CN105140538B - 一种锂‑二硫化亚铁电池及其制备方法 - Google Patents

一种锂‑二硫化亚铁电池及其制备方法 Download PDF

Info

Publication number
CN105140538B
CN105140538B CN201510520750.6A CN201510520750A CN105140538B CN 105140538 B CN105140538 B CN 105140538B CN 201510520750 A CN201510520750 A CN 201510520750A CN 105140538 B CN105140538 B CN 105140538B
Authority
CN
China
Prior art keywords
anode ring
lithium
housing
ferrous disulfide
negative pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510520750.6A
Other languages
English (en)
Other versions
CN105140538A (zh
Inventor
祝媛
王彦斌
程琛
梁荣斌
刘建华
刘金成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eve Energy Co Ltd
Original Assignee
Eve Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eve Energy Co Ltd filed Critical Eve Energy Co Ltd
Priority to CN201510520750.6A priority Critical patent/CN105140538B/zh
Publication of CN105140538A publication Critical patent/CN105140538A/zh
Priority to US15/129,334 priority patent/US20170263947A1/en
Priority to PCT/CN2016/078127 priority patent/WO2017031989A1/zh
Application granted granted Critical
Publication of CN105140538B publication Critical patent/CN105140538B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/469Separators, membranes or diaphragms characterised by their shape tubular or cylindrical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本发明公开一种锂‑二硫化亚铁电池及其制备方法,锂‑二硫化亚铁电池包括:壳体、盖帽、电解液及电芯,壳体与盖帽连接形成一封闭腔体,电解液及电芯收容于腔体内;电芯包括:正极环、隔膜、垫片、负极锂片、集流网及钢带,负极锂片套于正极环内,负极锂片与正极环通过隔膜间隔,集流网一端与负极锂片连接,集流网另一端通过钢带与盖帽连接,正极环与盖帽之间设有垫片。制备方法主要包括制作正极环,将制作好的正极环装入壳体,依次加入隔膜、垫片、负极锂片和集流网,将钢带与集流网焊接,向其中注入电解液,将钢带和盖帽焊接后,封口。通过本发明的结构设计,锂‑二硫化亚铁电池的容量可增加至4Ah,容量提升约33.3%以上。

Description

一种锂-二硫化亚铁电池及其制备方法
技术领域
本发明涉及电池技术领域,特别是涉及一种锂-二硫化亚铁电池及其制备方法。
背景技术
锂-二硫化亚铁电池是一种新型的绿色环保一次锂电池,其标称电压为1.5V,可与碱锰电池、镍氢电池、镍镉电池互换使用,其具有放电电压平台平稳、储存寿命长、安全性能优良的优点。
传统技术制备的卷绕式AA型锂-二硫化亚铁电池10的结构如图1所示,此种锂-二硫化亚铁电池的制作工艺流程如图2所示。
1、正极极片采用二硫化亚铁为正极活性物质,加入导电石墨、石墨和粘结剂聚偏氟乙烯,在溶剂N,N-二甲基吡咯烷酮中搅拌后,均匀涂覆在集流体铝箔上,经过干燥、压片和裁片制得二硫化亚铁正极极片;负极极片采用金属锂及锂的合金,包括纯金属锂带、锂铝合金带、锂镁合金带、锂硼合金带作为锂二硫化亚铁电池的负极极片。
2、浆料涂至集流体上,烘干后裁小片、点焊极耳后制成正极极片,使用卷绕机将带有极耳的正极极片、负极极片和隔膜卷绕成卷绕式AA型锂-二硫化亚铁电池10的卷芯12。
3、将卷芯12放入钢壳14后,通过点底焊、辊槽,向钢壳内注入碘化锂为电解质盐的有机电解液,之后经过点盖,封口就制作成如图2所示的卷绕式AA型锂-二硫化亚铁电池10。
由上述制备方法而形成的卷绕式AA型锂-二硫化亚铁电池10,由于电池内隔膜和集流体占据钢壳内部腔体约15%的体积,其容量仅为3Ah,具有容量小的缺陷。
发明内容
本发明的目的是克服现有技术中的不足之处,提供一种容量高的锂-二硫化亚铁电池及其制备方法。
本发明的目的是通过以下技术方案来实现的:
一种锂-二硫化亚铁电池,包括:壳体、盖帽、电解液及电芯,所述壳体与所述盖帽连接形成一封闭腔体,所述电解液及所述电芯收容于所述腔体内;
所述电芯包括:正极环、隔膜、垫片、负极锂片、集流网及钢带,所述负极锂片套于所述正极环内,所述负极锂片与所述正极环通过所述隔膜间隔,所述集流网一端与所述负极锂片连接,所述集流网另一端通过所述钢带与所述盖帽连接,所述正极环与所述盖帽之间设有垫片。
优选的,所述垫片的外径大于正极环的外径并小于壳体的内径。
优选的,所述壳体为圆筒形结构,所述正极环为圆环形结构。
优选的,所述负极锂片为圆柱状,所述垫片为环形片状。
优选的,所述壳体为不锈钢或碳钢镀镍材质;
所述正极环为二硫化亚铁、石墨、乙炔黑、导电炭黑中的一种或多种;
所述隔膜为PP单层、PE单层或PP、PE、PP结合三层;
所述垫片为PP或PE材质;
所述负极锂片为纯金属锂或锂合金;
所述电解液为锂盐溶解在PC、1,3-二氧戊烷溶剂中的溶液;
所述集流网为钢、镍或铝。
一种锂-二硫化亚铁电池的制备方法,包括:
步骤S10,烘烤正极材料中的活性物质二硫化亚铁和石墨;
步骤S20,将预设比例的活性物质二硫化亚铁和石墨加入到球磨罐中,在预设条件下搅匀;
步骤S30,在搅匀的二硫化亚铁和石墨中加入粘合剂,并将物料搅拌均匀;
步骤S40,用模具将搅拌好的物料制成规格尺寸一致的正极环,然后将正极环在预设温度下烘干;
步骤S50,将正极环放入壳体,
步骤S60,将隔膜放入正极环内;
步骤S70,将负极锂片插入至正极环内;
步骤S80,在负极锂片中插入集流网;
步骤S90,在正极环中套入垫片;
步骤S100,将钢带和集流网焊接;
步骤S110,向壳体内注入电解液;
步骤S120,将钢带焊接在盖帽上;
步骤S130,将盖帽压合于壳体上并密封。
优选的,在步骤S10中,活性物质二硫化亚铁和石墨需要在80℃~300℃的氮气或氩气环境下烘烤4h~8h,并待温度降至30℃~40℃时,进入步骤S20。
优选的,在步骤S20中,将质量比为85%~96%的活性物质二硫化亚铁和质量比为5%~8%的石墨加入到低温球磨罐中,在氮气保护条件下球磨2h。
优选的,在步骤S30中,粘合剂为溶剂乙醇、N,N-二甲基吡咯烷酮、聚四氟乙烯乳液的一种或多种。
优选的,在步骤S40中,制备好的正极环需在80℃~300℃的氮气或氩气环境下烘烤4h~8h。
采用上述的锂-二硫化亚铁电池,可以增加活性物质二硫化亚铁和负极锂片的使用量,减少隔膜和集流体的用量。通过此结构设计,可以明显提升单体电池的容量,相比于碱性电池,其容量优势将更加明显。通过本发明的结构设计,锂-二硫化亚铁电池的容量可增加至4Ah,容量提升约33.3%以上。
附图说明
图1为传统的卷绕式锂-二硫化亚铁电池的结构示意图;
图2为图1所示的卷绕式锂-二硫化亚铁电池的制作流程图;
图3为本发明一实施例的锂-二硫化亚铁电池的结构示意图;
图4为本发明一实施例的锂-二硫化亚铁电池的制作流程图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
如图3所示,其为本发明一实施例的锂-二硫化亚铁电池20的结构示意图。
一种锂-二硫化亚铁电池20包括:壳体100、盖帽200、电解液(图未示)及电芯300,壳体100与盖帽200连接形成一封闭腔体,电解液及电芯300收容于腔体内。
电芯300包括:正极环310、隔膜320、垫片330、负极锂片340、集流网350及钢带360。负极锂片340套于正极环310内,负极锂片340与正极环310通过隔膜320间隔,集流网350一端与负极锂片340连接,集流网350另一端通过钢带360与盖帽200连接,正极环310与盖帽200之间设有垫片330。
进一步的,垫片330的外径大于正极环310的外径并小于壳体100的内径,此种尺寸的垫片,可以避免正极环310与盖帽200接触,防止短路。
在本实施例中,壳体100为圆筒形结构,正极环310为圆环形结构,负极锂片340为圆柱状,垫片330为环形片状。在其它实施例中,壳体100还可以为方形结构,还可以为多边形的柱状体结构,并不限于此。
要说明的是,壳体100为不锈钢或碳钢镀镍材质;正极环310为二硫化亚铁、石墨、乙炔黑、导电炭黑中的一种或多种;隔膜320为PP单层、PE单层或PP、PE、PP结合三层;垫片330为PP或PE材质;负极锂片340为纯金属锂或锂合金;电解液为锂盐溶解在PC、1,3-二氧戊烷溶剂中的溶液;集流网350为钢、镍或铝。
如图4所示,其为本发明一实施例的锂-二硫化亚铁电池的制作流程图。
与上述的锂-二硫化亚铁电池20对应,还提供一种锂-二硫化亚铁电池的制备方法,主要包括如下步骤:
步骤S10,烘烤正极材料中的活性物质二硫化亚铁和石墨;
步骤S20,将预设比例的活性物质二硫化亚铁和石墨加入到球磨罐中,在预设条件下搅匀;
步骤S30,在搅匀的二硫化亚铁和石墨中加入粘合剂,并将物料搅拌均匀;
步骤S40,用模具将搅拌好的物料制成规格尺寸一致的正极环,然后将正极环在预设温度下烘干;
步骤S50,将正极环放入壳体,
步骤S60,将隔膜放入正极环内;
步骤S70,将负极锂片插入至正极环内;
步骤S80,在负极锂片中插入集流网;
步骤S90,在正极环中套入垫片;
步骤S100,将钢带和集流网焊接;
步骤S110,向壳体内注入电解液;
步骤S120,将钢带焊接在盖帽上;
步骤S130,将盖帽压合于壳体上并密封。
其中,在步骤S10中,活性物质二硫化亚铁和石墨需要在80℃~300℃的氮气或氩气环境下烘烤4h~8h,并待温度降至30℃~40℃时,进入步骤S20。在其它实施例中,步骤S10还可以为烘烤正极材料中的活性物质二硫化亚铁、石墨、导电石墨、乙炔黑中的一种或多种。
其中,在步骤S20中,将质量比为85%~96%的活性物质二硫化亚铁和质量比为5%~8%的石墨加入到低温球磨罐中,在氮气保护条件下球磨2h。
其中,在步骤S30中,粘合剂为溶剂乙醇、N,N-二甲基吡咯烷酮、聚四氟乙烯乳液的一种或多种。
其中,在步骤S40中,制备好的正极环需在80℃~300℃的氮气或氩气环境下烘烤4h~8h。
要特别说明的是,在步骤S40中,正极环是用模具将搅拌均匀的正极物料成型而得到,使用模具制作出来的正极环的外径略小于壳体的内径,可以容易的将正极环装入壳体内,而在后续的老化过程中,电芯会发生膨胀,此时正极环便会与壳体发生接触,形成过盈配合,壳体便成为电池的正极。此种工艺,不但方便电池的生产,而且可以提高电池的品质。
特别要注意的是,将正极环放入壳体后,在正极环内放入隔膜,此时隔膜不应出现褶皱,保证处于正极环接触的部分呈单层状态;在负极锂片中插入集流网时,集流网不应刮破隔膜。
采用上述的锂-二硫化亚铁电池20,可以增加活性物质二硫化亚铁和负极锂片的使用量,减少隔膜和集流体的用量。通过此结构设计,可以明显提升单体电池的容量,相比于碱性电池,其容量优势将更加明显。通过本发明的结构设计,锂-二硫化亚铁电池20的容量可增加至4Ah,容量提升约33.3%以上。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (4)

1.一种锂-二硫化亚铁电池,其特征在于,包括:壳体、盖帽、电解液及电芯,所述壳体与所述盖帽连接形成一封闭腔体,所述电解液及所述电芯收容于所述腔体内;
所述电芯包括:正极环、隔膜、垫片、负极锂片、集流网及钢带,所述负极锂片套于所述正极环内,所述负极锂片与所述正极环通过所述隔膜间隔,所述集流网一端与所述负极锂片连接,所述集流网另一端通过所述钢带与所述盖帽连接,所述正极环与所述盖帽之间设有垫片;
所述垫片的外径大于正极环的外径并小于壳体的内径;
所述壳体为不锈钢或碳钢镀镍材质;
所述正极环为二硫化亚铁、石墨、乙炔黑、导电炭黑中的一种或多种;
所述隔膜为PP单层、PE单层或PP、PE、PP结合三层;
所述垫片为PP或PE材质;
所述负极锂片为纯金属锂或锂合金;
所述电解液为锂盐溶解在PC、1,3-二氧戊烷溶剂中的溶液;
所述集流网为钢、镍或铝;
所述正极环与所述壳体形成过盈配合。
2.根据权利要求1所述的锂-二硫化亚铁电池,其特征在于,所述壳体为圆筒形结构,所述正极环为圆环形结构。
3.根据权利要求1所述的锂-二硫化亚铁电池,其特征在于,所述负极锂片为圆柱状,所述垫片为环形片状。
4.一种锂-二硫化亚铁电池的制备方法,其特征在于,包括:
步骤S10,烘烤正极材料中的活性物质二硫化亚铁和石墨,活性物质二硫化亚铁和石墨需要在80℃~300℃的氮气或氩气环境下烘烤4h~8h,并待温度降至30℃~40℃时,进入步骤S20;
步骤S20,将预设比例的活性物质二硫化亚铁和石墨加入到球磨罐中,在预设条件下搅匀,将质量比为85%~96%的活性物质二硫化亚铁和质量比为5%~8%的石墨加入到低温球磨罐中,在氮气保护条件下球磨2h;
步骤S30,在搅匀的二硫化亚铁和石墨中加入粘合剂,并将物料搅拌均匀,粘合剂为溶剂乙醇、N,N-二甲基吡咯烷酮、聚四氟乙烯乳液的一种或多种;
步骤S40,用模具将搅拌好的物料制成规格尺寸一致的正极环,然后将正极环在预设温度下烘干,制备好的正极环需在80℃~300℃的氮气或氩气环境下烘烤4h~8h;使用模具制作出来的正极环的外径略小于壳体的内径,将正极环装入壳体内,在老化过程中,电芯发生膨胀,正极环与壳体发生接触,形成过盈配合;
步骤S50,将正极环放入壳体,
步骤S60,将隔膜放入正极环内;
步骤S70,将负极锂片插入至正极环内;
步骤S80,在负极锂片中插入集流网;
步骤S90,在正极环中套入垫片;
步骤S100,将钢带和集流网焊接;
步骤S110,向壳体内注入电解液;
步骤S120,将钢带焊接在盖帽上;
步骤S130,将盖帽压合于壳体上并密封。
CN201510520750.6A 2015-08-21 2015-08-21 一种锂‑二硫化亚铁电池及其制备方法 Active CN105140538B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510520750.6A CN105140538B (zh) 2015-08-21 2015-08-21 一种锂‑二硫化亚铁电池及其制备方法
US15/129,334 US20170263947A1 (en) 2015-08-21 2016-03-31 Lithium-Iron(II) Disulfide Battery and Process for Preparing the Same
PCT/CN2016/078127 WO2017031989A1 (zh) 2015-08-21 2016-03-31 一种锂-二硫化亚铁电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510520750.6A CN105140538B (zh) 2015-08-21 2015-08-21 一种锂‑二硫化亚铁电池及其制备方法

Publications (2)

Publication Number Publication Date
CN105140538A CN105140538A (zh) 2015-12-09
CN105140538B true CN105140538B (zh) 2018-02-23

Family

ID=54725810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510520750.6A Active CN105140538B (zh) 2015-08-21 2015-08-21 一种锂‑二硫化亚铁电池及其制备方法

Country Status (3)

Country Link
US (1) US20170263947A1 (zh)
CN (1) CN105140538B (zh)
WO (1) WO2017031989A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140538B (zh) * 2015-08-21 2018-02-23 惠州亿纬锂能股份有限公司 一种锂‑二硫化亚铁电池及其制备方法
CN105958109B (zh) * 2016-06-08 2019-02-01 惠州亿纬锂能股份有限公司 一种可充电硬壳锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761487A (en) * 1986-06-10 1988-08-02 The United States Of America As Represented By The United States Department Of Energy Method for improving voltage regulation of batteries, particularly Li/FeS2 thermal batteries
CN101521284A (zh) * 2009-03-18 2009-09-02 广州市天球实业有限公司 一种锂-二硫化铁一次性柱式电池及其制备工艺
CN102306842A (zh) * 2011-09-08 2012-01-04 浙江吉能电池科技有限公司 一种圆柱状锂离子电池的制备方法
CN205004388U (zh) * 2015-08-21 2016-01-27 惠州亿纬锂能股份有限公司 一种锂-二硫化亚铁电池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3048899B2 (ja) * 1995-09-06 2000-06-05 キヤノン株式会社 リチウム二次電池
US6869727B2 (en) * 2002-09-20 2005-03-22 Eveready Battery Company, Inc. Battery with high electrode interfacial surface area
US8124274B2 (en) * 2003-11-21 2012-02-28 Eveready Battery Company, Inc. High discharge capacity lithium battery
US7510808B2 (en) * 2004-08-27 2009-03-31 Eveready Battery Company, Inc. Low temperature Li/FeS2 battery
CN101299459A (zh) * 2008-06-18 2008-11-05 李青海 正极集流体为多孔金属的1.5v圆柱锂二硫化铁电池
EP2319111B1 (en) * 2008-07-28 2014-03-19 Eveready Battery Company, Inc. Thf-based electrolyte for low temperature performance in primary lithium batteries
CN103746126B (zh) * 2014-01-09 2015-09-16 东莞市桥头洁宇诗电子厂 一种锂锰针型电池及其制作方法
CN105140538B (zh) * 2015-08-21 2018-02-23 惠州亿纬锂能股份有限公司 一种锂‑二硫化亚铁电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761487A (en) * 1986-06-10 1988-08-02 The United States Of America As Represented By The United States Department Of Energy Method for improving voltage regulation of batteries, particularly Li/FeS2 thermal batteries
CN101521284A (zh) * 2009-03-18 2009-09-02 广州市天球实业有限公司 一种锂-二硫化铁一次性柱式电池及其制备工艺
CN102306842A (zh) * 2011-09-08 2012-01-04 浙江吉能电池科技有限公司 一种圆柱状锂离子电池的制备方法
CN205004388U (zh) * 2015-08-21 2016-01-27 惠州亿纬锂能股份有限公司 一种锂-二硫化亚铁电池

Also Published As

Publication number Publication date
WO2017031989A1 (zh) 2017-03-02
US20170263947A1 (en) 2017-09-14
CN105140538A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
CN106340651B (zh) 一种二次电池及其制备方法
WO2017190572A1 (zh) 一种二次电池及其制备方法
CN104008893B (zh) 锂离子混合型电容器的制备方法及其锂离子混合型电容器
CN102544575B (zh) 一种富锂锰基动力电池及其制造方法
CN109155415A (zh) 一种钠离子电池及其制备方法
CN107591536A (zh) 凝胶复合正极片及其制备方法和制备全固态锂电池的方法
JP2004303638A (ja) リチウム二次電池
JP6928918B2 (ja) 二次電池
KR20230093402A (ko) 리튬 이차 전지용 양극, 리튬 이차 전지용 음극, 및 이를 포함하는 리튬 이차 전지
CN205680557U (zh) 一种全炭钾离子混合电容器
CN109860603A (zh) 锂电池极片及其制备方法及锂电池
CN105140538B (zh) 一种锂‑二硫化亚铁电池及其制备方法
CN109346669A (zh) 电池正极片及其制造方法和锂离子电池及其制造方法
CN202259546U (zh) 带镶件型支撑环结构扣式锂电池
CN102340031A (zh) 一种以钛酸锂为负极的电池制造的后工序处理方法
JP2006269321A (ja) 捲回型非水電解液二次電池
JP2010250969A (ja) リチウム電池
JP4784194B2 (ja) 非水電解液二次電池の製造法
CN108878765A (zh) 一种锂离子电池电极、锂离子电池及锂离子电池制备方法
TWI530009B (zh) 鋰離子儲能元件及其製造方法
CN108400340A (zh) 一种锂离子电池正极、其制备方法及锂离子电池
CN205004388U (zh) 一种锂-二硫化亚铁电池
CN103682467A (zh) 二次锂锰软包装电池及制备方法
CN109671902A (zh) 一种长寿命锂金属电池负极制备方法及锂电池
CN113451547B (zh) 一种复合金属锂负极及包括该复合金属锂负极的锂离子电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant