CN102106022B - 适于一级锂电池的低温性能的thf基电解液 - Google Patents

适于一级锂电池的低温性能的thf基电解液 Download PDF

Info

Publication number
CN102106022B
CN102106022B CN200980129305.XA CN200980129305A CN102106022B CN 102106022 B CN102106022 B CN 102106022B CN 200980129305 A CN200980129305 A CN 200980129305A CN 102106022 B CN102106022 B CN 102106022B
Authority
CN
China
Prior art keywords
battery
lithium
electrolyte
solvent
oxolane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980129305.XA
Other languages
English (en)
Other versions
CN102106022A (zh
Inventor
黄维维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energizer Brands LLC
Original Assignee
Eveready Battery Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eveready Battery Co Inc filed Critical Eveready Battery Co Inc
Publication of CN102106022A publication Critical patent/CN102106022A/zh
Application granted granted Critical
Publication of CN102106022B publication Critical patent/CN102106022B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种表现出改进的低温性能的电化学电池(10)包括具有开放端的圆柱形容器(12)、封闭所述开放端的顶盖(14)、置于所述容器内部的卷芯电极组装件和电解液。所述电极组装件包括:主要由锂或锂基合金组成的阳极(18);由涂覆在固态箔片集电器上的包含导体、粘结剂和至少80wt%的二硫化铁的混合物组成的阴极(20);和置于所述阳极(18)和阴极(20)之间的隔膜(26)。所述电解液包含主要由10-95wt%的四氢呋喃和5-90wt%的1,3-二氧戊环组成的溶剂混合物和选自由酰亚胺锂、碘化锂和它们的组合组成的组的溶质。或者所述电解液主要由溶于四氢呋喃、1,3-二氧戊环和1,2-二甲氧基乙烷中的溶质组成,或者所述电解液具有主要由10-95wt%的四氢呋喃基溶剂、5-90wt%的1,3-二氧戊环和0-40%的1,2-二甲氧基乙烷组成的溶剂混合物和选自由酰亚胺锂、碘化锂和它们的组合组成的组的溶质。

Description

适于一级锂电池的低温性能的THF基电解液
技术领域
本发明涉及一种用于一级电化学电池(如锂/二硫化铁电池)的不含水的电解液。更具体地,涉及一种含有THF的电解液。
背景技术
电池被用于为许多便携式电子设备提供电能。在当今的消费者驱动型设备市场中,优选标准化的一级电池尺寸(例如AA或AAA)和特定的额定电压(通常为1.5V)。并且,由于与类似的当前可用的可充电电池(即二级电池)相比,一级电池的成本低、方便、可靠并且工作寿命持久,因此消费者经常选择使用一级电池。由于新型设备向小型化和高能化方向发展的趋势,一级锂电池(含有金属锂或锂合金作为负电极的电化学活性材料的电池)越来越普遍地选择作为这类设备的电池。
一种对于1.5V消费型设备特别有用的锂电池为锂-二硫化铁(或LiFeS2)电池,对于AA尺寸该电池的IEC名称为FR6,对于AAA尺寸该电池的IEC名称为FR03。与碱性电池、碳锌电池或其它一级(即不可充电的)电池系统相比,LiFeS2电池提供更高的能量密度,尤其是在高流失率(drain rates)下提供更高的能量密度。这样的电池使用二硫化铁FeS2(也被称为黄铁矿或硫铁矿,是用于电池应用领域的二硫化铁的优选矿物形态)作为正电极的电化学活性材料。
通常,任何电池中选择的电解液必须能够提供足够的电导率以满足在希望的温度范围内的放电需要。如Broussely的美国专利第4129691号所述,提高锂电池电解液中溶质(即盐)的浓度预期得到相应的所述电解液的电导率和利用度的提高。然而,其它限制(如溶质在特定溶剂中的溶解度、合适的钝化层在锂基电极上的形成和/或溶剂与电池中的电化学活性材料和/或其它材料的相容性)使得难以选择合适的电解液系统。作为非限制性的实例,Bakos的美国专利第4804595号描述了某些醚是如何不与溶剂如碳酸丙烯酯相混溶的。其它的电解液的缺点和不相容性是已知的并记载在本领域中,特别是当它们涉及LiFeS2电池以及锂与许多液体、溶剂和常用的聚合物密封材料之间的反应性时。
醚类由于其通常较低的粘度、良好的润湿能力、良好的低温放电性能以及良好的高速率放电性能,通常优选用作锂电池电解液溶剂,虽然其相对于某些其它常用溶剂极性较低。醚类在使用黄铁矿的电池中是特别有用的,因为在醚类中,这样的电池倾向于比更高电压的阴极材料(可能会发生电极表面的分解或不希望的与溶剂之间的反应(例如聚合))更加稳定。已经用于LiFeS2电池中的醚类有1,2-二甲氧基乙烷(“DME”)和1,3-二氧戊环(“DIOX”),上述两者或者按照Webber的美国专利第5514491号或第6218054号或欧洲专利0529802B1所教导的那样共用,或者如Gorkovenko的美国专利第7316868号(使用DIOX和5-6碳1,3-二烷氧基烷)、Kronenberg的美国专利第3996069号(使用3-甲基-2-恶唑烷酮和DIOX和/或DME)、或Bowden的美国专利公开2008/0026296A1(使用环丁砜和DME)所教导的那样整体或部分用作溶剂混合物。
非特定含有DIOX或DME的其它溶剂也是可以的,如那些公开在Webber的美国专利第5229227中的溶剂(使用3-甲基-2-恶唑烷酮和聚亚烷基二醇醚如二甘醇二甲醚)。但是,由于溶剂之间的相互作用,以及溶质和/或电极材料对这些溶剂的潜在作用,通常难以在不对在功能性电化学电池中设计的混合物进行实际测试的情况下预测理想的电解液溶剂混合物和得到的电池的放电性能。
大量种类的溶质已用于LiFeS2电池电解液中,包括碘化锂(LiI)、三氟甲烷磺酸锂(LiCF3SO3或三氟甲磺酸锂)、双三氟甲磺酰亚胺锂(Li(CF3SO2)2N或酰亚胺锂)、高氯酸锂(LiClO4)、六氟砷酸锂(LiAsF6)等。虽然含有三氟甲磺酸锂的电解液可提供不错的电池电性能和放电性能,但是这样的电解液的电导率相对较低。另外,三氟甲磺酸锂较为昂贵。碘化锂(LiI)已被用作三氟甲磺酸锂的替代物以同时降低成本并改进电池的电性能,如Webber的美国专利第5514491号所讨论的那样。劲量公司(Energizer Holdings Inc.)销售的一个品牌的AA尺寸的FR06电池目前使用了一种不含水的电解液,该电解液为0.75摩尔浓度的LiI盐溶于含有DIOX和DME的溶剂混合物中。
碘化锂盐和三氟甲磺酸锂盐已经结合使用以提供改进的低温放电性能,如Webber的美国专利公开2006/0046154中所述。如该文献中所讨论的那样,具有高的醚含量并以LiI作为溶质(单一的溶质或与三氟甲磺酸锂相结合)的LiFeS2电池当在低温下以高速率放电时,有时可能会在放电开始时表现出电压迅速下降。所述电压会降得很低以致由该电池供电的设备无法工作。不用LiI作为溶质而仅使用三氟甲磺酸锂作为唯一的溶质可以解决这个问题,但是这样会使得在室温下以高速率和高能量放电时工作电压过低。使用高氯酸盐作为唯一的一级盐甚或共盐(co-salt)也是有问题的,因为这些化合物会带来健康和安全隐患。
所述电解液中可使用添加剂以增强电池和/或其性能的某些方面。例如Bolster的美国专利第5691083号描述了使用非常低浓度的钾盐添加剂以在含有包括FeS2、MnO2或TiS2的阴极材料的电池中实现希望的开路电压。Jiang的美国专利公开2008/0026290公开了使用铝添加剂以减缓钝化膜在锂电极表面上的发展。在这些实例中的每一个中,选择的添加剂的益处必须与任何有害反应或效果(在电池的放电性能、安全性和工作寿命方面)相平衡。
最后,如上所述,人们相信更高的溶质浓度通常改进所述电解液的导电性。然而,某些系统(典型地在优选以非硫族的(non-chalcogenic)多硫化物作为阴极材料的可充电的锂-硫电池系统中)使用“阴极电解液”,其中电极本身的一部分溶进所述电解液溶液中以提供离子电导性。在这样的系统中,可向满电的电池提供最小到不存在的(non existent)浓度的锂离子而不牺牲性能,如Mikhaylik的美国专利第7189477号所教导。最终,LiFeS2和其它锂电化学电池不会表现出从电极向电解液中提供离子的倾向,由此该方法在LiFeS2系统中不再是有用的,并且更一般地说明了将给定的电化学系统盲目应用于另一个不相似的系统中所带来的问题。
发明内容
除非特别进行说明,以下列出的这里使用的术语在本公开中按照以下定义使用:
环境温度(或室温)-在约20℃至约25℃之间;除非另有说明,所有实例、数据和制造信息在环境温度下提供/实施。
阳极-负电极;更具体而言,在本发明的含义范围内,它主要由作为一级电化学活性材料的锂或含有以重量计至少90%锂的合金组成,。
阴极-正电极;更具体而言,在本发明的含义范围内,它包括作为一级电化学活性材料的二硫化铁,以及一种或多种流变性添加剂、聚合物添加剂和/或导电性添加剂,涂覆在金属集电器上。
电池外壳-物理地包围组成完整的功能性电池的所述电化学活性材料、安全装置和其它惰性组分的结构;一般由容器(形成杯形,也被称为“罐”)和封盖(安装在所述容器的开口上方,一般由排气和密封机构组成以防止电解液漏出和湿气/大气渗入)。
电解液-一种或多种溶质溶于一种或多种液态有机溶剂中;不包含任何希望阴极部分地或完全溶解以向电池提供离子导电性的电化学系统(即如锂-硫电池中使用的那些“阴极电解液”)。
卷芯(或螺旋卷绕)电极组装件-阳极带和阴极带以及合适的聚合物隔膜通过沿它们的长或宽(例如绕着心轴或中心)卷绕组合成组装件。
额定-由制造商设定的值,代表一种特性或性质所期望的值。
放电百分数-电池正常使用后从电池中用去的电量的百分数,但不包括为了使电池更适于消费者使用而由制造商实施的故意调整或初步放电所导致的损失的电量。
盐-作为所述电解液的一部分,可电离的化合物,通常包含锂或某些其他金属,溶于一种或多种溶质中。
DIOX-1,3-二氧戊环
DME-1,2-二甲氧基乙烷
THF-四氢呋喃
2MeTHF-2-甲基四氢呋喃
DMP-1,2-二甲氧基丙烷
PC-碳酸丙烯酯
EC-碳酸乙烯酯
MA-醋酸甲酯
EA-醋酸乙酯
LiTfSI或酰亚胺锂-双三氟甲磺酰亚胺锂
图1到9包含在下面实施例中公开的实施方案所涉及的信息。图10显示了LiFeS2电池的组分。
电池设计
参考图10可更好地理解本发明,图10示出了可实施的具体的电池设计。电池10为FR6型圆柱形LiFeS2电池,但本发明同样可应用于FR03或其它圆柱型电池。电池10具有一外壳,所述外壳包括具有封闭的底和开放顶端的形为罐12的容器,所述开放顶端被电池盖14和垫片16封闭。罐12在所述顶端附近具有环圈(bead)或直径减小的台阶以支撑垫片16和盖14。垫片16被挤压在罐12和盖14之间以将阳极或负电极18、阴极或正电极20以及电解液密封在电池10内部。
阳极18、阴极20和隔膜26螺旋卷绕在一起成为电极组装件。阴极20具有金属集电器22,该金属集电器从所述电极组装件的顶端伸出,通过接触弹簧24与盖14的内表面相连。阳极18通过金属导线(或扣环)36与罐12的内表面电学连接。导线36固定于阳极18,从所述电极组装件的底部伸出,折叠跨过底部沿所述电极组装件的侧面向上。导线36与罐12侧壁的内表面压力接触。当电极组装件卷绕好之后,它可以在制造工艺中通过工具作业插入之前保持在一起,或者材料的外端(例如隔膜或聚合物膜外包装38)可通过例如热封、胶黏或胶带封紧。
绝缘锥体46围绕着所述电极组装件的顶部的四周部分以阻止阴极集电器22与罐12接触,并且通过隔膜26向内折叠的延伸部分和位于罐12的底部的电绝缘底盘44阻止了阴极20的底部边缘与罐12的底部之间的接触。
电池10具有独立的正端盖40,由罐12向内压接的顶部边缘和垫片16固定,并具有一个或多个排气孔(未示出)。罐12作为负接触端。绝缘套,如粘性标签48,可覆于罐12的侧壁上。
在端盖40的周缘和电池盖14之间设有正温度系数(PTC)设备42,其大大限制了在极端电学条件下的电流流动。电池10还包括压力释放排气结构。电池盖14具有包括向内突出的中心排气井28的孔,在井28的底部有排气孔30。该孔由排气球32和薄壁的热塑性衬套34密封,所述热塑性衬套被压在排气井28的竖直壁与排气球32的外周之间。当电池内部压力超过预定水平时,排气球32或球32和衬套34均被推出所述孔以从电池10中释放增压的气体。在其它实施方案中,所述压力释放排气结构可以为由破裂膜封闭的孔,如美国专利申请公开2005/0244706中所述,该专利通过引用全文并入到本文中;或可以为一相对薄的区域,如铸造的凹槽,所述相对薄的区域可撕裂或破裂以在电池的一部分如密封板或容器壁中形成排气孔。
设于所述电极组装件的侧面和所述罐的侧壁之间的电极导线36的末端部分可在将所述电极组装件插入所述罐之前具有一定的形状,优选非扁平状,这样的形状增强了与所述罐的侧壁的电学接触,并提供了类似弹簧的力以使所述导线顶住所述罐的侧壁。在电池的制造过程中,导线的定形的末端部分可以发生变形,例如朝向所述电极组装件的侧面变形,以使其易于插入到所述罐中,之后所述导线的末端部分可部分弹回其初始的非扁平状,但至少部分保持压缩的状态以对所述罐侧壁的内表面施力,由此产生了与所述罐之间良好的物理和电学接触。
电解液
一种不含水的电解液,仅含有非常少量的且被视为杂质的水(例如,以重量计不多于约500份每百万份,取决于使用的电解液盐),该电解液在制造过程中被注入所述电池外壳中。由于该电解液为在LiFeS2电池中的离子迁移的主要介质,因此对合适的溶剂和溶质的组合的选择对于优化电池性能而言是至关重要的。并且,被选择用于电解液的溶质和溶剂必须具有合适的混溶性和粘度以能够制造以及使用得到的电池,同时还必须在大多数消费型电池可能经受的整个温度范围内(即大约-40℃至60℃)表现出适当的放电性能。另外,所述电解液必须是非反应性和非挥发性的(或至少具有足够低的沸点以在实际应用中能够由常规的聚合物密封件和封闭机构保留)。
溶剂和电解液的混溶性和粘度是电池制造和工作的关键。所有用于该混合物的溶剂必须是完全混溶的,以保证形成匀质溶液。类似地,为了适应大量生产的要求,所述溶剂必须具有足够低的粘度从而能够快速地流动和/或分散。
另外,所述溶剂和电解液的沸点必须适应于电池最可能暴露和储存的温度范围(即-40℃至60℃)。更具体而言,所述溶剂必须充分保证不挥发以保证电池在上述温度范围内能够安全地储存和工作。类似地,所述溶剂和电解液必须不与电极材料发生反应从而分解电极或在放电时对电池的性能产生负面影响。已经或可以用于LiFeS2电池的合适的有机溶剂包括以下的一种或多种:1,3-二氧戊环、1,3-二氧戊环基的醚(例如烷基取代和烷氧基取代的DIOX,如2-甲基-1,3-二氧戊环或4-甲基-1,3-二氧戊环,等)、1,2-二甲氧基乙烷、1,2-二甲氧基乙烷基的醚(例如二甘醇二甲醚、三甘醇二甲醚、四甘醇二甲醚、乙基甘醇二甲醚,等)、碳酸乙烯酯、碳酸丙烯酯、碳酸-1,2-丁烯酯、碳酸-2,3-丁烯酯、碳酸亚乙烯酯、甲酸甲酯、γ-丁内酯、环丁砜、乙腈、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N,N-二甲基丙撑脲、1,1,3,3-四甲基脲、β-氨基烯酮、β-氨基酮、甲基四氢糠基醚、二乙醚、四氢呋喃(“THF”)、2-甲基四氢呋喃、2-甲氧基四氢呋喃、2,5-二甲氧基四氢呋喃、3,5-二甲基异恶唑(“DMI”)、1,2-二甲氧基丙烷(“DMP”)和1,2-二甲氧基丙烷基的化合物(例如取代的DMP等)。
盐应该几乎全部或完全可溶于选择的溶剂,并且如以上对溶剂性质所做的讨论,不会发生任何的分解或负面效果。已经或可以用于LiFeS2电池的典型的盐的例子包括LiI(“碘化锂”)、LiCF3SO3(“三氟甲磺酸锂”)、LiClO4(“高氯酸锂”)、Li(CF3SO2)2N(“酰亚胺锂”)、Li(CF3CF2SO2)2N和Li(CF3SO2)3C。其它可能的选择有双(草酸)硼酸锂、溴化锂、六氟磷酸锂、六氟磷酸钾和六氟砷酸锂。对盐的选择的两个关键方面是,它们不与所述外壳、电极、密封材料或溶剂发生反应,并且它们在电池暴露并且被期望工作的一般预期的条件下(例如温度、电负载等)不会发生分解或从电解液中沉淀出来。可以使用多于一种溶质以将性能的某些方面最大化。
适合用于本发明的LiFeS2电池的醚的选择条件包括:(1)可用的液态范围大,尤其是非常低的熔点,(2)粘度低,(3)对锂盐的良好的增溶性质,(4)对于Li阳极和FeS2阴极良好的化学稳定性和热稳定性,和(5)近于或优于DME和DIOX的毒性。图1示出了考虑到的溶剂的表格。包括熔点、沸点和粘度。图1中列出的所有溶剂均被视为满足上述这些条件。
使用LiI和酰亚胺锂盐对THF、2MeTHF和DMP进行评价。用两种方法确定溶剂比例。到目前为止,商业可用的LiFeS2电池使用65∶35的DIOX∶DME混合物(以体积计),用一种新型醚代替DIOX和/或DME并测试电池的低温性能。第二种方法是将一定量的替换的溶剂加入到65DIOX∶35DME(v/v)的溶剂混合物中。该方法长于迅速筛选多种替换的溶剂,但它不会提供任何直接的对比。这些方法的细节总结在图2中,这里使用的批数作为在本申请中的附图标记。
对于含有碳酸酯和醋酸酯的溶剂混合物,仅使用酰亚胺锂盐,因为LiI和碳酸酯之间的化学反应会将LiI转化成不可溶的Li2CO3。注意,碳酸酯和醋酸酯通常根据它们在低温二次锂离子电池中的用途来进行选择,但是如下所示,没有任何一种能够满足一次锂电池的要求。
所有电解液的盐浓度设定为在环境温度下0.75摩尔溶质每升溶剂混合物。除DMP以外,所有溶剂初始时均具有相对低的水分(5-50ppm),所述DMP的到手样品的水分含量为2800ppm。因此,DMP与
Figure BPA00001307465700081
分子筛一起保存以减少其水分。在保存之后,DMP的水分减少至197ppm。
所有批次中分配的电解液的填充体积均为1.47ml。电池是经过预放电的。组装件和构造的其它所有方面与本文所公开的一致。
与之前被认为最佳的低温电解液、如美国专利公开20060046152和/或20060046154中所公开的那些电解液相比,使用THF的电解液在极低温度下(即-40℃)表现出实质性的、出乎预料的、显著改进的性能。值得注意的是,这些公开文件记载了已知的电池在极低温度下“突然死亡”的问题,但容易理解的是,即使在这些公开文件中也没有公开任何可行的解决方案以在极低温度和高速率的条件下实质性地进行工作。
相比之下,本发明通过提供一种在极低温度下具有实质性电量的电池解决了现有技术中的缺陷。并且,THF的使用允许更换盐,而现有技术指出LiI和三氟甲磺酸锂的混合物是实现在低温下供能的最佳(并且可能是唯一的)手段。另外,本发明将盐浓度保持在0.75M,这样的浓度有助于保持室温性能。简言之,THF能够在比目前已知的更低的温度下实现比目前已知的更大的电量,同时仍然能够为大多数环境温度下的流失率起到即使不是同等的也是足够的工作效果。
因此,当该电解液与根据上述构造的LiFeS2电池结合使用时,在极低温度下可检测到极大的改进。在许多实施方案中,可预期双倍的电量。并且,这些改进可在不牺牲室温性能或专业化放电测试(如美国国家标准学会(ANSI)数字式定格照相机脉冲测试)中的性能的前提下实现。
其它电池组分
所述电池容器通常为具有封闭的底部的金属罐,如图10所示的罐。所述罐的材料部分取决于电池中使用的活性材料和电解液。常用的材料类型为钢。例如,所述罐可由钢制成,至少外侧镀镍以保护所述罐的外侧不受腐蚀。镀层的类型可以是变化的以提供多种程度的抗腐蚀性或提供希望的外观。钢的种类部分取决于所述容器形成的方式。对于浅冲罐(drawn can)而言,钢是经扩散退火的、低碳的、铝镇静的SAE 1006或等同的钢,晶粒尺寸为ASTM 9-11,等轴至稍微拉长的晶粒形状。其它钢,如不锈钢可用于满足特定的需要。例如,当所述罐与阴极电学接触时,不锈钢可用于改善对由阴极和电解液导致的腐蚀的抗性。
电池盖是金属的。可以使用镀镍钢,但通常优选不锈钢,特别是当所述盖与阴极电学接触时。所述盖的形状的复杂性也是材料选择的一个因素。所述电池盖可具有简单的形状,如厚的扁平盘状,或者它可具有更为复杂的形状,如图10所示的盖。当所述盖具有像图10一样的复杂形状时,可使用一种具有ASTM 8-9的晶粒尺寸的304型软退火不锈钢,以提供希望的耐腐蚀性和金属成型的容易度。形成的盖也可以是经镀层的,例如镀镍。
端盖应具有对周围环境中水腐蚀的良好抗性、良好的导电性,并且当在消费型电池中可见时,所述端盖具有吸引人的外观。端盖通常由镀镍的冷轧钢或在形成所述盖以后镀镍的钢制成。当末端位于压力释放排气结构之上时,所述端盖通常具有一个或多个孔以便于电池排气。
所述垫片由任意的能够提供希望的密封性的合适的热塑性材料制成。材料的选择部分根据电解液的成分。合适的材料的例子包括聚丙烯、聚苯硫醚、四氟化物-全氟代烷基乙烯基醚共聚物、聚对苯二甲酸丁二醇酯以及它们的组合。优选的垫片材料包括聚丙烯(例如美国特拉华州威尔明顿市的巴塞尔聚烯烃公司(Basell Polyolefins)销售的PRO-
Figure BPA00001307465700101
6524)和聚苯硫醚(例如美国德克萨斯州伍德兰市的雪佛龙菲利浦公司(Chevron Phillips)销售的XTELTM、XE3035或XE5030)。少量的其它聚合物、增强性无机填料和/或有机化合物也可添加到所述垫片的基础树脂中。
所述垫片可用密封剂涂覆以提供最佳的密封。乙烯-丙烯-二烯三元共聚物(EPDM)是合适的密封剂材料,但其它合适的材料也可以使用。
若使用球排气结构,则排气衬套由在高温(例如75℃)下抗冷流的热塑性材料制成。所述热塑性材料包括基础树脂,如乙烯-四氟乙烯、聚对苯二甲酸丁二醇酯、聚苯硫醚、聚邻苯二甲酰胺、乙烯-氯三氟乙烯、氯三氟乙烯、全氟代烷氧基烷、氟化全氟代乙烯聚丙烯和聚醚醚酮。优选乙烯-四氟乙烯共聚物(ETFE)、聚苯硫醚(PPS)、聚对苯二甲酸丁二醇酯(PBT)和聚邻苯二甲酰胺。该树脂可通过添加热稳定填料进行修饰以为排气衬套提供希望的在高温下的密封和排气性能。所述衬套可由所述热塑性材料注塑成型。
Figure BPA00001307465700111
(含有25重量%的碎玻璃填料的ETFE树脂)、聚邻苯二甲酰胺(例如德克萨斯州休斯顿市的苏威高性能工程塑料公司(Solvay Advanced Polymer)销售的
Figure BPA00001307465700112
10011NT)和聚苯硫醚(例如美国德克萨斯州伍德兰市的雪佛龙菲利浦公司销售的XTELTM、XE3035或XE5030)是优选的热塑性衬套材料。
所述排气球本身可由任何在接触电池内容物时稳定并且提供希望的电池密封性和排气性的合适的材料制成。可以使用玻璃或金属,如不锈钢。若使用箔片排气结构代替如上所述的排气球组装件(例如按照美国专利申请公开2005/0244706所述),则上述引用的材料也可被适当地替换。
电极
所述阳极包括一条锂金属带,有时也被称为锂箔。锂的组成可有所变化,但对于电池级的锂,通常为高纯度。锂可与其它金属如铝制成合金,以提供希望的电池电学性能或加工容易度,但在任何合金中锂的量均应最大化,并且并未考虑设计用于高温(即在纯锂的熔点以上)应用领域的合金。合适的电池级锂-铝箔含有0.5重量%的铝,可由美国北卡罗来纳州金斯芒廷(Kings Mountain)的凯密特尔福特公司(ChemetallFoote Corp.)购得。
其它的阳极材料也是可以的,包括钠、钾、锌、镁和铝,或作为联合阳极、合金材料或不同的单独的阳极。最后,合适的阳极材料的选择会受到选择的阳极与LiI、阴极和/或选择的醚之间的相容性的影响。
如图10中所示的电池,阳极不需要独立的集电器(即导电元件,如金属箔,其上熔接或覆有阳极;或者为沿所述阳极的长度布设的导电条带),这是因为锂具有高导电性。通过不使用这样的集电器,在所述容器内更大的空间可用于其它组分如活性材料。阳极集电器可由铜或其它合适的高导电性金属制成,只要它们在暴露于电池的其它内部组分(例如电解液)时是稳定的即可,并因此增加了成本。
在每个电极和在外壳附近或与外壳整合的相反末端之间必须保持电学连接。电导线36可由薄金属条带制成,该金属条带将阳极或负电极与电池末端之一(在图10所示的FR6电池中为所述罐)相连。当所述阳极包括这样的导线时,它基本上沿着所述卷芯电极组装件的长轴方向取向并且部分沿所述阳极的宽度方向延伸。这可以通过将所述导线的末端包埋在部分阳极中或通过将某一部分如所述导线的末端简单地压到所述锂箔的表面上来实现。所述锂或锂合金具有粘性,在一般情况下至少在所述导线和电极间施加稍微足够的压力或接触就会将组件熔接在一起。负电极可在卷绕到卷芯构造中之前设有导线。该导线也可通过适当的熔接进行连接。
包括导线36的金属条带通常由电阻足够低(例如通常小于15mΩ/cm并优选小于4.5mΩ/cm)的镍或镀镍钢制成,以使得通过所述导线能够充分地传输电流,并且对电池的工作寿命产生最小的影响或完全不造成影响。优选的材料为304不锈钢。其它合适的负电极导线材料的实例包括但不限于铜、铜合金,例如铜合金7025(一种铜镍合金,包含约3%的镍、约0.65%的硅和约0.15%的镁,其余部分为铜和少量杂质)和铜合金110,以及不锈钢。导线材料应选择在包含不含水的电解液的电化学电池中组分稳定的材料。通常需要避免使用但可能作为杂质以相对少量存在的金属的实例为铝、铁和锌。
所述阴极为条带形,包含集电器以及一种混合物;所述混合物包含一种或多种电化学活性材料,通常为颗粒状。二硫化铁(FeS2)是优选的活性物质,但本发明也可应用大多数与LiI之间稳定且相对于锂的电势小于2.8V的阴极材料,可以包括CuO、CuO2和铋的氧化物(例如Bi2O3等)。需要注意的是,MnO2是不适合的,因为这样的阴极与I2/I-氧化还原对相比电势过高。
在LiFeS2电池中,所述活性材料包含大于50重量%的FeS2。取决于希望的电池电学性能和放电性能,所述阴极还可以含有一种或多种上述其它活性材料。更优选地,用于LiFeS2电池阴极的活性材料包含至少95重量%的FeS2,还更优选至少99重量%的FeS2,最优选FeS2是唯一的活性阴极材料。纯度为至少95重量%的FeS2可由美国马萨诸塞州北格拉夫顿市(North Grafton)的华盛顿密尔斯公司(Washington Mills)、奥地利维也纳的凯密特尔集团(Chemetall GmbH)和美国弗吉尼亚州迪尔文市(Dillwyn)的蓝晶石矿业公司(Kyanite Mining Corp.)购得。以下提供对所述阴极更加全面的说明,包括它的配方和制造所述阴极的方式。
所述集电器可设在或嵌入所述阴极的表面内,或所述阴极混合物可涂覆到薄金属条带的一侧或两侧上。铝是常用的材料。所述集电器可延伸到含有所述阴极混合物的阴极部分以外。所述集电器的这一延伸的部分能够提供一个便利的区域用于与连至正端的电导线相接触。优选将所述集电器延伸的部分的体积保持为最小以使活性材料和电解液能够利用的电池内部体积尽量大。
所述阴极与电池的正端电学连接。这可通过使用电导线来实现,所述电导线通常为薄金属条带或弹簧的形式,如图10所示,但也可采用熔接。所述导线通常由镀镍的不锈钢制成。另一个实施方案可利用类似于美国专利申请11/439835(应于2007年11月29号或之后公开)和/或美国专利申请11/787436(应于2008年10月16日或之后公开)中所公开的连接方式,这两篇文献均属于本申请的申请人并通过引用并入到本文中。需要注意的是,如果电池设计可利用这些可替换的电学连接器/限流设备之一,则可避免使用PTC。如果一种任选的限流设备,如标准PTC,被用作安全机构以防止电池的放电/发热失控,则美国加利福尼亚州门洛帕克市(Menlo Park)的泰科电子有限公司(Tyco ELectronics)销售的PTC是合适的。其它替换性的器件也是可以使用的。
隔膜
所述隔膜是一种离子透过性且不导电的微孔薄膜。它能够将至少部分电解液保持在隔膜的孔内。所述隔膜置于阳极和阴极相邻的表面之间,以使电极间彼此电绝缘。所述隔膜的部分也可使与电池末端电学接触的其它组分绝缘以防止内部短路。所述隔膜的边缘通常延伸到至少一个电极的边缘以外以保证即使在阳极和阴极没有优选地对准彼此的时候,它们也不会发生电学接触。然而,优选将隔膜伸出电极之外的量最小化。
为了提供良好的高功率放电性能,优选所述隔膜具有于1994年3月1日授权的美国专利5290414中所公开的性质(孔的最小尺寸为至少0.005μm,最大尺寸不大于5μm跨度,孔隙率为30%-70%,面电阻率为2-15ohm-cm2,曲率小于2.5),该专利通过引用并入到本文中。
合适的隔膜材料还应是其强度足以经受电池制造工艺以及足以承受在电池放电过程中可能施加到该隔膜上的压力而不会产生可能导致内部短路的撕裂、破裂、孔洞或其它缝隙的材料。为了将电池中隔膜的总体积最小化,所述隔膜应尽可能地薄,优选小于25μm厚,更优选不大于22μm厚,如20μm或16μm。优选高的拉伸应力,优选至少800、更优选至少1000千克力每平方厘米(kgf/cm2)。对于FR6型电池而言,优选的拉伸应力在纵向上为至少1500kgf/cm2,在横向上为至少1200kgf/cm2;对于FR03型电池而言,在纵向和横向上优选的拉伸强度分别为1300和1000kgf/cm2。优选地,平均介电击穿电压为至少2000伏,更优选至少2200伏,最优选至少2400伏。优选的最大有效孔尺寸为0.08μm-0.40μm,更优选不大于0.20μm。优选地,BET比表面积不大于40m2/g,更优选至少15m2/g,最优选至少25m2/g。优选地,所述面电阻率不大于4.3ohm-cm2,更优选不大于4.0ohm-cm2,最优选不大于3.5ohm-cm2。这些性质在美国专利公开2005/0112462中更为详细地进行了描述,该专利通过引用并入到本文中。
用于锂电池中的隔膜通常由聚丙烯、聚乙烯或超高分子量聚乙烯制成,其中优选聚乙烯。所述隔膜可为单层的双轴取向的微孔膜,或者可将两层或多层层压在一起以在互相垂直的方向上提供希望的拉伸强度。单层是优选的以使成本最小。合适的单层双轴取向的聚乙烯微孔隔膜可从东燃化学株式会社(Tonen Chemical Corp.)和美国纽约州马其顿市(Macedonia)的埃克森美孚化工有限公司(EXXON Mobile Chemical Co.)购得。Setela F20DHI级隔膜具有20μm的额定厚度,Setela 16MMS级具有16μm的额定厚度。具有类似性质的合适的隔膜也可从美国俄勒冈州黎巴嫩市(Lebanon)的恩泰克膜工业公司(Entek Membranes)购得。
电池的构造和制造
阳极、阴极和隔膜条带在电极组装件中结合在一起。所述电极组装件可为螺旋卷绕设计,如图10所示,由交替的阴极、隔膜、阳极和隔膜的条带绕着心轴卷绕而成,当卷绕完成后,将所述心轴从所述电极组装件中抽出。围绕所述电极组装件的外侧通常包裹至少一层隔膜和/或至少一层电绝缘膜(例如聚丙烯)。这实现了多个目的:它帮助保持所述组装件在一起并且可用于将所述组装件的宽度或直径调整为希望的尺寸。所述隔膜的最外端或其它外膜层可用一条胶带或通过热封固定。阳极可为最外面的电极,如图10所示,或者阴极可为最外面的电极。不论是哪种电极均可以与电池容器电学接触,但当最外面的电级就是与所述罐电学接触的电极时,能够避免所述最外面的电极与所述容器的侧壁之间发生内部短路。
电池可以使用任何合适的方法进行封闭和密封。这样的方法可包括但不限于压接、再拉拔(redraw)、套爪以及它们的组合。例如,对于图10中的电池,在插入电极和绝缘锥体之后,在所述罐中形成一个环圈,垫片和盖的组装件(包括电池盖、接触弹簧和排气衬套)置于该罐的开放端中。该电池支撑在所述环圈上,同时所述垫片和盖的组装件被向下推压顶住所述环圈。在所述环圈上方的罐顶的直径随分段的套爪而减小,以使所述垫片和盖的组装件在电池中保持在合适的位置。当电解液通过在排气衬套和盖上的孔分散到电池中之后,将排气球插入到所述衬套中以密封电池盖中的孔。将PTC设备和末端盖置于电池上并盖住电池盖,用压接模具使所述罐的顶部边缘向内弯曲以固定垫片、盖组装件、PTC设备和末端盖并用垫片完成对所述罐的开放端的密封。
至于阴极,所述阴极涂覆在金属箔集电器上,所述金属箔通常为厚度在18至20μm之间的铝箔,所述阴极为含有多种材料的混合物,所述多种材料必须谨慎选择以平衡涂层的加工性、导电性和整体有效性。该涂层主要由以下材料组成:二硫化铁(及其杂质);粘结剂,通常用于使颗粒状材料聚集在一起并将所述混合物粘到所述集电器上;一种或多种导电材料,如金属、石墨和炭黑粉,添加所述导电材料以为所述混合物提供改进的导电性,而导体的量取决于活性材料和粘结剂的导电性、在集电器上的混合物的厚度以及集电器的设计;和各种加工助剂或流变性助剂,取决于涂覆方法、使用的溶剂和/或其本身的混合方法。
以下是可用在阴极混合配方中的代表性的材料:黄铁矿(纯度至少95%);导体(伊利诺伊州芝加哥市的优良石墨公司(Superior Graphite)销售的纯黑(Pure Black)205-110和/或俄亥俄州西湖城(Westlake)特密高公司(Timcal)销售的MX15);和粘结剂/加工助剂(苯乙烯-乙烯/丁烯-苯乙烯(SEBS)嵌段共聚物,如德克萨斯州休斯顿市的科腾聚合物公司(Kraton Polymer)销售的g1651和来自荷兰海伦芬市(Heerenveen)的Efka 6950)。在任意的前述材料中可能天然地存在着少量杂质,但应注意利用可利用到的最高纯度的黄铁矿源以使存在于阴极中的FeS2的量尽可能地多。
还优选使用具有小颗粒尺寸的阴极材料以将刺穿所述隔膜的风险降到最低。例如,FeS2在使用前优选用230目(62μm)的筛网过筛,或者FeS2可按照美国专利公开2005/0233214中公开的那样进行碾磨或加工,该文献通过引用并入到本文中。其它的阴极混合组分应该用眼睛小心选择化学相容性/反应性,以避免发生类似的基于颗粒尺寸的机械故障问题。
使用任意数量的合适的工艺将所述阴极混合物覆于箔片集电器上,所述合适的工艺如三辊逆转法、逗号涂层法或狭缝模具涂层法。可以使用美国专利申请11/493314中描述的涂层方法,该专利应于2008年1月31日或之后公开,并通过引用并入本文中。一种制造FeS2阴极的优选方法是将在高挥发性有机溶剂(例如三氯乙烯)中的活性材料混合物材料的浆体滚压涂覆在一片铝箔的两面上,使涂层干燥以除去溶剂,压光涂覆后的箔片以压紧涂层,将所述涂覆后的箔片分成希望的宽度并将分好的阴极材料切成希望的长度的条带。挥发性溶剂的使用将这些溶剂的回收效率最大化,但是也可以利用其它溶剂,包括水基的组合物,以滚压涂覆上述阴极混合物。
在干燥以除去任何不希望的溶剂之后或同时,通过压光或类似工艺使得到的阴极条带紧实化,以使正电极整体更加紧凑。由于然后会将该条带与隔膜和尺寸相近(但不必需一定相等)的阳极条带一起进行螺旋卷绕以形成卷芯电极组装件,因此该紧实化的处理使所述卷芯电极组装件中电化学材料的装载量最大化。但是,所述阴极不能过于紧实,因为需要一些内部阴极空位以使得二硫化铁在二硫化铁通过有机电解液放电以及润湿的过程中能够发生膨胀,并且避免出现不希望的涂层拉伸和/或剥离。
具体实施方式
实施例1
按照图1和2中包含的信息构造电池。将这些电池从21℃冷却至0℃、-20℃和-40℃。通过在每个温度下经过1小时平衡后从65kHz到1Hz扫描频率来记录电池阻抗数据。
与仅含有DIOX和DME的“参比”电解液相比较,THF、2MeTHF和DMP的添加稍微抑制了电池的OCV,而将PC和EC添加到含有DIOX的溶剂中显著提高了电池的0CV。并且使用酰亚胺锂的电池比使用LiI盐的电池具有稍高的OCV。
在电池阻抗方面,使用65∶35的DIOX∶DME(这里提到的所有比例均为在室温下混合的体积比)溶剂混合物的参比批次当使用LiI盐时具有最低的阻抗。当溶剂混合物同时含有DIOX和DME时,THF和2MeTHF稍微提高了阻抗。但是,使用LiI盐的THF-DME和DIOX-THF-2MeTHF混合物具有非常大的阻抗。对比之下,当盐从LiI换成酰亚胺锂时,不能与LiCF3SO3、LiClO4甚至LiI(虽然是在较低的程度上)一起良好工作的许多醚溶剂将能够与酰亚胺锂盐一起在一次锂电池中良好工作,这可能是由于离子缔合的效果。但是,当使用酰亚胺锂时,碳酸酯和醋酸酯基的溶剂比任何醚基溶剂均表现出稍高的阻抗,这意味着粘度也可能起到重要的作用。
实施例2
按照以下方式实施签名测试(signature test):使实施例1(包括这里描述的冷却规则)中的电池以逐渐下降的流失率连续放电,在达到截止电压(为了易于比较,均至1.0和0.9伏切(volt cut))后经过一段标准化的停止时间。然后,电池以接下来的流失率进行测试,然后持续进行测试直到完成。但是,对于最初的1A放电,每放电1分钟电流短暂中断100mS,在这个过程中可观测到电池的电阻。对于所有的低温测试,测试时间表还安排了5个小时的延迟以在特定的测试温度下实现最少2-3个小时的停留时间(dwell time)。
图3总结了在三个不同温度下(21℃、-20℃和-40℃)的签名测试的1A阶段中的工作情况。当盐从LiI换成酰亚胺锂时,它们的表现与参比溶剂批次相同或仅仅稍差于后者。这主要是由于酰亚胺锂在醚溶剂中比LiI具有更高的离子缔合度。在-20℃下,碳酸酯和醋酸酯溶剂混合物在1A/-20℃测试中基本不工作。在-40℃下,大部分批次包括参比批次(批号1113)都不具有任何工作时间。在表现出良好工作的批次中,含有THF的溶剂组合物在21℃、-20℃和-40℃下整体的1A性能方面是最好的。
根据这些结果,我们认为在解决在1A/-40℃测试中出现的突然断电的问题与改进在-40℃下的低/中速率测试中的性能方面,与DME、2MeTHF和DMP相比,THF是最有应用前景的溶剂。
对于酰亚胺锂盐,THF的使用改进了在1A/-40℃测试中的性能而不会对20℃和-20℃下的性能带来任何不利影响。使用具有低阳离子增溶能力的溶剂如2MeTHF的溶剂混合物可表现出非常好的性能,大概是因为在THF和含有2MeTHF的醚溶剂中酰亚胺锂比LiI盐的离子缔合的倾向更低。
改进了Li离子电池的低温性能的碳酸酯和醋酸酯基的电解液,在Li/FeS2AA电池中甚至在-20℃下也表现出了极差的性能,大概是因为在锂阳极表面形成了阻抗很强的SEI层。
图4-7示出了所有批次在21℃、-20℃和-40℃下详细的签名测试数据。注意,在适当的位置包括了误差条。在21℃下,除了批次1114以外,使用L91-20卷芯评估的所有电解液的速率能力都非常好、而批次1114使用了0.75M的LiI溶于35∶30∶35的DIOX∶THF∶2MeTHF溶剂混合物中。除批次1114以外,随着所有LiI批次的电流下降到10mA,释放的电量逐渐集中在2800-300mAh之间,由此可见低速率性能对使用的溶剂极不敏感,而批次1114可能是在其制造过程中遇到了问题。所有的酰亚胺锂批次均表现出等于或稍优于LiI参比批次的性能。在-20℃下,替换的溶剂均没有改进LiI和酰亚胺锂电解液的性能。但是,在-40℃下,一些替换的溶剂混合物即使在低消耗的情况下也显著改进了酰亚胺锂电解液的性能,并且更显著地改进了LiI电解液的性能。
实施例3
用实施例1(包括这里所述的冷却规则)的电池进行进一步的测试,但这次用具有最佳的低温(-40℃)和环境温度性能的、使用最优组成的DIOX∶DME∶THF溶剂混合物的LiI电解液。
与之前的教导(例如Matsuda等人所著JES,131,2821的参考文献)相比,该实施例中的电池在-40℃下表现出出人意料的优点。
使用Stat-Ease,Inc的Design
Figure BPA00001307465700191
版本7.1.3将溶剂组成最优化。因此,以下着重于改进电池低温性能的优化的溶剂组成为57.3wt%的DIOX、23.8wt%的DME和18.9wt%的THF。
更一般地,能够解决-40℃下“突然死亡”问题的溶剂组成的范围包括25-70wt%的DIOX、0-67wt%的DME和10-80wt%的THF。这些值来源于图8中所记录的一系列的实验。
二元的DIOX-THF系统,不论是完全不含DME还是含有非常有限量的DME(致畸性的),也都是可用的。由于对于在DIOX∶DME混合物中的酰亚胺锂盐而言不存在突然死亡的问题,因此使用酰亚胺锂的DIOX∶THF溶剂系统并且THF为10-95wt%、更优选35-85wt%、最优选45-75wt%也是可以的。这样的系统的其余部分为DIOX。图9记录了其它的支持性数据。
实施本发明的人员、尤其是参照实施例、附图、表格或本文中提供的其它信息实施本发明的人员将会进一步地理解本发明的特征和优点,为了更好地理解本发明的任何以上提到的专利文献均全文并入本文中。同样地,实施本发明的人员以及本领域技术人员将会理解,可对本发明进行各种修改和改进而不会脱离所公开的概念的精神实质。本发明要求保护的范围由权利要求和法律解释的广度确定。

Claims (1)

1.一种电化学电池,包括:
具有开放端的圆柱形容器;
密封所述开放端的顶盖;
置于所述容器中的卷芯电极组装件,所述电极组装件包括:主要由锂或锂基合金组成的阳极;由包括导体、粘结剂和至少80wt%的二硫化铁的混合物涂覆在固体箔片集电器上形成的阴极;和置于所述阳极和所述阴极之间的隔膜;和
含有溶剂混合物和溶质的电解液;
其中,当所述溶质包括酰亚胺锂时,所述溶剂混合物含有:a)35v%的1,3-二氧戊环、21.6-43.4v%的四氢呋喃和21.6-43.4v%的1,2-二甲氧基乙烷;b)35v%的1,3-二氧戊环、30v%的四氢呋喃和35v%的2-甲基四氢呋喃;c)35-50v%的1,3二氧戊环、25-43.4v%的四氢呋喃和21.6-25v%的1,2-二甲氧基乙烷;或f)35-50v%的1,3-二氧戊环、21.6-25v%的四氢呋喃和25-43.4v%的1,2-二甲氧基乙烷;和
其中,当所述溶质包含碘化锂时,所述溶剂混合物含有:d)35v%的1,3-二氧戊环、30v%的四氢呋喃和35v%的2-甲基四氢呋喃;e)35-65v%的1,3二氧戊环、23.3-43.4v%的四氢呋喃和11.7-21.6v%的1,2-二甲氧基乙烷;g)35-65v%的1,3-二氧戊环、11.7-43.4v%的四氢呋喃和21.6-23.3v%的1,2-二甲氧基乙烷;h)35-65v%的1,3-二氧戊环、11.7-21.6v%的四氢呋喃和23.3-43.4v%的1,2-二甲氧基乙烷;或i)35-65v%的1,3-二氧戊环、21.6-23.3v%的四氢呋喃和11.7-43.4v%的1,2-二甲氧基乙烷。
CN200980129305.XA 2008-07-28 2009-07-27 适于一级锂电池的低温性能的thf基电解液 Expired - Fee Related CN102106022B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US8411108P 2008-07-28 2008-07-28
US61/084,111 2008-07-28
PCT/US2009/004340 WO2010014194A1 (en) 2008-07-28 2009-07-27 Thf-based electrolyte for low temperature performance in primary lithium batteries

Publications (2)

Publication Number Publication Date
CN102106022A CN102106022A (zh) 2011-06-22
CN102106022B true CN102106022B (zh) 2014-01-29

Family

ID=41090338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980129305.XA Expired - Fee Related CN102106022B (zh) 2008-07-28 2009-07-27 适于一级锂电池的低温性能的thf基电解液

Country Status (9)

Country Link
US (1) US20110117407A1 (zh)
EP (1) EP2319111B1 (zh)
JP (1) JP5580309B2 (zh)
KR (1) KR101717790B1 (zh)
CN (1) CN102106022B (zh)
AU (1) AU2009277152B2 (zh)
CA (1) CA2732103A1 (zh)
NZ (1) NZ590556A (zh)
WO (1) WO2010014194A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110143218A1 (en) * 2009-12-14 2011-06-16 Issaev Nikolai N Battery
US8652690B2 (en) 2010-11-12 2014-02-18 Panasonic Corporation Lithium primary battery
US9190655B2 (en) * 2010-11-15 2015-11-17 Panasonic Intellectual Property Management Co., Ltd. Lithium primary battery
CN102538703B (zh) * 2011-12-21 2014-05-28 北京科技大学 一种全尺寸提取和观察钢中非金属夹杂物三维形貌的方法
US8778077B2 (en) * 2012-02-29 2014-07-15 Skc Inc. Solvent for heat-shrinkable polyester-based labels
CN104752753B (zh) * 2013-12-25 2017-07-28 张家港市国泰华荣化工新材料有限公司 用于汽车轮胎胎压锂锰电池的电解液
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
CN105140538B (zh) * 2015-08-21 2018-02-23 惠州亿纬锂能股份有限公司 一种锂‑二硫化亚铁电池及其制备方法
KR102050838B1 (ko) 2016-04-22 2019-12-03 주식회사 엘지화학 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
EP3258521B1 (de) * 2016-06-14 2020-11-04 VARTA Microbattery GmbH Lithium-primärzelle mit dme-freiem elektrolyten
KR20180001997A (ko) 2016-06-28 2018-01-05 주식회사 엘지화학 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR20220050455A (ko) * 2020-10-16 2022-04-25 삼성에스디아이 주식회사 원통형 이차전지
KR102662842B1 (ko) 2021-08-05 2024-05-08 국립군산대학교산학협력단 Thf 기반 전해질 및 이를 포함하는 리튬 금속 전지

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689643A (zh) * 2007-06-22 2010-03-31 吉列公司 锂电池

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996069A (en) * 1975-06-30 1976-12-07 Union Carbide Corporation Nonaqueous cell utilizing a 3Me20x-based electrolyte
FR2378361A1 (fr) * 1977-01-19 1978-08-18 Accumulateurs Fixes Electrolytes a solvants organiques pour generateurs electrochimiques de grande energie specifique
JPS60249257A (ja) * 1984-05-23 1985-12-09 Sanyo Electric Co Ltd 非水電解液電池
US4804595A (en) * 1988-01-15 1989-02-14 Eastman Kodak Company Non-aqueous electrolytes for lithium batteries
CA2072488C (en) * 1991-08-13 2002-10-01 Andrew Webber Nonaqueous electrolytes
US5290414A (en) * 1992-05-15 1994-03-01 Eveready Battery Company, Inc. Separator/electrolyte combination for a nonaqueous cell
US5229227A (en) * 1992-07-23 1993-07-20 Eveready Battery Company Inc. Low flammability nonaqueous electrolytes
US5514491A (en) * 1993-12-02 1996-05-07 Eveready Battery Company, Inc. Nonaqueous cell having a lithium iodide-ether electrolyte
US5691083A (en) 1995-06-07 1997-11-25 Eveready Battery Company, Inc. Potassium ion additives for voltage control and performance improvement in nonaqueous cells
US20050112462A1 (en) * 2003-11-21 2005-05-26 Marple Jack W. High discharge capacity lithium battery
US7189477B2 (en) * 2003-04-10 2007-03-13 Sion Power Corporation Low temperature electrochemical cells
JP2005141998A (ja) * 2003-11-05 2005-06-02 Sony Corp リチウム/二硫化鉄一次電池
US20050233214A1 (en) * 2003-11-21 2005-10-20 Marple Jack W High discharge capacity lithium battery
US7316868B2 (en) * 2004-02-11 2008-01-08 Sion Power Corporation Electrolytes for lithium-sulfur electrochemical cells
US7687189B2 (en) * 2004-04-28 2010-03-30 Eveready Battery Company, Inc. Housing for a sealed electrochemical battery cell
US7510808B2 (en) * 2004-08-27 2009-03-31 Eveready Battery Company, Inc. Low temperature Li/FeS2 battery
US20060046153A1 (en) * 2004-08-27 2006-03-02 Andrew Webber Low temperature Li/FeS2 battery
US20060046154A1 (en) * 2004-08-27 2006-03-02 Eveready Battery Company, Inc. Low temperature Li/FeS2 battery
US7722988B2 (en) * 2005-08-16 2010-05-25 Eveready Battery Company, Inc. All-temperature LiFeS2 battery with ether and low concentration LiI electrolyte
EP1726950A1 (de) * 2005-05-24 2006-11-29 F. Hoffmann-La Roche Ag Magazin zur Aufnahme von Testelementen
US7763375B2 (en) * 2006-05-24 2010-07-27 Eveready Battery Company, Inc. Current interrupt device for batteries
US20080026288A1 (en) * 2006-07-26 2008-01-31 Eveready Battery Company, Inc. Electrochemical cell with positive container
US20080026296A1 (en) * 2006-07-27 2008-01-31 Bowden William L Battery
US7648798B2 (en) * 2006-07-27 2010-01-19 The Gillette Company Battery with electrolyte containing aluminum salt
US20080254343A1 (en) * 2007-04-16 2008-10-16 Eveready Battery Company, Inc. Electrochemical cell with thermal current interrupting switch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689643A (zh) * 2007-06-22 2010-03-31 吉列公司 锂电池

Also Published As

Publication number Publication date
EP2319111B1 (en) 2014-03-19
CN102106022A (zh) 2011-06-22
KR20110042085A (ko) 2011-04-22
JP5580309B2 (ja) 2014-08-27
AU2009277152A1 (en) 2010-02-04
US20110117407A1 (en) 2011-05-19
EP2319111A1 (en) 2011-05-11
JP2011529625A (ja) 2011-12-08
NZ590556A (en) 2013-03-28
AU2009277152B2 (en) 2013-07-25
CA2732103A1 (en) 2010-02-04
WO2010014194A1 (en) 2010-02-04
KR101717790B1 (ko) 2017-03-17

Similar Documents

Publication Publication Date Title
CN102106022B (zh) 适于一级锂电池的低温性能的thf基电解液
CN102124594B (zh) 含有醚和低浓度LiI电解液的全温LiFeS2电池
CN102017249B (zh) 用于锂一次电池的包含线型不对称醚的不含水的电解液
JP6189308B2 (ja) リチウム二硫化鉄バッテリ
CN102473896A (zh) 锂-二硫化铁电化学电池单体中杂质的去除

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20161201

Address after: American Missouri

Patentee after: ENERGIZER BRANDS CO., LTD.

Address before: American Missouri

Patentee before: Eveready Battery Co., Inc.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140129

Termination date: 20180727

CF01 Termination of patent right due to non-payment of annual fee