的夹角为Φ,一次反射光线V2与折反 射主轴Z的夹角为θ 2,过P1A UpF1U1))的切线与t轴的夹角为ο,法线与Z轴的夹角 为ε ; 二次反射光线V3与折反射主轴Z的夹角为Qpap2A (t2,F2(t2))的切线与t轴的 夹角为σ,法线与Z轴的夹角为ε 基于上述关系可以得到公式(8):
Figure CN102142197AC00081
其中
Figure CN102142197AC00082
以下用F1表示F1 U1),F2表示F2 (t2),式中,F1是一次折反射镜面曲线,F2是二次折反 射镜面曲线;利用三角关系并进行简化整理,得到公式(9)、(10):
Figure CN102142197AC00083
上式中,
Figure CN102142197AC00084
解公式(9)、(10)可以得到公式(11)、(12);
Figure CN102142197AC00085
式中=F1为F1曲线的微分,F2为F2曲线的微分;所述的成像平面上的点与水平面上的点之间的关系来说具有某种线性关系,与视点S的距离为C并与Z轴相垂直的水平面L上的任意点P,在成像平面上的有一个对应的像素点 P,将水平面上的坐标用极坐标表示,这时水平面L上的任意点P (r,ζ)用以下公式来表示, r = Otan(J),ζ = s+C (13)为了设计水平面上具有平均分辨率全方位视觉传感器,即水平方向不变形的全方位视 觉传感器,在水平面L上的任意点P与Z轴相垂直方向的坐标r和像素点ρ与Z轴的距离 t2/F2 (t2)之间要保证具有线性关系,使得以下公式能成立, r = a*f*t2/F2 (t2)+b (14)根据成像原理有以下关系成立,入射角用公式(15)表示,
Figure CN102142197AC00091
将公式(13)、(15)代入公式(14)并整理,得到在水平方向不变形的条件,用公式(16) 表不,
Figure CN102142197AC00092
满足公式(16)的镜面曲线设计符合水平方向平均分辨率要求; 通过对公式(9)、(10)、(16)利用4阶Runge-Kutta算法求F1和F2的数字解,这样计 算得到的一次折反射镜面和二次折反射镜面曲线能实现水平方向平均分辨率;从而得到水 平方向不变形的全方位视觉传感器的核心器件一次折反射镜面和二次折反射镜面的设计 曲线。
9.如权利要求8所述的基于全方位计算机视觉的智能交通信号灯控制装置,其特征在 于:所述的透明外罩设计成碗状。
10.如权利要求8所述的基于全方位计算机视觉的智能交通信号灯控制装置,其特征 在于:将所述广角镜头配置在一次折反射镜的前方和二次折反射镜面上,摄像部件镜头、 广角镜头、一次折反射镜和二次折反射镜的中心轴配置在同一轴心线上;通过一次折反射 镜上的圆孔在广角镜头与摄像部件镜头之间成像,称为第一成像点,该成像点通过摄像部 件镜头在视点处成像,这里将摄像部件镜头的焦点距离作为Π、广角镜头的焦点距离作为 f2、摄像部件镜头与摄像部件镜头的焦点的距离作为Si、从摄像部件镜头到第一成像点的 焦点距离作为S2、从广角镜头到第一成像点的距离作为S3、从广角镜头到实物点的距离作 为S4,根据镜头的成像公式得到以下关系式:
Figure CN102142197AC00093
要使公式(19)成立的话,也就是将从第一折反射镜面后的摄像部件镜头距离为d的地 方配置广角镜头的话,就可以得到全景视频图像以及中间部分的广角视频图像;将广角镜 头配置在第二折反射镜面上,将摄像部件镜头与广角镜头的之间的距离d作为一个约束条 件,通过设计广角镜头的焦点距离f2来满足公式(19)的要求;进一步,将摄像部件镜头与广角镜头作为一个组合镜头来考虑的话,其焦距f可以由下式来表示:
Figure CN102142197AC00101
另外,将合成镜头的直径作为D,其放大倍数可以由下式来表示:
Figure CN102142197AC00102
为了将组合镜头的视场与全方位视觉传感器的死角部分相吻合,在设计组合镜头时需 要满足以下公式:
Figure CN102142197AC00103
式中,θ lmax是二次反射光线V3与折反射主轴Z的最大夹角。
CN2011100816745A 2011-03-31 2011-03-31 基于全方位计算机视觉的智能交通信号灯控制装置 Expired - Fee Related CN102142197B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100816745A CN102142197B (zh) 2011-03-31 2011-03-31 基于全方位计算机视觉的智能交通信号灯控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100816745A CN102142197B (zh) 2011-03-31 2011-03-31 基于全方位计算机视觉的智能交通信号灯控制装置

Publications (2)

Publication Number Publication Date
CN102142197A true CN102142197A (zh) 2011-08-03
CN102142197B CN102142197B (zh) 2013-11-20

Family

ID=44409675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100816745A Expired - Fee Related CN102142197B (zh) 2011-03-31 2011-03-31 基于全方位计算机视觉的智能交通信号灯控制装置

Country Status (1)

Country Link
CN (1) CN102142197B (zh)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360532A (zh) * 2011-10-19 2012-02-22 太仓市同维电子有限公司 路口交通信号控制系统及其控制方法
CN102568210A (zh) * 2012-03-10 2012-07-11 山东大学 基于视频反馈的交通溢流控制方法
CN102592464A (zh) * 2012-03-12 2012-07-18 山东大学 一种基于视频的相位差模糊推理确定方法
CN102592461A (zh) * 2012-03-02 2012-07-18 南京大学 一种基于视频的道路防堵塞方法及实现装置
CN102930726A (zh) * 2012-10-26 2013-02-13 西南大学 一种智能交通信号控制系统
CN103150913A (zh) * 2013-02-07 2013-06-12 东莞中国科学院云计算产业技术创新与育成中心 一种动态自适应交通信号控制装置及方法
CN103531031A (zh) * 2013-02-06 2014-01-22 支录奎 一种基于交通干线软封闭区视频检测识别实现绿波带通行控制的研究
CN103810868A (zh) * 2014-02-25 2014-05-21 安徽科力信息产业有限责任公司 一种基于高空视频信息的交通溢流抑制方法
CN103942773A (zh) * 2013-01-21 2014-07-23 浙江大华技术股份有限公司 一种通过图像分析获取排队长度的方法及装置
CN104040605A (zh) * 2012-01-10 2014-09-10 麻省理工学院 交通信号控制方法和交通信号控制机
CN104077913A (zh) * 2013-03-27 2014-10-01 上海市城市建设设计研究总院 融合多视角图像信息的交通事件监测方法及其装置
CN104732779A (zh) * 2015-03-29 2015-06-24 安徽科力信息产业有限责任公司 基于交通信号机和视频监控联动的交通拥堵疏导方法
CN104751627A (zh) * 2013-12-31 2015-07-01 西门子公司 一种交通状况参数的确定方法和装置
CN104835332A (zh) * 2015-05-11 2015-08-12 清华大学深圳研究生院 基于车辆位置的动态信号灯控制方法
CN105551267A (zh) * 2015-12-08 2016-05-04 合肥寰景信息技术有限公司 一种通过车流量控制交通信号机的方法
CN105551246A (zh) * 2015-12-08 2016-05-04 合肥寰景信息技术有限公司 一种控制交通信号机的车流量阈值的计算方法
CN105632194A (zh) * 2015-12-08 2016-06-01 合肥寰景信息技术有限公司 一种通过人流量控制交通信号机的方法
CN105874883A (zh) * 2013-09-10 2016-08-17 飞利浦灯具控股公司 用于编码光源的自动化投用的方法和装置
CN105894831A (zh) * 2016-05-12 2016-08-24 郑永春 智能交通控制装置
CN106023605A (zh) * 2016-07-15 2016-10-12 姹ゅ钩 一种基于深度卷积神经网络的交通信号灯控制方法
CN106092123A (zh) * 2016-06-06 2016-11-09 广东中星电子有限公司 一种视频导航方法及装置
WO2016202009A1 (zh) * 2015-06-17 2016-12-22 苏州大学张家港工业技术研究院 一种基于强化学习的路面交通信号灯协调控制方法
CN106297328A (zh) * 2016-08-25 2017-01-04 深圳市元征科技股份有限公司 一种交通信号灯控制方法及装置
CN106327886A (zh) * 2016-08-29 2017-01-11 安徽科力信息产业有限责任公司 减少非机动车对平面感知信号控制效率影响的方法及系统
CN106355925A (zh) * 2016-10-31 2017-01-25 安徽科力信息产业有限责任公司 利用互联网实现路口信号机控制效果评价的方法及装置
CN106384519A (zh) * 2016-11-22 2017-02-08 百度在线网络技术(北京)有限公司 交通灯控制方法及装置
CN106408957A (zh) * 2016-11-21 2017-02-15 华南理工大学 一种基于通行需求平衡的交叉口相位时间分配方法
CN106408987A (zh) * 2016-10-31 2017-02-15 安徽科力信息产业有限责任公司 利用互联网实现精准评价信号机控制效果的方法及系统
CN106530758A (zh) * 2016-10-31 2017-03-22 安徽科力信息产业有限责任公司 利用互联网自动调整信号机控制参数的方法、装置及系统
CN103488987B (zh) * 2013-10-15 2017-04-19 浙江宇视科技有限公司 一种基于视频检测交通信号灯的方法及装置
CN106846841A (zh) * 2017-04-20 2017-06-13 成都信息工程大学 一种交通信号装置及交通控制方法
CN106846840A (zh) * 2017-04-20 2017-06-13 成都信息工程大学 一种基于道路流量的交通信号灯控制方法
CN106920400A (zh) * 2015-12-24 2017-07-04 北京奇虎科技有限公司 红绿灯的控制方法和装置
CN107123287A (zh) * 2017-06-27 2017-09-01 吉林大学 一种基于自组织协调的交通信号灯控一体化装置
WO2017193928A1 (zh) * 2016-05-13 2017-11-16 腾讯科技(深圳)有限公司 信号灯时长数据的获取方法和装置
CN107730922A (zh) * 2017-09-11 2018-02-23 北方工业大学 一种单向干线绿波协调控制自适应调整方法
CN107730890A (zh) * 2017-11-09 2018-02-23 石数字技术成都有限公司 一种基于实时场景下车流车速预测的智能交通方法
CN107742418A (zh) * 2017-09-29 2018-02-27 东南大学 一种城市快速路交通拥堵状态及堵点位置自动识别方法
CN107862876A (zh) * 2017-03-27 2018-03-30 平安科技(深圳)有限公司 交通灯控制方法和装置
CN108074403A (zh) * 2018-01-18 2018-05-25 徐晓音 基于双向摄像头的防止路口车辆拥堵的交通灯显示的控制方法及系统
CN108109403A (zh) * 2017-12-29 2018-06-01 珠海国芯云科技有限公司 基于车流的自适应交通灯控系统及方法
WO2018205132A1 (zh) * 2017-05-09 2018-11-15 深圳实现创新科技有限公司 智能交通灯的控制方法及系统
CN108898840A (zh) * 2018-05-08 2018-11-27 江苏理工学院 一种基于视频监控的智能交通信号灯控制方法
CN108922187A (zh) * 2018-07-20 2018-11-30 肖哲睿 一种智能交通系统
WO2019028660A1 (en) * 2017-08-08 2019-02-14 Beijing Didi Infinity Technology And Development Co., Ltd. SYSTEMS AND METHODS FOR SYNCHRONIZATION OF TRAFFIC LIGHTS
CN109360430A (zh) * 2018-12-14 2019-02-19 江苏顺泰交通集团有限公司 一种智能交通信号控制系统及其控制方法
CN110471415A (zh) * 2014-07-31 2019-11-19 伟摩有限责任公司 具有自动驾驶模式的车辆及其控制方法和系统
CN110556000A (zh) * 2018-06-04 2019-12-10 义硕智能股份有限公司 人工智慧交通检测系统
CN110738860A (zh) * 2019-09-18 2020-01-31 平安科技(深圳)有限公司 基于强化学习模型的信息控制方法、装置和计算机设备
CN111311930A (zh) * 2018-12-12 2020-06-19 阿里巴巴集团控股有限公司 一种获取车流量的方法及其装置
CN111402612A (zh) * 2019-01-03 2020-07-10 北京嘀嘀无限科技发展有限公司 一种交通事件通知方法及装置
CN111627241A (zh) * 2020-05-27 2020-09-04 北京百度网讯科技有限公司 用于生成车辆排队信息的方法和装置
CN111798680A (zh) * 2020-08-12 2020-10-20 中国标准化研究院 一种智慧城市管理系统
CN111951576A (zh) * 2020-08-17 2020-11-17 国为(南京)软件科技有限公司 一种基于车辆识别的交通灯控制系统及其方法
CN112330962A (zh) * 2020-11-04 2021-02-05 杭州海康威视数字技术股份有限公司 交通信号灯控制方法、装置、电子设备及计算机存储介质
CN112330953A (zh) * 2020-10-10 2021-02-05 杭州翔毅科技有限公司 基于云数据的交通控制方法、装置、设备及存储介质
CN112509338A (zh) * 2020-09-11 2021-03-16 博云视觉(北京)科技有限公司 一种静默式低点视频监控交通拥堵事件检测方法
CN113257016A (zh) * 2021-06-21 2021-08-13 腾讯科技(深圳)有限公司 一种交通信号控制方法、装置以及可读存储介质
CN113299080A (zh) * 2021-04-28 2021-08-24 东南大学 一种基于路口交通通行状态的信号实时优化方法
CN114067573A (zh) * 2022-01-11 2022-02-18 成都宜泊信息科技有限公司 一种停车场值守方法、系统、存储介质及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1804927A (zh) * 2005-12-28 2006-07-19 浙江工业大学 基于全方位视觉传感器的道路监控装置
WO2007126874A2 (en) * 2006-03-27 2007-11-08 Cognex Corporation Video traffic monitoring and signaling apparatus
CN101692310A (zh) * 2009-09-23 2010-04-07 德瑞视(北京)科技发展有限公司 一种智能交通综合视频监测系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1804927A (zh) * 2005-12-28 2006-07-19 浙江工业大学 基于全方位视觉传感器的道路监控装置
WO2007126874A2 (en) * 2006-03-27 2007-11-08 Cognex Corporation Video traffic monitoring and signaling apparatus
CN101692310A (zh) * 2009-09-23 2010-04-07 德瑞视(北京)科技发展有限公司 一种智能交通综合视频监测系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《信息与控制》 20010630 魏武 等 基于计算机视觉和图像处理的交通参数检测 第30卷, 第3期 *
《烟台职业学院学报》 20090630 姜天水 等 基于计算机视觉的交通信号控制智能化技术研究 第15卷, 第2期 *

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360532A (zh) * 2011-10-19 2012-02-22 太仓市同维电子有限公司 路口交通信号控制系统及其控制方法
CN102360532B (zh) * 2011-10-19 2014-02-19 太仓市同维电子有限公司 路口交通信号控制系统及其控制方法
CN104040605A (zh) * 2012-01-10 2014-09-10 麻省理工学院 交通信号控制方法和交通信号控制机
CN102592461A (zh) * 2012-03-02 2012-07-18 南京大学 一种基于视频的道路防堵塞方法及实现装置
CN102592461B (zh) * 2012-03-02 2015-11-25 南京大学 一种基于视频的道路防堵塞方法及实现装置
CN102568210A (zh) * 2012-03-10 2012-07-11 山东大学 基于视频反馈的交通溢流控制方法
CN102592464A (zh) * 2012-03-12 2012-07-18 山东大学 一种基于视频的相位差模糊推理确定方法
CN102930726B (zh) * 2012-10-26 2014-09-17 西南大学 一种智能交通信号控制系统
CN102930726A (zh) * 2012-10-26 2013-02-13 西南大学 一种智能交通信号控制系统
CN103942773A (zh) * 2013-01-21 2014-07-23 浙江大华技术股份有限公司 一种通过图像分析获取排队长度的方法及装置
CN103942773B (zh) * 2013-01-21 2017-05-10 浙江大华技术股份有限公司 一种通过图像分析获取排队长度的方法及装置
CN103531031A (zh) * 2013-02-06 2014-01-22 支录奎 一种基于交通干线软封闭区视频检测识别实现绿波带通行控制的研究
CN103150913A (zh) * 2013-02-07 2013-06-12 东莞中国科学院云计算产业技术创新与育成中心 一种动态自适应交通信号控制装置及方法
CN104077913A (zh) * 2013-03-27 2014-10-01 上海市城市建设设计研究总院 融合多视角图像信息的交通事件监测方法及其装置
CN105874883B (zh) * 2013-09-10 2019-06-18 飞利浦灯具控股公司 用于编码光源的自动化投用的方法和装置
CN105874883A (zh) * 2013-09-10 2016-08-17 飞利浦灯具控股公司 用于编码光源的自动化投用的方法和装置
CN103488987B (zh) * 2013-10-15 2017-04-19 浙江宇视科技有限公司 一种基于视频检测交通信号灯的方法及装置
CN104751627A (zh) * 2013-12-31 2015-07-01 西门子公司 一种交通状况参数的确定方法和装置
CN103810868B (zh) * 2014-02-25 2016-04-27 安徽科力信息产业有限责任公司 一种基于高空视频信息的交通溢流抑制方法
CN103810868A (zh) * 2014-02-25 2014-05-21 安徽科力信息产业有限责任公司 一种基于高空视频信息的交通溢流抑制方法
CN110471415A (zh) * 2014-07-31 2019-11-19 伟摩有限责任公司 具有自动驾驶模式的车辆及其控制方法和系统
US11279346B2 (en) 2014-07-31 2022-03-22 Waymo Llc Traffic signal response for autonomous vehicles
CN104732779A (zh) * 2015-03-29 2015-06-24 安徽科力信息产业有限责任公司 基于交通信号机和视频监控联动的交通拥堵疏导方法
CN104835332B (zh) * 2015-05-11 2017-04-12 清华大学深圳研究生院 基于车辆位置的动态信号灯控制方法
CN104835332A (zh) * 2015-05-11 2015-08-12 清华大学深圳研究生院 基于车辆位置的动态信号灯控制方法
WO2016202009A1 (zh) * 2015-06-17 2016-12-22 苏州大学张家港工业技术研究院 一种基于强化学习的路面交通信号灯协调控制方法
CN105551246B (zh) * 2015-12-08 2017-11-17 合肥寰景信息技术有限公司 一种控制交通信号机的车流量阈值的计算方法
CN105551267A (zh) * 2015-12-08 2016-05-04 合肥寰景信息技术有限公司 一种通过车流量控制交通信号机的方法
CN105551246A (zh) * 2015-12-08 2016-05-04 合肥寰景信息技术有限公司 一种控制交通信号机的车流量阈值的计算方法
CN105632194A (zh) * 2015-12-08 2016-06-01 合肥寰景信息技术有限公司 一种通过人流量控制交通信号机的方法
CN105632194B (zh) * 2015-12-08 2018-02-02 合肥寰景信息技术有限公司 一种通过人流量控制交通信号机的方法
CN106920400A (zh) * 2015-12-24 2017-07-04 北京奇虎科技有限公司 红绿灯的控制方法和装置
CN105894831A (zh) * 2016-05-12 2016-08-24 郑永春 智能交通控制装置
US10861330B2 (en) 2016-05-13 2020-12-08 Tencent Technology (Shenzhen) Company Limited Method and apparatus for obtaining signal light duration data
WO2017193928A1 (zh) * 2016-05-13 2017-11-16 腾讯科技(深圳)有限公司 信号灯时长数据的获取方法和装置
CN106092123B (zh) * 2016-06-06 2019-02-15 广东中星电子有限公司 一种视频导航方法及装置
CN106092123A (zh) * 2016-06-06 2016-11-09 广东中星电子有限公司 一种视频导航方法及装置
CN106023605A (zh) * 2016-07-15 2016-10-12 姹ゅ钩 一种基于深度卷积神经网络的交通信号灯控制方法
CN106297328A (zh) * 2016-08-25 2017-01-04 深圳市元征科技股份有限公司 一种交通信号灯控制方法及装置
CN106327886A (zh) * 2016-08-29 2017-01-11 安徽科力信息产业有限责任公司 减少非机动车对平面感知信号控制效率影响的方法及系统
CN106408987A (zh) * 2016-10-31 2017-02-15 安徽科力信息产业有限责任公司 利用互联网实现精准评价信号机控制效果的方法及系统
CN106530758A (zh) * 2016-10-31 2017-03-22 安徽科力信息产业有限责任公司 利用互联网自动调整信号机控制参数的方法、装置及系统
CN106355925A (zh) * 2016-10-31 2017-01-25 安徽科力信息产业有限责任公司 利用互联网实现路口信号机控制效果评价的方法及装置
CN106408987B (zh) * 2016-10-31 2018-12-18 安徽科力信息产业有限责任公司 利用互联网实现精准评价信号机控制效果的方法及系统
CN106408957B (zh) * 2016-11-21 2018-10-30 华南理工大学 一种基于通行需求平衡的交叉口相位时间分配方法
CN106408957A (zh) * 2016-11-21 2017-02-15 华南理工大学 一种基于通行需求平衡的交叉口相位时间分配方法
WO2018090997A1 (zh) * 2016-11-21 2018-05-24 华南理工大学 一种基于通行需求平衡的交叉口相位时间分配方法
CN106384519A (zh) * 2016-11-22 2017-02-08 百度在线网络技术(北京)有限公司 交通灯控制方法及装置
CN106384519B (zh) * 2016-11-22 2020-01-07 百度在线网络技术(北京)有限公司 交通灯控制方法及装置
CN107862876A (zh) * 2017-03-27 2018-03-30 平安科技(深圳)有限公司 交通灯控制方法和装置
WO2018177186A1 (zh) * 2017-03-27 2018-10-04 平安科技(深圳)有限公司 交通灯控制方法、装置、设备和计算机可读存储介质
CN106846841A (zh) * 2017-04-20 2017-06-13 成都信息工程大学 一种交通信号装置及交通控制方法
CN106846840B (zh) * 2017-04-20 2019-09-13 成都信息工程大学 一种基于道路流量的交通信号灯控制方法
CN106846840A (zh) * 2017-04-20 2017-06-13 成都信息工程大学 一种基于道路流量的交通信号灯控制方法
WO2018205132A1 (zh) * 2017-05-09 2018-11-15 深圳实现创新科技有限公司 智能交通灯的控制方法及系统
CN107123287B (zh) * 2017-06-27 2019-08-02 吉林大学 一种基于自组织协调的交通信号灯控一体化装置
CN107123287A (zh) * 2017-06-27 2017-09-01 吉林大学 一种基于自组织协调的交通信号灯控一体化装置
WO2019028660A1 (en) * 2017-08-08 2019-02-14 Beijing Didi Infinity Technology And Development Co., Ltd. SYSTEMS AND METHODS FOR SYNCHRONIZATION OF TRAFFIC LIGHTS
US11037441B2 (en) 2017-08-08 2021-06-15 Beijing Didi Infinity Technology And Development Co., Ltd. Systems and methods for traffic light timing
TWI698840B (zh) * 2017-08-08 2020-07-11 大陸商北京嘀嘀無限科技發展有限公司 用於交通燈配時之系統和方法
CN107730922A (zh) * 2017-09-11 2018-02-23 北方工业大学 一种单向干线绿波协调控制自适应调整方法
CN107730922B (zh) * 2017-09-11 2019-08-09 北方工业大学 一种单向干线绿波协调控制自适应调整方法
CN107742418A (zh) * 2017-09-29 2018-02-27 东南大学 一种城市快速路交通拥堵状态及堵点位置自动识别方法
CN107742418B (zh) * 2017-09-29 2020-04-24 东南大学 一种城市快速路交通拥堵状态及堵点位置自动识别方法
CN107730890A (zh) * 2017-11-09 2018-02-23 石数字技术成都有限公司 一种基于实时场景下车流车速预测的智能交通方法
CN108109403A (zh) * 2017-12-29 2018-06-01 珠海国芯云科技有限公司 基于车流的自适应交通灯控系统及方法
CN108074403A (zh) * 2018-01-18 2018-05-25 徐晓音 基于双向摄像头的防止路口车辆拥堵的交通灯显示的控制方法及系统
CN108898840A (zh) * 2018-05-08 2018-11-27 江苏理工学院 一种基于视频监控的智能交通信号灯控制方法
CN110556000A (zh) * 2018-06-04 2019-12-10 义硕智能股份有限公司 人工智慧交通检测系统
CN108922187B (zh) * 2018-07-20 2021-09-07 上海久揽视讯科技有限公司 一种智能交通系统
CN108922187A (zh) * 2018-07-20 2018-11-30 肖哲睿 一种智能交通系统
CN111311930A (zh) * 2018-12-12 2020-06-19 阿里巴巴集团控股有限公司 一种获取车流量的方法及其装置
CN109360430A (zh) * 2018-12-14 2019-02-19 江苏顺泰交通集团有限公司 一种智能交通信号控制系统及其控制方法
CN111402612A (zh) * 2019-01-03 2020-07-10 北京嘀嘀无限科技发展有限公司 一种交通事件通知方法及装置
CN110738860B (zh) * 2019-09-18 2021-11-23 平安科技(深圳)有限公司 基于强化学习模型的信息控制方法、装置和计算机设备
CN110738860A (zh) * 2019-09-18 2020-01-31 平安科技(深圳)有限公司 基于强化学习模型的信息控制方法、装置和计算机设备
CN111627241A (zh) * 2020-05-27 2020-09-04 北京百度网讯科技有限公司 用于生成车辆排队信息的方法和装置
CN111798680A (zh) * 2020-08-12 2020-10-20 中国标准化研究院 一种智慧城市管理系统
CN111951576A (zh) * 2020-08-17 2020-11-17 国为(南京)软件科技有限公司 一种基于车辆识别的交通灯控制系统及其方法
CN112509338A (zh) * 2020-09-11 2021-03-16 博云视觉(北京)科技有限公司 一种静默式低点视频监控交通拥堵事件检测方法
CN112330953A (zh) * 2020-10-10 2021-02-05 杭州翔毅科技有限公司 基于云数据的交通控制方法、装置、设备及存储介质
CN112330962B (zh) * 2020-11-04 2022-03-08 杭州海康威视数字技术股份有限公司 交通信号灯控制方法、装置、电子设备及计算机存储介质
CN112330962A (zh) * 2020-11-04 2021-02-05 杭州海康威视数字技术股份有限公司 交通信号灯控制方法、装置、电子设备及计算机存储介质
CN113299080A (zh) * 2021-04-28 2021-08-24 东南大学 一种基于路口交通通行状态的信号实时优化方法
CN113299080B (zh) * 2021-04-28 2021-12-21 东南大学 一种基于路口交通通行状态的信号实时优化方法
CN113257016A (zh) * 2021-06-21 2021-08-13 腾讯科技(深圳)有限公司 一种交通信号控制方法、装置以及可读存储介质
CN114067573A (zh) * 2022-01-11 2022-02-18 成都宜泊信息科技有限公司 一种停车场值守方法、系统、存储介质及电子设备
CN114067573B (zh) * 2022-01-11 2022-04-12 成都宜泊信息科技有限公司 一种停车场值守方法、系统、存储介质及电子设备

Also Published As

Publication number Publication date
CN102142197B (zh) 2013-11-20

Similar Documents

Publication Publication Date Title
CN102142197B (zh) 基于全方位计算机视觉的智能交通信号灯控制装置
Yang et al. A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources
CN103985250B (zh) 轻量级的全息道路交通状态视觉检测装置
CN102136194B (zh) 基于全景计算机视觉的道路交通状态检测装置
CN101710448B (zh) 基于全方位计算机视觉的道路交通状态检测装置
CN102110376B (zh) 基于计算机视觉的路边停车位检测装置
Coifman et al. A real-time computer vision system for vehicle tracking and traffic surveillance
CN106652483B (zh) 利用检测设备在区域公路网布设交通信息检测点的方法
EP0454166A2 (en) Traffic flow measuring method and apparatus
CN109690646A (zh) 分析和调整道路状况的系统和方法
Sen et al. Accurate speed and density measurement for road traffic in India
Islam et al. An efficient algorithm for detecting traffic congestion and a framework for smart traffic control system
CN107885795A (zh) 一种卡口数据的数据校验方法、系统和装置
US20190385449A1 (en) System and method for providing automatic on-street parking control and unoccupied parking spot availability detection
Dubey et al. Review on techniques for traffic jam detection and congestion avoidance
CN107221175A (zh) 一种行人意图检测方法和系统
Neuhold et al. Predicting and optimizing traffic flow at toll plazas
CN111314857B (zh) 一种基于过车视频数据的车辆实时出行轨迹获取方法
CN107886707B (zh) 地理区块的优化方法及装置、车辆监控方法及装置
RU2749527C1 (ru) Устройство и система регистрации дорожной обстановки
CN210515649U (zh) 基于树莓派与互联网的智能交通信号控制系统
Subramaniyam et al. A Survey on IoT Based Intelligent Road Traffic and Transport Management Systems
CN111741267A (zh) 一种车辆延误的确定方法、装置、设备及介质
Dalaff et al. A Traffic object detection system for road traffic measurement and management
Zhang RFID-Based Tracking in Supporting Real-Time Urban Traffic Information

Legal Events

Date Code Title Description
PB01 Publication
C06 Publication
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
GR01 Patent grant
C14 Grant of patent or utility model
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131120

Termination date: 20140331

C17 Cessation of patent right