CN102124825B - 形成图案化基材的方法 - Google Patents

形成图案化基材的方法 Download PDF

Info

Publication number
CN102124825B
CN102124825B CN200980132086.0A CN200980132086A CN102124825B CN 102124825 B CN102124825 B CN 102124825B CN 200980132086 A CN200980132086 A CN 200980132086A CN 102124825 B CN102124825 B CN 102124825B
Authority
CN
China
Prior art keywords
liquid
structured surface
surface region
recessed
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980132086.0A
Other languages
English (en)
Chinese (zh)
Other versions
CN102124825A (zh
Inventor
克里斯汀·E·莫兰
马修·H·弗雷
马修·S·斯泰
米哈伊尔·L·佩库罗夫斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN102124825A publication Critical patent/CN102124825A/zh
Application granted granted Critical
Publication of CN102124825B publication Critical patent/CN102124825B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/161Process or apparatus coating on selected surface areas by direct patterning from plating step, e.g. inkjet
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/107Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by filling grooves in the support with conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1258Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by using a substrate provided with a shape pattern, e.g. grooves, banks, resist pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09036Recesses or grooves in insulating substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0756Uses of liquids, e.g. rinsing, coating, dissolving
    • H05K2203/0776Uses of liquids not otherwise provided for in H05K2203/0759 - H05K2203/0773
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Micromachines (AREA)
CN200980132086.0A 2008-06-30 2009-05-26 形成图案化基材的方法 Expired - Fee Related CN102124825B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US7673608P 2008-06-30 2008-06-30
US61/076,736 2008-06-30
PCT/US2009/045120 WO2010002519A1 (en) 2008-06-30 2009-05-26 Method of forming a patterned substrate

Publications (2)

Publication Number Publication Date
CN102124825A CN102124825A (zh) 2011-07-13
CN102124825B true CN102124825B (zh) 2014-04-30

Family

ID=40984776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980132086.0A Expired - Fee Related CN102124825B (zh) 2008-06-30 2009-05-26 形成图案化基材的方法

Country Status (6)

Country Link
US (1) US8652345B2 (enExample)
EP (1) EP2311301B1 (enExample)
JP (1) JP5319769B2 (enExample)
CN (1) CN102124825B (enExample)
AT (1) ATE555643T1 (enExample)
WO (1) WO2010002519A1 (enExample)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8941395B2 (en) 2010-04-27 2015-01-27 3M Innovative Properties Company Integrated passive circuit elements for sensing devices
JP5813103B2 (ja) 2010-06-11 2015-11-17 スリーエム イノベイティブ プロパティズ カンパニー 力測定を用いるタッチ位置センサ
JP6005517B2 (ja) 2010-10-22 2016-10-12 ソニー株式会社 パターン基体およびその製造方法ならびに情報入力装置および表示装置
DE102011088793A1 (de) * 2011-12-16 2013-06-20 Tyco Electronics Amp Gmbh Elektrischer Steckverbinder mit mikrostrukturiertem Kontaktelement
WO2013119223A1 (en) * 2012-02-08 2013-08-15 Empire Technology Development Llc Flexible, expandable, patterned electrode with non-conducting substrate
KR20140129134A (ko) 2012-02-10 2014-11-06 쓰리엠 이노베이티브 프로퍼티즈 컴파니 터치 센서 전극용 메시 패턴
US9322093B2 (en) * 2012-12-20 2016-04-26 3M Innovative Properties Company Printing of multiple inks to achieve precision registration during subsequent processing
US20160149122A1 (en) * 2013-06-14 2016-05-26 The Trustees Of Dartmouth College Methods For Fabricating Magnetic Devices And Associated Systems And Devices
KR102203104B1 (ko) * 2014-06-05 2021-01-15 삼성디스플레이 주식회사 플렉서블 디스플레이 장치
CN104311873B (zh) * 2014-09-04 2015-12-02 比亚迪股份有限公司 掺杂的氧化锡的应用及聚合物组合物和成型体及油墨组合物和表面金属化方法
WO2017066020A1 (en) * 2015-10-12 2017-04-20 3M Innovative Properties Company Multi-mode display
WO2019018585A1 (en) * 2017-07-18 2019-01-24 Q Umbono Llc MULTILAYER LENS AND MANUFACTURE THEREOF
KR102778664B1 (ko) * 2021-03-19 2025-03-12 가부시키가이샤 스크린 홀딩스 기판 처리 방법, 기판 처리 장치, 및, 폴리머 함유액
JP7765965B2 (ja) * 2021-03-19 2025-11-07 株式会社Screenホールディングス 基板処理方法、基板処理装置、および、ポリマー含有液

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300263A (en) * 1992-10-28 1994-04-05 Minnesota Mining And Manufacturing Company Method of making a microlens array and mold
RU2230391C2 (ru) * 2002-03-21 2004-06-10 Открытое акционерное общество "НИИ молекулярной электроники и завод "Микрон" Способ изготовления самосовмещенной встроенной медной металлизации интегральных схем
CN1909188A (zh) * 2004-08-23 2007-02-07 株式会社半导体能源研究所 半导体器件的制作方法

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3322053A (en) 1964-04-30 1967-05-30 Minnesota Mining & Mfg Treating surfaces with fluids
JPS51126344A (en) 1975-04-28 1976-11-04 Mitsubishi Electric Corp Etching method
JPS63288045A (ja) 1987-05-20 1988-11-25 Hitachi Ltd 半導体装置の製造方法
US5137542A (en) 1990-08-08 1992-08-11 Minnesota Mining And Manufacturing Company Abrasive printed with an electrically conductive ink
US5254390B1 (en) 1990-11-15 1999-05-18 Minnesota Mining & Mfg Plano-convex base sheet for retroreflective articles
US5137611A (en) 1991-11-01 1992-08-11 Armco Inc. Electrolytic plating one surface of conductive sheet
US5439621A (en) 1993-04-12 1995-08-08 Minnesota Mining And Manufacturing Company Method of making an array of variable focal length microlenses
JP3092896B2 (ja) * 1993-09-28 2000-09-25 シャープ株式会社 液晶表示素子及びその製造方法
TW291543B (enExample) 1993-09-28 1996-11-21 Sharp Kk
US5382317A (en) 1994-02-18 1995-01-17 Minnesota Mining And Manufacturing Company Method of selectively applying a coating to a bilevel substrate
US5917664A (en) 1996-02-05 1999-06-29 3M Innovative Properties Company Brightness enhancement film with soft cutoff
US5825543A (en) 1996-02-29 1998-10-20 Minnesota Mining And Manufacturing Company Diffusely reflecting polarizing element including a first birefringent phase and a second phase
US5970374A (en) * 1996-10-18 1999-10-19 Chartered Semiconductor Manufacturing Ltd. Method for forming contacts and vias with improved barrier metal step-coverage
US6280063B1 (en) 1997-05-09 2001-08-28 3M Innovative Properties Company Brightness enhancement article
US6375871B1 (en) 1998-06-18 2002-04-23 3M Innovative Properties Company Methods of manufacturing microfluidic articles
US6431695B1 (en) 1998-06-18 2002-08-13 3M Innovative Properties Company Microstructure liquid dispenser
US6290685B1 (en) 1998-06-18 2001-09-18 3M Innovative Properties Company Microchanneled active fluid transport devices
US6077560A (en) * 1997-12-29 2000-06-20 3M Innovative Properties Company Method for continuous and maskless patterning of structured substrates
EP1975649A1 (en) 1998-02-18 2008-10-01 Minnesota Mining And Manufacturing Company Optical film
KR100615913B1 (ko) 1998-04-29 2006-08-28 쓰리엠 이노베이티브 프로퍼티즈 캄파니 엠보싱 처리된 표면을 갖고 있는 잉크젯 인쇄용 수용체시이트
US6037005A (en) 1998-05-12 2000-03-14 3M Innovative Properties Company Display substrate electrodes with auxiliary metal layers for enhanced conductivity
US6495200B1 (en) * 1998-12-07 2002-12-17 Chartered Semiconductor Manufacturing Ltd. Method to deposit a seeding layer for electroless copper plating
EP1189758B1 (en) 1999-06-01 2003-07-30 3M Innovative Properties Company Random microembossed receptor media
WO2000073083A1 (en) 1999-06-01 2000-12-07 3M Innovative Properties Company Optically transmissive microembossed receptor media
US7223364B1 (en) 1999-07-07 2007-05-29 3M Innovative Properties Company Detection article having fluid control film
US6451191B1 (en) 1999-11-18 2002-09-17 3M Innovative Properties Company Film based addressable programmable electronic matrix articles and methods of manufacturing and using the same
US6632343B1 (en) 2000-08-30 2003-10-14 Micron Technology, Inc. Method and apparatus for electrolytic plating of surface metals
JP4232336B2 (ja) 2000-11-22 2009-03-04 株式会社デンソー 半導体ウエハの表面処理方法
CN1292496C (zh) 2001-05-23 2006-12-27 造型逻辑有限公司 器件的图案形成
JP2003100950A (ja) 2001-06-06 2003-04-04 Japan Science & Technology Corp 粉体集合体からなるパターンの製造方法
GB2379083A (en) * 2001-08-20 2003-02-26 Seiko Epson Corp Inkjet printing on a substrate using two immiscible liquids
US20030108664A1 (en) 2001-10-05 2003-06-12 Kodas Toivo T. Methods and compositions for the formation of recessed electrical features on a substrate
JP2004006628A (ja) * 2002-03-27 2004-01-08 Hitachi Ltd 半導体装置の製造方法
US7105809B2 (en) 2002-11-18 2006-09-12 3M Innovative Properties Company Microstructured polymeric substrate
US7245435B2 (en) 2002-12-16 2007-07-17 3M Innovative Properties Company Lens array sheet and molding method
JP2005012173A (ja) 2003-05-28 2005-01-13 Seiko Epson Corp 膜パターン形成方法、デバイス及びデバイスの製造方法、電気光学装置、並びに電子機器
US7638807B2 (en) * 2003-10-28 2009-12-29 Sumitomo Metal Mining Co., Ltd. Transparent conductive multi-layer structure, process for its manufacture and device making use of transparent conductive multi-layer structure
US20050106360A1 (en) 2003-11-13 2005-05-19 Johnston Raymond P. Microstructured surface building assemblies for fluid disposition
US7435074B2 (en) * 2004-03-13 2008-10-14 International Business Machines Corporation Method for fabricating dual damascence structures using photo-imprint lithography, methods for fabricating imprint lithography molds for dual damascene structures, materials for imprintable dielectrics and equipment for photo-imprint lithography used in dual damascence patterning
JP4740618B2 (ja) 2004-04-01 2011-08-03 協立化学産業株式会社 磁場を用いたパターン形成方法および電子装置の製造方法
US7160583B2 (en) 2004-12-03 2007-01-09 3M Innovative Properties Company Microfabrication using patterned topography and self-assembled monolayers
US7384173B2 (en) 2004-12-30 2008-06-10 3M Innovative Properties Company Brightness enhancement article
US20070220744A1 (en) 2005-03-22 2007-09-27 Cluster Technology Co., Ltd. Wiring Circuit Board Producing Method and Wiring Circuit Board
JP4237184B2 (ja) 2005-03-31 2009-03-11 エルピーダメモリ株式会社 半導体装置の製造方法
US20070024994A1 (en) 2005-07-29 2007-02-01 3M Innovative Properties Company Structured optical film with interspersed pyramidal structures
US7777832B2 (en) 2005-11-18 2010-08-17 3M Innovative Properties Company Multi-function enhancement film
US20070134784A1 (en) 2005-12-09 2007-06-14 Halverson Kurt J Microreplicated microarrays
US20070231541A1 (en) 2006-03-31 2007-10-04 3M Innovative Properties Company Microstructured tool and method of making same using laser ablation
US20100270058A1 (en) 2007-12-14 2010-10-28 3M Innovative Properties Company Methods for making electronic devices
EP2623632A3 (en) 2008-06-30 2017-01-18 3M Innovative Properties Company Method of forming a microstructure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300263A (en) * 1992-10-28 1994-04-05 Minnesota Mining And Manufacturing Company Method of making a microlens array and mold
RU2230391C2 (ru) * 2002-03-21 2004-06-10 Открытое акционерное общество "НИИ молекулярной электроники и завод "Микрон" Способ изготовления самосовмещенной встроенной медной металлизации интегральных схем
CN1909188A (zh) * 2004-08-23 2007-02-07 株式会社半导体能源研究所 半导体器件的制作方法

Also Published As

Publication number Publication date
JP5319769B2 (ja) 2013-10-16
US8652345B2 (en) 2014-02-18
CN102124825A (zh) 2011-07-13
JP2011527106A (ja) 2011-10-20
ATE555643T1 (de) 2012-05-15
EP2311301A1 (en) 2011-04-20
US20110100957A1 (en) 2011-05-05
WO2010002519A1 (en) 2010-01-07
EP2311301B1 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
CN102124825B (zh) 形成图案化基材的方法
EP2620523B1 (en) Method of forming a microstructure
US8764996B2 (en) Methods of patterning a material on polymeric substrates
CN102473370B (zh) 电子显示器和具有图形的金属微图案化基材
US20080095988A1 (en) Methods of patterning a deposit metal on a polymeric substrate
JP2014047299A (ja) 防汚体、表示装置、入力装置、電子機器および防汚性物品
CN101687218A (zh) 图案化基底的方法
WO2014038616A1 (ja) 防汚体、表示装置、入力装置および電子機器
CN101569247A (zh) 在基底上图案化沉积金属的方法
JP2010533939A (ja) 微細伝導性構造体を表面に製造する方法
WO2013125081A1 (ja) 防汚層、防汚性基材、表示装置および入力装置
JP2013171287A (ja) 防汚層、防汚性基材、表示装置および入力装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140430

Termination date: 20210526

CF01 Termination of patent right due to non-payment of annual fee