CN102122674B - Crystalline silicon solar cell and preparation method thereof - Google Patents

Crystalline silicon solar cell and preparation method thereof Download PDF

Info

Publication number
CN102122674B
CN102122674B CN 201110008571 CN201110008571A CN102122674B CN 102122674 B CN102122674 B CN 102122674B CN 201110008571 CN201110008571 CN 201110008571 CN 201110008571 A CN201110008571 A CN 201110008571A CN 102122674 B CN102122674 B CN 102122674B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
layer
surface
amorphous
aluminum oxide
oxide layer
Prior art date
Application number
CN 201110008571
Other languages
Chinese (zh)
Other versions
CN102122674A (en )
Inventor
褚君浩
窦亚楠
何悦
王建禄
马晓光
Original Assignee
中国科学院上海技术物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/52Manufacturing of products or systems for producing renewable energy
    • Y02P70/521Photovoltaic generators

Abstract

本发明公开了一种晶体硅太阳电池及制备方法,该晶体硅太阳电池包括pn+结硅基底,n+发射极表面有第一非晶氧化铝层和非晶氮化硅层,银电极穿过非晶氮化硅层和第一非晶氧化铝层与n+发射极连接,p型基底表面有复合钝化介质层,包括氧化硅层和第二非晶氧化铝层,p型基底与背电极接触。 The present invention discloses a method for preparing crystalline silicon solar cell and the crystalline silicon solar cell comprising a pn + junction silicon substrate, a first + emitter surface of the amorphous aluminum oxide layer and the amorphous silicon nitride layer n, through the non-silver electrode a first polycrystalline silicon layer and the amorphous aluminum oxide layer and the n + emitter connected, with a P-type substrate surface layer composite passivation dielectric comprising a silicon oxide layer and a second amorphous aluminum oxide layer, P-type substrate in contact with the back electrode . 其制备方法包括复合钝化介质层的特殊制备,本发明采用硝酸和双氧水溶液处理p型基底表面,溶胶-凝胶工艺制备第二非晶氧化铝层,退火后形成复合钝化介质层(4)。 Specially prepared composite passivation dielectric layer comprises methods for their preparation, according to the present invention, nitric acid and hydrogen peroxide was treated with p-type substrate surface, the sol - gel process alumina second amorphous layer is formed after annealing composite passivation dielectric layer (4 ). 本发明具有工艺简单,设备投资低,前表面钝化和抗反射性能好,背表面复合钝化介质层钝化效果优异并能提高长波利用效率等优点。 The present invention has simple process, low investment in equipment, the front surface passivation and good antireflection properties, excellent back surface of the composite dielectric passivation layer passivation effect and to improve the utilization efficiency of the advantages of long wave.

Description

—种晶体硅太阳电池及其制备方法技术领域 - kind of crystalline silicon solar cell and its preparation Technical Field

[0001] 本发明涉及一种晶体硅太阳电池及其制备方法,具体是一种具有双层前表面钝化减反介质层和背表面复合钝化介质层的晶体硅太阳电池及其制备方法。 [0001] The present invention relates to a crystalline silicon solar cell and its preparation method, in particular an anti double front dielectric layer and the surface passivation Save crystalline silicon solar cell and its preparation method of the back surface dielectric layer having a composite passivation.

背景技术 Background technique

[0002] 目前多数商业化晶体硅太阳电池采用丝网印刷技术,工艺流程简单,避免大量应用真空设备,便于大规模生产。 [0002] At present, most commercial crystalline silicon solar cells using screen printing technology, the process is simple, thus avoiding the application of vacuum equipment, ease of mass production. 如图2所示,其基本流程为:1.去除硅表面损伤、酸或碱液制绒形成减反射结构及化学清洗;2.在POCl3氛围中进行扩散及去除周边pn+结和磷硅玻璃;3.采用PECVD淀积SiNx = H减反膜;4.丝网印刷正面、背面电极和背表面场;5.烧结形成欧姆接触。 , Which is a basic process shown in Figure 2: removing a silicon surface damage, acid or lye pile forming an antireflection structure and chemical cleaning; 2 diffusion and removal of the surrounding pn + junction, and phosphosilicate glass POCl3 atmosphere;. 3. deposited by PECVD antireflection film SiNx = H; 4. front screen printing, the back surface electrode and a back surface field; 5. sintered form an ohmic contact. 尽管采用这种工艺能大规模生产,但这种电池的前表面和背表面载流子复合严重,且背表面对红外光响应差,使得电池效率比较低。 Although large-scale production using this technology, but the front surface and the back surface of such a battery carrier recombination severe, and the back surface of the difference in response to infrared light, so that the battery efficiency is relatively low. 实验室晶体硅最高效率电池及其他高效率电池普遍采用的是表面SiO2钝化技术,可有效的钝化表面减少载流子复合速度。 Laboratory maximum efficiency of crystalline silicon cells and other high-efficiency batteries are widely used surface of the SiO2 passivation, can effectively reduce the surface passivation carrier recombination velocity. 然而SiO2钝化层制备,一般采用900-1100°C的高温的热氧化法,对低质量的太阳能级硅片体复合影响严重,且要应用昂贵的光刻技术,工艺复杂不利于产业化大规模生产。 Preparation of SiO2 passivation layer, however, generally 900-1100 ° C using a high temperature thermal oxidation method, solar grade silicon composite member low quality severely affected, and expensive to apply a photolithography technique, process complexity is not conducive to large industrial scale production. 非晶氮化硅层做前表面的钝化层,同时也是减反射层,由于工艺的原因钝化作用和减反射作用并不能同时达到最优的效果。 Amorphous silicon nitride layer to make the front surface of the passivation layer, antireflection layer but also, due to the inactivation process and antireflective effect can not simultaneously achieve the optimal effect. 理论上双层氮化硅薄膜在折射率和厚度匹配的情况下可有效的改善钝化和减反射效果,但因折射率小于1.9的非晶氮化硅制备的困难,实际应用中很难达到双层薄膜减反射的效果。 Theoretically bilayer silicon nitride passivation film may be effectively improved in the case where the refractive index and thickness matching and antireflection effect, but the refractive index less than 1.9 of the amorphous silicon nitride prepared difficult, practical application is difficult to achieve layer film anti-reflection effect. 梯度折射率氮化硅薄膜同样因工艺问题而难以实现。 A gradient index due to process the same problem a silicon nitride film is difficult to achieve. 非晶硅/非晶氮化硅双层膜可以起到很好的钝化效果,但与后续丝网印刷中用到达800°C的高温并不兼容,因为非晶硅在高温下容易结晶,结晶后很难达到理想的钝化效果。 Amorphous silicon / amorphous silicon nitride layer film can play a very good passivation effect, but the high temperature and by a subsequent screen printing reaches to 800 ° C is not compatible, because the amorphous silicon is easily crystallized at a high temperature, after crystallization is difficult to achieve the desired passivation effect.

发明内容 SUMMARY

[0003] 本发明要解决的技术问题在于,应用简单的工艺技术实现具有双层介质层钝化减反射作用和具有背表面复合介质层薄膜钝化的晶体硅太阳能电池,及其制备方法。 [0003] The present invention is to solve the technical problem that the simple application technology to realize a two-layer dielectric antireflection effect of a passivation layer and a dielectric layer having a back surface of the composite passivation film crystalline silicon solar cells, and preparation method thereof.

[0004] 本发明晶体硅太阳电池如附图I所示,该电池结构为:在pn+结硅基底⑶的η+发射极(301)表面依次有第一非晶氧化铝层(2)和非晶氮化硅层(1),银电极(6)穿过非晶氮化硅层(I)和第一非晶氧化铝层(2)与η+发射极(301)欧姆接触,ρ型基底(302)表面有复合钝化介质层(4),复合钝化介质层(4)由氧化硅层(401)和第二非晶氧化铝层(402)组成,背电极(5)穿过复合钝化介质层(4)与ρ型基底欧姆接触。 [0004] The crystalline silicon solar cell of the present invention as shown in figures I, the cell structure is: pn + junction in the silicon substrate ⑶ η + emitter (301) surface of the amorphous aluminum oxide layer successively a first (2) and non- crystal silicon layer (1), the silver electrode (6) passes through the amorphous silicon nitride layer (I) and the first amorphous aluminum oxide layer (2) and η + emitter (301) an ohmic contact, [rho] type substrate (302) surface of a composite dielectric passivation layer (4), the composite dielectric passivation layer (4) is a silicon oxide layer (401) and the second amorphous aluminum oxide layer (402) composed of a back electrode (5) through the composite dielectric passivation layer (4) in contact with the ohmic type substrate ρ.

[0005] 所述的第一非晶氧化铝层⑵是通过溶胶-凝胶法制备在η+发射极(301)上,厚度10-20nm,起到钝化作用。 [0005] The first amorphous aluminum oxide layer ⑵ by sol - gel method in η + emitter (301), the thickness of 10-20 nm, play passivation.

[0006] 所述的非晶氮化硅层⑴是采用传统PECVD淀积60-100nm折射率为I. 9-2. 5的 [0006] The amorphous silicon nitride layer using conventional PECVD deposition ⑴ 60-100nm is a refractive index of I. 9-2. 5 in

非晶氮化硅薄膜。 Amorphous silicon nitride film.

[0007] 所述的复合钝化介质层(4)为氧化硅层(401)和第二非晶氧化铝层(402)的双层结构,起到化学钝化和场钝化的作用,其中氧化硅层(401)为1.5-3nm厚,第二非晶氧化铝层(402)为IO-IOOnm 厚。 Two-layer structure [0007] The composite dielectric passivation layer (4) is a silicon oxide layer (401) and the second amorphous aluminum oxide layer (402), play games and chemically passivating passivation effect, wherein silicon oxide layer (401) of 1.5-3nm thick second amorphous aluminum oxide layer (402) as IO-IOOnm thick. [0008] 本发明晶体硅太阳能电池的制备方法,采用在传统工艺§ I、§2、§6、§7和§8的基础上增加新工艺§3、§4和§5。 [0008] Preparation of crystalline silicon solar cell according to the present invention, using the traditional process § I, §2, §6, adding new technology §3, §4 and §5 §7 and §8 based on.

[0009] § I去除P型硅基底表面损伤、酸或碱液制绒形成减反射结构及化学清洗; [0009] § I removing the P-type silicon substrate surface damage, acid or lye pile forming an antireflection structure and chemical cleaning;

[0010] § 2在POCl3氛围中进行扩散及去除周边pn结和磷硅玻璃形成pn+结构的pn+结硅基底⑶; [0010] § 2 POCl3 diffused in the surrounding atmosphere and the removal of phosphosilicate glass, and a pn junction is formed pn + pn + junction structure ⑶ silicon substrate;

[0011] § 3采用体积比HNO3 : H202 = 20-5 : I的混合溶液浸泡ρ型基底(302)表面30分钟;其中HNO3浓度为68%, H2O2为浓度为30% ; [0011] § 3 using a volume ratio HNO3: H202 = 20-5: mixed solution of I-type substrate immersed ρ (302) surface 30 min; wherein the concentration of HNO3 is 68%, H2O2 concentration of 30%;

[0012] § 4采用溶胶-凝胶法制备的氧化铝溶胶,其步骤如下: [0012] § 4 sol - alumina sol gel method, the following steps:

[0013] (a)在强搅拌下,将异丙醇铝倒入含有部分硝酸的沸水中水解,持续搅拌;30分钟后温度降到85-95°C ; [0013] (a) under strong stirring, aluminum isopropoxide was poured into boiling water containing a portion of the nitric acid hydrolysis, stirring was continued for; 30 minutes, the temperature dropped to 85-95 ° C;

[0014] (b)60分钟后加入浓硝酸,即得到澄清的氧化铝溶胶,自然冷却; [0014] (b) was added concentrated nitric acid for 60 minutes, to obtain a clear alumina sol, natural cooling;

[0015] § 5在步骤3得到的pn+结硅基底(3)的η+发射极(301)和ρ型基底(302)表面采用提拉法或旋涂法制备氧化铝薄膜,400-60(TC退火15-30分钟后,第一非晶氧化铝层 [0015] § 5 at the pn junction obtained in Step 3 + silicon substrate (3) [eta] + emitter (301) and ρ-type substrate (302) surface prepared by Czochralski method or a spin coating method films of alumina, 400-60 ( TC 15-30 minutes after annealing, a first amorphous aluminum oxide layer

(2)的厚度为10-20nm,第二非晶氧化铝层(402)的厚度为IO-IOOnm ; (2) has a thickness of 10-20nm, the thickness of the second amorphous aluminum oxide layer (402) is IO-IOOnm;

[0016] § 6采用传统PECVD淀积60-100nm折射率为I. 9-2. 5的非晶氮化硅薄膜形成非晶氮化娃层⑴; [0016] § 6 60-100nm conventional PECVD deposition of amorphous silicon nitride film having a refractive index of I. 9-2 5 baby forming an amorphous nitride layer ⑴.;

[0017] § 7丝网印刷正面、背面电极和背表面场。 [0017] § 7 screen printed front, back surface electrode and a back surface field. 与传统工艺稍有不同的是,印刷背面电极和电场的银浆和铝浆图形采用栅线结构,先印刷铝衆,后印刷银浆覆盖铝浆; With the traditional process is slightly different, silver and aluminum paste pattern printed using the back electrode and the electric field of the gate line structure, the first all-printed aluminum, aluminum paste after printing paste cover;

[0018] § 8烧结使银电极(6)与η+发射极(301)以及背电极(5)与ρ型基底(302)形成欧姆接触。 [0018] § 8 that the sintered silver electrode (6) and η + emitter (301) and a back electrode (5) and ρ-type substrate (302) form an ohmic contact.

[0019] 本发明的优点在于: [0019] The advantage of the present invention:

[0020] I本发明电池结构前表面第一非晶氧化铝层可较好的钝化发射极表面,通过调节非晶氮化硅的折射率,氢含量和厚度可有效提高抗反射性能; [0020] The front surface of the first amorphous aluminum oxide layer cell structure according to the present invention I may be preferably passivated emitter surface, by adjusting the refractive index of amorphous silicon nitride, the thickness of the hydrogen content and can improve the antireflective properties;

[0021] 2本发明具有η+发射极(301)表面钝化介质层和P型基底(302)表面复合钝化介质层的电池与传统丝网印刷电池相比,增加这两层结构,可较好的钝化电池表面,尤其是主流P型晶体硅太阳能电池的背表面,复合钝化介质层起到化学钝化和场钝化的双重效果,钝化效果优良,减少复合损失,并增强红外光的反射效率提高长波响应。 [0021] 2 η + emitter invention having a (301) surface passivation dielectric layer and cell P-type substrate (302) surface of the composite dielectric passivation layer compared to conventional screen-printed battery, which increase two-layer structure, can be preferably passivated surface of the battery, especially the back surface of the main P-type crystalline silicon solar cell, the composite layer functions as a passivation dielectric field and chemical passivation passivation dual effect, excellent passivation effect, to reduce recombination loss, and enhance improve the efficiency of infrared light reflected longer wavelength response.

[0022] 3本发明采用溶胶-凝胶法制备氧化铝溶胶,然后在P型基底经过HNO3和H2O2混合溶液处理过的P型硅基底(3)的η+发射极(301)表面和P型基底(302)表面制备钝化介质层非晶氧化铝薄膜材料,在P型基底(302)表面形成复合钝化介质层结构,制备工艺简单,设备投资少,易于实现工业化生产。 [0022] 3 of the present invention by sol - gel process alumina sol, and then through a mixed solution HNO3 and H2O2-treated in a P-type substrate a P-type silicon substrate (3) η + emitter (301) and a P-type surface a substrate (302) surface was prepared amorphous aluminum oxide passivation film dielectric layer material (302) formed in the P type substrate surface passivation dielectric composite layer structure, the preparation process is simple, less investment in equipment, is easy to realize industrial production.

附图说明 BRIEF DESCRIPTION

[0023] 图I本发明具有前表面钝化减反层和背表面复合钝化介质层晶体硅太阳能电池结构。 [0023] FIG. I of the invention having a front surface passivation and antireflection layer, the back surface passivation of crystalline silicon solar cell composite structure of a dielectric layer.

[0024] 图2传统丝网印刷晶体硅太阳电池制作工艺流程图,其中: [0024] FIG conventional screen printing FIG crystalline silicon solar cell production process, wherein:

[0025] a去除ρ型硅表面损伤、制绒,清洗; [0025] a silicon surface damage removal ρ, texturing, cleaning;

[0026] b扩散后形成pn+结; [0026] b pn + junction is formed after diffusion;

[0027] c去除周边pn+结;[0028] d PECVD沉积非晶氮化硅层; [0027] c remove peripheral pn + junction; [0028] d PECVD depositing an amorphous silicon nitride layer;

[0029] e丝网印刷正反两面并烧结形成欧姆接触。 [0029] e and screen printing both surfaces of the sintered form an ohmic contact.

[0030] 图3本发明具有所述结构太阳能电池的一种制备工艺流程,其中: [0030] FIG. 3 for the preparation process of the present invention having the structure of the solar cell, wherein:

[0031] a去除表面损伤、制绒,清洗; [0031] a removing surface damage, texturing, cleaning;

[0032] b扩散刻蚀后形成pn+结; After [0032] b diffusion pn + junction formed by etching;

[0033] c ρ型基底表面处理形成氧化硅层,η+发射极表面和P型基底表面制备非晶氧化铝薄膜; [0033] c ρ-type substrate treatment surface a silicon oxide layer, η + emitter surface of the P-type substrate and the preparation of amorphous aluminum oxide film surface;

[0034] d PECVD沉积非晶氮化硅层; [0035] e丝网印刷正反两面并烧结形成欧姆接触。 [0034] d PECVD depositing an amorphous silicon nitride layer; [0035] e and screen printing both surfaces of the sintered form an ohmic contact.

具体实施方式 detailed description

[0036] 下面结合附图和实施例,对本发明作进一步详细说明。 [0036] accompanying drawings and the following embodiments, the present invention is described in further detail.

[0037] 实施例I : [0037] Example I:

[0038] 如图3所示,一种晶体硅太阳电池的结构。 [0038] FIG, 3 shows the structure of a crystalline silicon solar cell. 其制备工艺过程如下: The preparation process is as follows:

[0039] I.去除ρ型硅基底表面损伤、酸或碱液制绒形成减反射结构及化学清洗; [0039] I. removed ρ-type silicon substrate surface damage, acid or lye pile forming an antireflection structure and chemical cleaning;

[0040] 2.在P0C13氛围中进行扩散及通过刻蚀去除周边pn结和磷硅玻璃形成pn+结构; [0040] 2. P0C13 atmosphere diffuses and pn + structure is formed by etching and removing the periphery of the pn junction phosphosilicate glass;

[0041] 3.采用体积比HN03 : H202 = 10 : I的混合溶液浸泡P型基底表面30分钟;其中HN03浓度为68%,H202为浓度为30% ; [0041] 3. Using a volume ratio of HN03: H202 = 10: I mixed solution was immersed 30 minutes P-type substrate surface; wherein HN03 concentration of 68%, H202 30% concentration;

[0042] 4.采用溶胶-凝胶法制备的氧化硅溶胶,其步骤如下: [0042] 4. The sol - gel method silica sol, the following steps:

[0043] a在强搅拌下,将异丙醇铝倒入含有部分硝酸的沸水中水解,持续搅拌;30分钟后温度降到90°C。 [0043] a under strong stirring, aluminum isopropoxide was poured into boiling water containing a portion of the nitric acid hydrolysis, stirring was continued for; 30 minutes, the temperature dropped to 90 ° C.

[0044] b 60分钟后加入浓硝酸,即得到澄清的氧化铝溶胶,自然冷却; [0044] b 60 minutes after adding concentrated nitric acid to obtain a clear alumina sol, natural cooling;

[0045] 5.在步骤3得到的pn+结硅基底上采用提拉法制备前表面和背表面氧化铝薄膜,500°C退火30分钟后,η+发射极表面非晶氧化铝厚度约15nm,ρ型基底表面复合钝化介质层厚度17nm ; [0045] 5. pn + junction obtained in step 3 were prepared by pulling the front and back surfaces Method aluminum oxide film on a silicon substrate, 500 ° C anneal for 30 minutes, η + emitter surface of the amorphous alumina thickness of about 15nm, surface of the composite dielectric passivation layer thickness 17nm ρ-type substrate;

[0046] 6.在η+发射极表面非晶氧化铝层上采用传统PECVD淀积70nm折射率为2. 33的 [0046] 6. A conventional PECVD deposition of 70nm of a refractive index of 2.33 on η + emitter surface of the amorphous aluminum oxide layer

非晶氮化硅薄膜; Amorphous silicon nitride film;

[0047] 7.丝网印刷正面、背面电极和背表面场,印刷背面电极和电场的银浆和铝浆图形采用栅线结构,先印刷铝浆,后印刷银浆覆盖铝浆; [0047] 7. The screen printing the front, the back surface electrode and a back surface field, printing of the back electrode and the electric field pattern using silver paste and aluminum paste gate line structure, the first printing aluminum paste, aluminum paste after printing paste cover;

[0048] 8.烧结使银电极与η+发射极以及背电极与P型基底形成欧姆接触。 [0048] 8. The sintered silver electrode and η + emitter and the P-type substrate and the back electrode forming an ohmic contact.

[0049] 实施例2 : [0049] Example 2:

[0050] 同实施例1,除了采用旋涂法制备非晶氧化铝层,η+发射极表面非晶氧化铝薄膜厚度为10nm,ρ型基底表面复合钝化介质层薄膜厚度为50nm。 [0050] as in Example 1, except that the amorphous aluminum oxide layer is prepared by spin coating, η + emitter surface of the amorphous aluminum oxide film having a thickness of 10nm, ρ-type substrate surface of the composite dielectric layer, a passivation film having a thickness of 50nm.

Claims (2)

  1. 1. 一种晶体娃太阳电池,其特征在于:该电池的结构为:在pn+结娃基底(3)的η+发射极(301)表面依次有厚度为10-20nm的第一非晶氧化铝层(2)和厚度为60_100nm的非晶氮化硅层(1),银电极(6)穿过非晶氮化硅层(I)和第一非晶氧化铝层(2)与η+发射极(301)欧姆接触,P型基底(302)表面有复合钝化介质层(4),复合钝化介质层(4)由厚度为I. 5-3nm的氧化硅层(401)和厚度为IO-IOOnm的第二非晶氧化铝层(402)组成,背电极(5)穿过复合钝化介质层(4)与P型基底(302)欧姆接触。 A baby crystal solar cell, wherein: the structure of the cell is: η pn + junction baby in a substrate (3) + emitter (301) surface of a first order of amorphous aluminum oxide with a thickness of 10-20nm layer (2) and a thickness of the amorphous silicon nitride layer (1) 60_100nm, the silver electrode (6) passes through the amorphous silicon nitride layer (I) and the first amorphous aluminum oxide layer (2) and the emission η + poles (301) ohmic contacts, P-type substrate (302) surface of a composite dielectric passivation layer (4), the composite dielectric passivation layer (4) having a thickness of I. 5-3nm silicon oxide layer (401) and a thickness of IO-IOOnm second amorphous aluminum oxide layer (402) composed of a back electrode (5) through the composite dielectric passivation layer (4) in ohmic contact with the P-type substrate (302).
  2. 2. 一种基于权利要求I所述结构的晶体硅太阳电池制备方法,其特征在于包括以下步骤: 1).去除P型硅表面损伤、酸或碱液制绒形成减反射结构及化学清洗; 2).在POCl3氛围中进行扩散及去除周边pn结和磷娃玻璃形成pn+结构的pn+结娃基底⑶; 3).采用体积比HNO3 : H2O2 = 10 : I的混合溶液浸泡P型基底(302)表面30分钟;其中HNO3浓度为68%, H2O2为浓度为30% ; 4).采用溶胶-凝胶法制备的氧化铝溶胶,其步骤如下: (a)在强搅拌下,将异丙醇铝倒入含有部分硝酸的沸水中水解,持续搅拌,30分钟后温度降至IJ 85-950C ; (b) 60分钟后加入浓硝酸,即得到澄清的氧化铝溶胶,自然冷却; 5).在步骤3得到的pn+结硅基底(3)的η+发射极(301)和ρ型基底(302)表面采用提拉法或旋涂法制备氧化铝薄膜,400-600°C退火15-30分钟后,生成厚度为10_20nm的第一非晶氧化铝层(2)及厚度为IO-IOOnm的 A rights-based crystalline silicon solar cell production method of the structure in claim I, characterized by comprising the steps of: 1) removing the P-type silicon surface damage, acid or lye pile forming an antireflection structure and chemical cleaning;. 2) diffusing and removing the periphery of the pn junction and the phosphorus baby glass POCl3 atmosphere formed pn + pn + junction baby base ⑶ structure; 3) the volume ratio HNO3: H2O2 = 10: I mixed solution immersion P-type substrate (302. ) surface 30 min; wherein the concentration of HNO3 is 68%, H2O2 concentration of 30%; 4) sol - gel prepared alumina sol, comprises the following steps:. (a) under strong stirring, isopropanol aluminum was poured into boiling water containing nitric acid hydrolyzed portion, stirring was continued and after 30 minutes the temperature was lowered IJ 85-950C; (b) was added concentrated nitric acid for 60 minutes, to obtain a clear alumina sol, natural cooling; 5). obtained in step 3 pn + junction silicon substrate (3) η + emitter (301) and ρ-type substrate (302) surface of the Czochralski method or a spin coating film of aluminum oxide was prepared, 400-600 ° C for 15-30 minutes annealing after generating a first thickness of the amorphous aluminum oxide layer (2) and thickness 10_20nm of the IO-IOOnm 二非晶氧化铝层(402); 6).在第一非晶氧化铝层⑵表面采用传统PECVD淀积60-100nm折射率为I. 9-2. 5的非晶氮化硅薄膜形成非晶氮化硅层(I); 7).丝网印刷正面、背面电极和背表面场,印刷背面电极和电场的银浆和铝浆图形采用栅线结构,先印刷铝浆,后印刷银浆覆盖铝浆; 8).烧结使银电极(6)与η+发射极(301)以及背电极(5)与ρ型基底(302)形成欧姆接触。 Two amorphous aluminum oxide layer (402); 6) is deposited by conventional PECVD amorphous silicon nitride film having a refractive index 60-100nm I. 9-2 5 ⑵ in a first surface of a non-amorphous aluminum oxide layer is formed. crystalline silicon nitride layer (I);. 7) of screen printing a front, a back surface field and the back electrode, the back electrode and the electric field of printing silver paste and aluminum paste pattern using the gate line structure, the first aluminum paste printing, the printing paste covering the aluminum paste;. 8) sintering the silver electrode (6) and η + emitter (301) and a back electrode (5) and ρ-type substrate (302) form an ohmic contact.
CN 201110008571 2011-01-14 2011-01-14 Crystalline silicon solar cell and preparation method thereof CN102122674B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110008571 CN102122674B (en) 2011-01-14 2011-01-14 Crystalline silicon solar cell and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110008571 CN102122674B (en) 2011-01-14 2011-01-14 Crystalline silicon solar cell and preparation method thereof

Publications (2)

Publication Number Publication Date
CN102122674A true CN102122674A (en) 2011-07-13
CN102122674B true CN102122674B (en) 2013-01-09

Family

ID=44251185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110008571 CN102122674B (en) 2011-01-14 2011-01-14 Crystalline silicon solar cell and preparation method thereof

Country Status (1)

Country Link
CN (1) CN102122674B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150303317A1 (en) * 2012-01-06 2015-10-22 Hitachi Chemical Company, Ltd. Semiconductor substrate provided with passivation film and production method, and photovoltaic cell element and production method therefor
CN103311348A (en) * 2012-03-08 2013-09-18 茂迪股份有限公司 Solar energy cell and manufacturing method thereof
KR101631450B1 (en) * 2013-03-05 2016-06-17 엘지전자 주식회사 Solar cell
CN103606568A (en) * 2013-11-21 2014-02-26 常州天合光能有限公司 Film passivation structure for crystalline silica solar cell
KR20180087342A (en) * 2015-11-24 2018-08-01 플랜트 피브이, 인크 The fired multi-layer stack for use in integrated circuits and solar cells
CN106653872B (en) * 2016-11-25 2018-06-29 罗雷 Two anti-solar effects pid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051657A (en) 2006-04-05 2007-10-10 三星Sdi株式会社 Solar cell and its method of manufacture
CN101262029A (en) 2007-03-07 2008-09-10 信越化学工业株式会社 Method for manufacturing single crystal silicon solar cell and single crystal silicon solar cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4121928B2 (en) * 2003-10-08 2008-07-23 シャープ株式会社 Method of manufacturing a solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051657A (en) 2006-04-05 2007-10-10 三星Sdi株式会社 Solar cell and its method of manufacture
CN101262029A (en) 2007-03-07 2008-09-10 信越化学工业株式会社 Method for manufacturing single crystal silicon solar cell and single crystal silicon solar cell

Also Published As

Publication number Publication date Type
CN102122674A (en) 2011-07-13 application

Similar Documents

Publication Publication Date Title
CN103219428A (en) Textured structure of crystalline silicon solar cell and preparation method thereof
CN101853899A (en) Method for preparing solar cell by using local area back field
CN101533874A (en) Method for preparing selective emitter crystalline silicon solar cell
CN101777603A (en) Method for manufacturing back contact solar energy batteries
CN101540350A (en) Process for preparing back point-contact crystalline-silicon solar cells
CN201699033U (en) Two-sided illuminated crystalline silicon solar battery
CN101882650A (en) Preparation method of solar cell with buried charge layer
CN103456804A (en) Method for forming inverted-pyramid porous surface nanometer texture on polycrystalline silicon and method for manufacturing short-wave reinforcing solar cell
CN102157608A (en) Method for reducing surface light reflectivity of silicon chip
CN101783374A (en) Method for manufacturing silicon solar cell
CN101866956A (en) Anti-reflective film and preparation method thereof
CN101814547A (en) Method for preparing selective emitter crystalline silicon solar cell
CN104393114A (en) Preparation method of polycrystalline black silicon of micro-nano composite suede structure
CN104538501A (en) N-type double-sided battery and manufacturing method thereof
CN102064237A (en) Double-layer passivating method for crystalline silicon solar battery
CN101540351A (en) Method for etching matte on surface of single crystal silicon solar energy battery
CN101826573A (en) Method for preparing semiconductor secondary grid-metal primary grid crystalline silicon solar battery
CN102212885A (en) Texturing method for polycrystalline silicon solar cells
CN103872184A (en) Method for manufacturing crystalline silicon solar cell resistant to PID
CN101969075A (en) Double-layer anti-reflective film for crystalline silicon solar battery and preparation method thereof
CN102185033A (en) Manufacturing process of high-efficiency crystalline silicon solar battery with selective emitting electrode
CN102403399A (en) Preparation method and structure of one-film and multipurpose masked texturing solar cell
CN101976701A (en) Manufacturing method of back passivation cell
CN102332495A (en) Fabrication method for crystalline silicon solar cell
CN101820009A (en) Crystal silicon solar cell with selective emitter and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model