CN102117847A - 太阳能电池及其制造方法 - Google Patents

太阳能电池及其制造方法 Download PDF

Info

Publication number
CN102117847A
CN102117847A CN2010106224417A CN201010622441A CN102117847A CN 102117847 A CN102117847 A CN 102117847A CN 2010106224417 A CN2010106224417 A CN 2010106224417A CN 201010622441 A CN201010622441 A CN 201010622441A CN 102117847 A CN102117847 A CN 102117847A
Authority
CN
China
Prior art keywords
layer
contact
solar cell
scope
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010106224417A
Other languages
English (en)
Inventor
林经纬
曾华斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Apollo Ltd
Original Assignee
Du Pont Apollo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Apollo Ltd filed Critical Du Pont Apollo Ltd
Publication of CN102117847A publication Critical patent/CN102117847A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明中已揭示了一种太阳能电池及其制造方法。根据本发明,具有沟槽的p-层或n-层帮助加强所述太阳能电池的电场且促进载流子收集,进而改进所述太阳能电池的总体效率。

Description

太阳能电池及其制造方法
技术领域
本发明涉及太阳能电池及其制造方法。明确地说,所述太阳能电池已改进了总体功率输出和总体效率。
背景技术
太阳能电池正广泛地用于多种不同应用中。举例来说,在太空应用中,需要轻质、低成本但高效率的太阳能电池。典型的太阳能电池包括衬底、前部电极、光电转换元件和后部电极,其依序安置于衬底上。传入光穿过衬底和前部电极而透射到光电转换层,以PIN或PN结结构形成的光电转换元件用以将光能转换为电能。
已对太阳能电池进行了大量研究。US 4,500,744揭示一种例如太阳能电池等光伏装置,其包含PIN类型的非晶硅层结构。光入射在上面的p-层或n-层可由多个子层组成。i-层侧上的子层具有比光入射在上面的子层的光学禁用带隙大的光学禁用带隙,使得太阳能电池可实现改进的开路电压、短路电流密度和转换效率。然而,子层增加了p-层与n-层之间的距离,且因此减小了电场并降低了漂移力。这将影响载流子的收集且又限制了电池效率。
US 5,538,564揭示一种三维非晶硅/微晶硅太阳能电池,其使用深p-触点和n-触点以在电池的有源材料内创建高电场。然而,US 5,538,564并没有解决p-触点和n-触点与有源材料(即,i-层)之间的接触问题。p-触点和n-触点与有源材料的直接接触造成p+和n+载流子有可能扩散到有源材料中。在有源材料中存在掺杂剂降低了有源材料的光吸收能力,且因此降低了太阳能电池的总体功率输出和效率。此外,p-触点和n-触点由脉冲式激光掺杂形成。相对难以控制触点的轮廓。
US 6,261,862揭示一种用于产生光伏元件的工艺。在这种类型的光伏元件中,必须很好地控制i-层的厚度。如果i-层过厚,那么电场较弱,以致影响载流子的收集且限制电池效率。如果i-层过薄,那么光伏层不足以制作有效的太阳能电池。此外,在i-层与p-层或i-层之间的界面处形成缓冲半导体层以避免掺杂剂扩散到i-层。类似地,所添加的缓冲半导体层增加了p-层与n-层之间的距离,且因此电场比以前更弱。
鉴于上述内容,需要一种较高效率的太阳能电池。此需要由本发明提供,其中太阳能电池将p-触点或n-触点放置于有源材料内,使得可在有源材料本身内而非在有源材料层的顶部和底部处拾取载流子,以便贯穿有源材料产生较强的收集场。此外,触点由图案化技术提供,使得可很好地控制触点的轮廓且可在有源材料与触点之间沉积至少一个缓冲硅层以避免掺杂剂扩散到有源材料中。
发明内容
本发明的目的在于提供一种高效率的太阳能电池。
根据本发明,所述太阳能电池包含依序形成于电绝缘衬底上的至少一个第一电极、呈PIN或NIP结构的硅层和至少一个第二电极,其中所述硅层包含p-层、i-层和n-层,其依序或反向形成,且位于相对于所述i-层较靠近所述电绝缘衬底的侧上的所述p-层或所述n-层具有用所述i-层填充的多个沟槽。所述太阳能电池进一步包含形成于所述i-层与具有所述多个沟槽的所述p-层或n-层之间的至少一个缓冲硅层。
本发明的另一目的在于提供一种用于制造高效率太阳能电池的方法。
根据本发明,所述制造方法包含以下步骤:在电绝缘衬底上依序形成至少一个第一电极、呈PIN或NIP结构的硅层和至少一个第二电极,其中通过形成p-层或n-层、使用图案化技术在所述p-层或n-层中形成多个沟槽、在所述p-层或n-层上形成i-层并覆盖所述多个沟槽且在所述i层上形成n-层或p-层来制作所述硅层。所述方法进一步包含以下步骤:在所述i-层与具有所述多个沟槽的所述p-层或n-层之间形成至少一个缓冲硅层。
附图说明
图1(a)到图1(c)说明根据本发明的一个实施例的用于制造太阳能电池的方法。
图2展示根据本发明的另一实施例的太阳能电池的示意性横截面图。
具体实施方式
本发明中已揭示了一种太阳能电池及其制造方法,其中所述太阳能电池中所使用的光电转换的方法和原理是所属领域的一般技术人员众所周知的,且因此下文将不再进一步描述。
为了获得较好理解,下文参看图式通过实施例来详细说明本发明,所述实施例不希望限制本发明的范围。将了解,可易于由所属领域的一般技术人员实现的任何修改或更改属于本说明书的揭示内容的范围内。
适合用于本发明的电绝缘衬底可为所属领域的一般技术人员已知的任何衬底。举例来说,所述衬底由玻璃、塑料或金属构成,但不限于玻璃、塑料或金属。
所属领域的一般技术人员鉴于不同类型的太阳能电池明了适合用于本发明的第一电极和第二电极,且其可由任何合适材料(例如透明导电氧化物(TCO)、金属及其组合)制成。适合用于本发明的透明导电氧化物的种类为此项技术中已知的,例如但不限于氧化锡、氧化铟、氧化锌和氧化铟锡。适合用于本发明的金属的种类为此项技术中已知的,例如但不限于Al、Ag、Ti、Ni、Au、Cr、Pt、Zn、Mo、W或其合金。
在本发明中,光入射在上面的电极称为前部电极且由透明导电氧化物制成,且相对的电极称为后部电极且由金属或透明导电氧化物与金属的组合制成。由透明导电氧化物制成的电极通过例如电阻-热量气相沉积、溅镀、喷镀、丝网印刷、喷射印刷和卷到卷处理等合适方法形成,且由金属制成的电极是通过例如真空气相沉积、电子束气相沉积、溅镀、丝网印刷、喷射印刷和卷到卷处理等合适方法形成。
适合用于本发明的硅层的i-层包含非晶硅、非晶硅/微晶硅、晶体硅和多晶硅,例如但不限于:a-Si:H、a-Si:F、a-Si:H:F、a-SiC:H、a-SiC:F、a-SiC:H:F、a-SiGe:H、a-SiGe:F、a-SiGe:H:F、μc-SiH、μc-SiGe:H、μc-SiC:H、多晶Si:H、多晶Si:F或多晶Si:H:F(本文中“a-”意指“非晶”,且“μc-”意指“微晶”)。P-层和n-层可通过将价电子控制剂掺杂到与前述构成硅层的i-层的材料相同的半导体材料中来形成。
在本发明中,形成于i-层与p-层或n-层之间的缓冲硅层的数目不受限制,且两个为优选的。适合用于本发明的缓冲硅层为例如但不限于a-Si:H、a-Si:F、a-Si:H:F、a-SiC:H、a-SiC:F、a-SiC:H:F、a-SiGe:H、a-SiGe:F、a-SiGe:H:F、μc-SiH、μc-SiGe:H或μc-SiC:H。
前述相应硅层可通过例如等离子体增强型化学气相沉积、光辅助型化学气相沉积、热化学气相沉积、离子镀和溅镀等半导体膜沉积工艺来形成。
在本发明中,p-层或n-层中的沟槽通过常规图案化技术来形成,例如但不限于激光划线、电子枪或光刻,且激光划线为优选的。多个沟槽的深度在从约到约
Figure BSA00000410685900032
的范围内,且优选在从约
Figure BSA00000410685900033
到约
Figure BSA00000410685900034
的范围内。两个邻近沟槽之间的距离在从约0.1μm到约2μm的范围内,且优选在从约0.2μm到约1.0μm的范围内。
在本发明的实施例中,多个沟槽可将p-层或n-层划分为若干p-触点或n-触点。触点的深度在从约到约
Figure BSA00000410685900036
的范围内,且优选在从约
Figure BSA00000410685900037
到约
Figure BSA00000410685900038
的范围内。触点的宽度在从约0.1μm到约2μm的范围内,且优选在从约0.2μm到约1.0μm的范围内。
根据本发明,可在i-层与较靠近太阳能电池的第二电极的侧上的p-层或n-层之间形成额外缓冲硅层。
参看附图来解释本发明的用于产生太阳能电池的工艺的优选实施例。图1(a)到图1(c)说明根据本发明的一个实施例的用于制造太阳能电池的方法。
如图1(a)所示,在玻璃衬底12上沉积透明导电氧化物层作为前部电极14,且在前部电极14上沉积p+SiC层16。如图1(b)所示,使用激光划线工艺以在p+SiC层16中形成多个沟槽18。如图1(c)所示,在p+SiC层16和沟槽18上沉积p-SiC层20,且在p-SiC层20上沉积SiC层22。此后,在SiC层22上沉积i-层24,且所述i-层24填充沟槽18,且在i-层24上沉积n-SiC层26。最后,在n-SiC层26上沉积ZnO层和经图案化的Ag/Ti层作为后部电极28。
图2展示根据本发明的另一实施例的太阳能电池的示意性横截面图。如图2所示,在玻璃衬底32上沉积前部电极34,通过使用激光划线工艺在p+SiC层(未图示)中界定多个沟槽38来在前部电极34上形成多个p+SiC触点36,随后在p+SiC触点36和沟槽38上沉积p-SiC层40和SiC层42,在SiC层42上沉积i-层44且其填充沟槽38,且在i-层44上沉积n-SiC层46和后部电极48。
给定上述内容,本发明的太阳能电池使用p触点或n触点在电池的i-层内创建高电场。当电场增大时,载流子收集的量增加。这又改进了太阳能电池的效率。此外,当电场增大时,太阳能电池中的串联电阻减小,且因此较少功率作为热量耗散。另外,当电场较强时,降级的量将减小。上文提及的两个效应有效地改进本发明的太阳能电池的所产生总体功率输出和总体效率。
虽然已参考说明性实施例描述了本发明,但应理解,所属领域的技术人员可易于实现的任何修改或更改将属于本说明书和所附权利要求书的揭示内容的范围内。

Claims (10)

1.一种太阳能电池,其包含依序形成于电绝缘衬底上的至少一个第一电极、若干呈PIN或NIP结构的硅层和至少一个第二电极,
其中所述硅层包含p-层、i-层和n-层,其依序或反向形成,且位于相对于所述i-层较靠近所述电绝缘衬底的侧上的所述p-层或所述n-层具有用所述i-层填充的多个沟槽。
2.根据权利要求1所述的太阳能电池,其中所述多个所述沟槽的深度在从约
Figure FSA00000410685800011
到约
Figure FSA00000410685800012
的范围内,且两个邻近沟槽之间的距离在从约0.1μm到约2μm的范围内。
3.根据权利要求1所述的太阳能电池,其中所述多个沟槽将所述p-层或n-层划分为若干p-触点或n-触点。
4.根据权利要求3所述的太阳能电池,其中所述p-触点或n-触点的深度在从约
Figure FSA00000410685800013
到约
Figure FSA00000410685800014
的范围内,且所述p-触点或n-触点的宽度在从约0.1μm到约2μm的范围内。
5.根据权利要求1所述的太阳能电池,其进一步包含形成于所述i-层与具有所述多个沟槽的所述p-层或n-层之间的至少一个缓冲硅层。
6.一种用于制造太阳能电池的方法,其包含在电绝缘衬底上依序形成至少一个第一电极、呈PIN或NIP结构的若干硅层和至少一个第二电极,
其中通过形成p-层或n-层、使用图案化技术在所述p-层或n-层中形成多个沟槽、在所述p-层或n-层上形成i-层并覆盖所述多个沟槽且在所述i层上形成n-层或p-层来制作所述硅层。
7.根据权利要求6所述的方法,其中所述图案化技术包含激光划线、电子枪或光刻。
8.根据权利要求6所述的方法,其中所述多个所述沟槽的深度在从约
Figure FSA00000410685800015
到约
Figure FSA00000410685800016
的范围内,且两个邻近沟槽之间的距离在从约0.1μm到约2μm的范围内。
9.根据权利要求6所述的方法,其中形成所述多个沟槽以将所述p-层或n-层划分为若干p-触点或n-触点。
10.根据权利要求9所述的方法,其中所述p-触点或n-触点的深度在从约
Figure FSA00000410685800018
到约
Figure FSA00000410685800019
的范围内,且所述p-触点或n-触点的宽度在从约0.1μm到约2μm的范围内。
CN2010106224417A 2009-12-30 2010-12-30 太阳能电池及其制造方法 Pending CN102117847A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29127709P 2009-12-30 2009-12-30
US61/291,277 2009-12-30

Publications (1)

Publication Number Publication Date
CN102117847A true CN102117847A (zh) 2011-07-06

Family

ID=44185978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010106224417A Pending CN102117847A (zh) 2009-12-30 2010-12-30 太阳能电池及其制造方法

Country Status (2)

Country Link
US (1) US20110155229A1 (zh)
CN (1) CN102117847A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544184A (zh) * 2012-03-19 2012-07-04 厦门大学 一种横向结构的pin太阳能电池及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523902A (ja) 2008-04-14 2011-08-25 バンドギャップ エンジニアリング, インコーポレイテッド ナノワイヤアレイを製造するためのプロセス
WO2013123066A1 (en) * 2012-02-14 2013-08-22 Bandgap Engineering, Inc. Screen printing electrical contacts to nanowire areas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567400A (zh) * 2008-04-10 2009-10-28 韩国铁钢株式会社 薄膜硅太阳能电池及其制造方法
CN201360010Y (zh) * 2009-02-23 2009-12-09 福建钧石能源有限公司 薄膜光伏器件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914679A (ja) * 1982-07-16 1984-01-25 Toshiba Corp 光起電力装置
US5538564A (en) * 1994-03-18 1996-07-23 Regents Of The University Of California Three dimensional amorphous silicon/microcrystalline silicon solar cells
US6261862B1 (en) * 1998-07-24 2001-07-17 Canon Kabushiki Kaisha Process for producing photovoltaic element
JP4484886B2 (ja) * 2007-01-23 2010-06-16 シャープ株式会社 積層型光電変換装置の製造方法
KR101319750B1 (ko) * 2009-06-10 2013-10-17 씬실리콘 코포레이션 반도체 다층 스택을 구비한 광전지 모듈 및 광전지 모듈의 제작 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567400A (zh) * 2008-04-10 2009-10-28 韩国铁钢株式会社 薄膜硅太阳能电池及其制造方法
CN201360010Y (zh) * 2009-02-23 2009-12-09 福建钧石能源有限公司 薄膜光伏器件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544184A (zh) * 2012-03-19 2012-07-04 厦门大学 一种横向结构的pin太阳能电池及其制备方法
CN102544184B (zh) * 2012-03-19 2014-08-06 厦门大学 一种横向结构的pin太阳能电池及其制备方法

Also Published As

Publication number Publication date
US20110155229A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
US9520517B2 (en) Solar cell
US10084107B2 (en) Transparent conducting oxide for photovoltaic devices
KR101060239B1 (ko) 집적형 박막 광기전력 소자 및 그의 제조 방법
EP3496158A1 (en) Solar cell and method of manufacturing the same
US20090314337A1 (en) Photovoltaic devices
KR20120084104A (ko) 태양전지
US11616160B2 (en) Tandem solar cell
US20100200059A1 (en) Dual-side light-absorbing thin film solar cell
JP7126444B2 (ja) 光起電力デバイスおよびその製造方法
EP2380205A1 (en) Solar cell
US20150295099A1 (en) High work-function buffer layers for silicon-based photovoltaic devices
KR20150013306A (ko) 헤테로접합 태양 전지 및 그 제조 방법
CN102117847A (zh) 太阳能电池及其制造方法
KR101410392B1 (ko) 이종 접합 태양전지 및 그 제조방법
EP3419057B1 (en) Solar cell and method for preparing same
JP7202456B2 (ja) 太陽電池および太陽電池の製造方法
KR20130061346A (ko) 태양전지 및 그 제조방법
KR101854236B1 (ko) 태양전지 및 그 제조방법
KR102666386B1 (ko) 태양전지 및 이의 제조방법
KR101643231B1 (ko) 태양전지 및 그 제조방법
US20240063314A1 (en) A solar cell
KR101640815B1 (ko) 박막 태양전지 및 그 제조방법
KR101621551B1 (ko) 태양전지 및 이의 제조방법
KR20120122023A (ko) 이종접합형 태양전지
KR20110026628A (ko) 고효율 태양전지 및 그의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110706