CN102066609A - 具有铝磷酸盐-沸石微孔层的含铝基材,其制备方法及其用途 - Google Patents

具有铝磷酸盐-沸石微孔层的含铝基材,其制备方法及其用途 Download PDF

Info

Publication number
CN102066609A
CN102066609A CN2009801234386A CN200980123438A CN102066609A CN 102066609 A CN102066609 A CN 102066609A CN 2009801234386 A CN2009801234386 A CN 2009801234386A CN 200980123438 A CN200980123438 A CN 200980123438A CN 102066609 A CN102066609 A CN 102066609A
Authority
CN
China
Prior art keywords
aluminium base
micropore
mesopore
main stor
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801234386A
Other languages
English (en)
Other versions
CN102066609B (zh
Inventor
J·鲍尔
R·赫尔曼
W·斯克韦尔
A·阿弗哈尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sortech AG
Original Assignee
Sortech AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41165440&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102066609(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sortech AG filed Critical Sortech AG
Publication of CN102066609A publication Critical patent/CN102066609A/zh
Application granted granted Critical
Publication of CN102066609B publication Critical patent/CN102066609B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/83Aluminophosphates [APO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/60Synthesis on support
    • B01J2229/62Synthesis on support in or on other molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/60Synthesis on support
    • B01J2229/66Synthesis on support on metal supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Catalysts (AREA)
  • Chemically Coating (AREA)

Abstract

描述了具有至少一个表面涂布的铝磷酸盐-沸石(ALPO)微孔层和其它层的含铝基材。该含铝基材的特征在于,铝磷酸盐-沸石的微孔层是主层,其上存在与主层材料不同的微孔或中孔次级材料。该含铝基材特别有利地按照如下方法制备,其中,1.将含铝基材在含有至少磷作为形成网络的元素的水性悬浮液中水热处理,在其上通过原位结晶而形成铝磷酸盐-沸石的微孔主层,其中,尤其是在水性悬浮液中以不足量存在的形成网络的铝与在水性悬浮液中存在的形成网络的所有元素之和之间的摩尔比低于0.5,以便从含铝基材取出所需的铝用以补偿该不足量,和2.通过将含有微孔主层的含铝基材在水性悬浮液中进行进一步处理,在微孔主层上形成微孔或中孔的次级材料,该水性悬浮液含有用于构建微孔或中孔次级材料所需的形成网络的元素。所述含铝基材特别适合作为换热器、作为催化反应器或者作为具有抗腐蚀作用或防污-作用的热转换技术中的构件。

Description

具有铝磷酸盐-沸石微孔层的含铝基材,其制备方法及其用途
本发明涉及具有至少一个表面涂布的铝磷酸盐-沸石(ALPO)微孔层和任选地其它层的含铝基材,制备这种经涂层的含铝基材的方法以及由此带来的有利用途。
以上所述类型的铝基材例如已知于US 2003/0091872 A1以及WO2006/048211 A2。US 2003/091872 A1涉及一种在含金属的基材上形成铝硅酸盐-沸石层的方法,这是通过对常规的铝硅酸盐-沸石使用水性合成-悬浮液而实现的。将含铝的基材加入悬浮液后,该基材的部分铝原子嵌入沸石-网络中,从而改善沸石-层在基材上的附着性。溶液中的S i-和Al-源为要形成的沸石-层提供了构造材料,在此情况下,这些来源相互以化学计量比存在。这种已知的提议并不令人满意。虽然这样在结晶(Aufkristallisation)时在含铝基材上形成由常规的铝硅酸盐-沸石构成的层。其在基材上的固着并不令人满意。与之相比,按照WO 2006/048211 A2的教导发生改善。该文尤其还涉及一种在含铝基材上形成沸石-层的方法。制备水性悬浮液,其包含至少一种用于沸石的形成网络的元素,其中,含铝基材含有至少一种形成网状的元素。该文还将含铝基材引入水性悬浮液中,其中,在基材上通过原位-结晶形成沸石-层。根据WO 2006/048211 A2的发明的核心是,至少一种在水性悬浮液中存在的用于沸石-形成过程的形成网络的元素和沸石的最终结构以化学计量不足存在。水性悬浮液中以不足量存在的形成网络的元素与在水性悬浮液中存在的形成网络的所有元素之和之间的摩尔比小于0.5。从含铝基材中取走不足量存在的形成网络的元素,并嵌入沸石层中。优选形成网络的元素是磷,其存在于水性悬浮液中。在这样的情况下,在基材上构建铝磷酸盐-沸石。在此情况下,所述形成网络的元素例如可以源于磷酸或不同的磷酸铵。
对于WO 2006/048211 A2公开的技术建议而言,重要的还在于,至少一种形成网络的元素在所述的水性悬浮液中以化学计量不足量存在。由此带来多方面的优点:例如在含铝基材上形成的沸石层表现出可靠的固着和很好的附着性。晶体取向基本上垂直于含铝基材的表面。这种特别取向意味着晶体尽可能均匀的朝向,并确保反应物在所制得的沸石-层晶体的微孔体系中的均匀可得性。
因此,上述现有技术构成了沸石-层,尤其是铝磷酸盐-沸石(ALPO)″结晶″的背景。如果本文提及″铝磷酸盐″和″ALPO″,则在此应同时涉及到取代衍生物″SAPO″、″MeAPO″和″MeSAPO″。
以上所述的现有技术没有考虑粘合剂。这点是有利的。不过,并非所有沸石都能以此方式在含铝基材的表面上生长。在很多情况下,尤其是对于在强碱性介质中结晶的铝硅酸盐,会发生不可控制的溶解反应,这导致含金属的基材被破坏。其它沸石很难直接在金属或陶瓷表面上生长,因为这些表面的组成、结构或表面势能(potential)对沸石的分子结构块(构造单元)具有排斥作用。对于在催化、纯化和吸附过程中的分子吸附以及对于物质分离而言,沸石-层内部的物质运输常常是限速因素。如果还需要更厚的层,则关键性的层厚总是对物质运送进沸石-层和从沸石-层运送出有负面影响。
该领域另一现有技术由WO 96/01686给出。该WO-出版物首先公开了一种对分子具有改善的选择性透过性的体系。其基于基材、沸石层或沸石类的层、改善选择性的涂层,该涂层与沸石层或沸石类的层接触,和任选的可渗透的中间层与基材接触。该沸石-层或沸石类的层与基材和/或任选设置的中间层接触。该涂层可以是可渗透的或不可渗透的。可渗透的材料可以具有输送分子的多孔结构,使得分子可以透过沸石。还可以是柔滑的材料,其具有自由体积,足以使分子透过,然后可以移动通过沸石。优选的涂层由聚亚酰胺组成。按照该WO-出版物的公开内容,该聚亚酰胺-涂层或-膜对于低级烃的分子具有很低的渗透性。尽管如此,其还是应该具有足够的渗透性,并且选择性得到改善。不过聚亚酰胺表现出以下缺点,其在可能考虑的煅烧情况下发生燃烧。这种涂层的另一实例是二氧化硅。该涂层也可以是渗透性的或不是渗透性的。通过在沸石层某些截面上涂布层而改善选择性是基于沸石层中非故意的开口的纯粹物理性堵塞。通过由简单的局部运输阻滞造成的特殊的材料性质,不能达到化学特征的内在功能性。
显然,按照该现有技术,对于所述材料而言,所提及的基材是何类型并不重要。其可以是多孔性或非多孔性的。优选基于无机氧化物或不锈钢。在此还可以是陶瓷材料、金属、碳化物、聚合物及其混合物。另外可考虑光折射性氧化物、铝氧化物、钛氧化物、硅氧化物、碳化硅、炭、石墨、氮化硅或其混合物。在这样的基材上然后可以形成尤其是由任意沸石形成的层。具体且优选提及铝硅酸盐MFI,尤其是实施例中的。
因此,本发明的目的在于,这样改进开头提到的具有至少一个表面涂布的铝磷酸盐-沸石(ALPO)微孔层和其它层的含铝基材,从而消除所述的限制物质运输(压力损失)的缺点或者至少明显降低。另外还应该使形成多层以有助于特别追求的技术效果成为可能。同时还提供一种适合制备这种所定义的经涂层的含铝基材的方法。还开发了其它有利的应用可能性。
为实现该目的,本发明建议,这种铝磷酸盐-沸石微孔层是主层,其上连续或间断地存在与主层材料不同的微孔或中孔的次级材料。
因此,本发明尤其是这样避开以上所述的现有技术,在含铝基材上不但构建沸石-层,而且继所称的主层后还连续或间断地形成不同的微孔或中孔的次级材料。因此可以使迄今不能或者只能很难地通过直接结晶过程而在载体层上生长的沸石-类型,现在明显更好地并且也没有载体溶解地结晶成层。根据本发明所示的概念化的教导导致相对于所述现有技术有明显改善或优点。主层形式的铝磷酸盐沸石微孔层表现出特别有利的对不同微孔或中孔次级材料的牢固结合,其是连续的或间断的。当沸石-层在相应含铝基材上较厚且明显更稳定固着的情况下,这导致更好的可使用性。最后,本发明使得在制备无粘合剂的沸石-层时能够拓宽沸石选择范围。因此这种材料也可以作为层使用,其在直接结晶时使载体材料溶解,或者只是很小地倾向于在其表面上结晶。通过一方面铝磷酸盐沸石的微孔层作为主层以及另一方面所称的次级材料的组合,还实现了在控制由微孔材料形成的层的性质中改善的灵活性。很多沸石类型在含铝基材上的结晶可以通过形成主层得到加速,并在较温和的条件下进行。尤其是通过不同孔宽的沸石的组合,可以制备阶梯式构建的孔体系,其能够实现特别有利的物质运输(sh.Martin Hartmann,Angew Chem Int.Ed Engl.2004年11月12日;43(44):5880-2),也就是说,在此涉及具有递进的孔宽的阶梯式孔体系。
以上描述表明,不但微孔主层,而且微孔或中孔次级材料也连续地,例如以层形式,或者间断地,本身已经获得到功能,在要求物质流,尤其是气流的应用情况下,能够实现这种功能。在主要的应用情况下,次级材料的类型基本上决定了所希望的功能。因此,在此情况下可以说成″功能性多孔的次级材料″或″功能性微孔或中孔的次级材料″。因此,下文个别情况下还说成″功能性次级材料″,不应视为从技术上加以限制。
以下详细描述根据本发明的含铝基材特别有利的方案:
根据本发明的含铝基材具有至少一个表面涂布的铝磷酸盐-沸石(ALPO)微孔层。在本发明意义上该材料的优点在于,在原位结晶时,其化学组成不会因来自含铝基材的铝而改变,另外,在后续的微孔或中孔次级材料形成过程中,这也不受例如特别的抗衡离子的不希望的影响。所述含铝基材优选是铝、含铝的合金,尤其是与铝合金化的钢,或者含铝陶瓷,比如个别情况下为铝氧化物。
根据本发明的功能性次级材料是微孔或中孔的。优选所述微孔或中孔次级材料以ALPO存在,尤其是以SAPO、MeAPO或MeSAPO存在,或者一般情况下以沸石的铝硅酸盐或硅酸盐形式,尤其是作为FAU,MFI,LTA,BEA,CHA。同样可以涂布具有特殊功能的连续的非多孔性次级材料,但防碍物质运输。
有利的是,所述微孔主层的平均孔径小于约2.0nm,尤其是小于1.0nm。特别有利的是,平均孔径在此为约0.2至1.0nm,尤其是约0.3至0.7nm。微孔主层的平均孔径优选小于多孔次级材料的平均孔径。不过个别情况下符合目的的还可以是,在次级层中存在较小的孔而在主层中存在较大的孔。另外,有利的是,微孔次级材料的平均孔径为约0.4至1.5nm,尤其是约0.5至1.3nm。符合目的的是,中孔次级材料的平均孔径介于约2至5nm之间,尤其是介于约2.5至4nm之间。
对于用本发明致力达到的有利的技术效果,主层以及微孔或中孔次级材料连续或间断的层的厚度没有严格限制。发现有利的是,微孔主层的厚度为至少约1μm,和/或微孔或中孔次级材料的厚度为至少约1μm,尤其是至少约5μm。小于约1μm的层厚多数情况下导致间断的主层。因此,如上所述,并非强制所述主层表面完全被多孔的次级材料所覆盖。个别情况下,当进行或多或少间断性涂布时,也是完全足够的。一般而言,当间断地构建时,表面覆盖率大于约60%,尤其是大于约90%,也是足够的。
在实际实施本发明时,还证实有利的是,微孔主层和微孔或中孔次级材料在多孔物质的化学类型、其多孔性或者孔体系的类型和取向方面具有差异性,尤其是逐级的梯度式的多孔性形式方面。当提及逐级的梯度式的多孔性时,则尤其是如下理解。是指会促进物质运输的″阶梯式″多孔性。另外,所述梯度式多孔性的特征在于,通过适当的孔宽差获得″漏斗效应″,促进从一个孔体系到另一个孔体系的物质输送。通过梯度式多孔性,可以使物质运输好于同样厚度的铝磷酸盐沸石微孔层和微孔或中孔次级材料层(尤其是以沸石形式)地进行。作为化学类型差异性的实例,可指出含有抗衡离子或包体(Einschlüsse)的晶格组成,以及材料的亲水性和酸性。因此,功能性也总是结合着化学本质或者表现出化学作用并且超出纯粹物理性局部运输阻滞的性质。不同的多孔性有利地可以在以上所述的多孔性范围内调节。对于孔体系的类型和取向,可以实现,使得二维孔道体系与三维孔网络,或者在主层上的次级材料中优选垂直于载体表面取向的孔体系与三维孔体系(3-D)的组合能够具有有利的扩散性质。
个别情况下有利的可以是,在微孔或中孔的次级材料上构建至少一种其它材料,其可以增添一种功能性,如上所定义的。尤其是在此可以是功能性多孔材料。
在此进一步优选,所述微孔主层、微孔或中孔次级材料和其它涂布的多孔材料为了在使用时促进扩散行为而具有逐级的梯度式的多孔性。对于应用情况而言还符合目的的是,涂覆的含铝基材具有外层,该外层满足防污-层的功能。本发明含铝基材的灵活性表明,有利地,所述微孔主层和/或多孔的次级材料可以含有起到功能性作用的物质和/或金属离子,尤其是起催化作用的金属离子。在此,尤其优选金属离子,如铂离子、钯离子、钌离子、铁离子、铜离子、钴离子、锌离子或镍离子。
因此,作为结果,不同的功能性涂层展示了千差万别的有利的应用可能性,例如,用于防污,用于多相催化,用于物质分离,也与催化结合使用,用于吸附以及物质纯化和能量转化。
如上所述,根据本发明经涂层的铝基材作为换热器、作为催化反应器或者作为热转换技术中的构件或者作为具有防污-作用的构件使用时,表现出特别有利的应用性。
根据本发明的含铝基材所表现出的优点,尤其是在当由本发明提供的方法被用于其制备时,得以实现。
在此涉及一种制备上述类型的含铝基材的方法,其中,1.将含铝基材在含有至少磷作为形成网络的元素的水性悬浮液中水热处理,在其上通过原位结晶而形成铝磷酸盐-沸石的微孔主层,其中,尤其是在水性悬浮液中以不足量存在的形成网络的铝与在水性悬浮液中存在的形成网络的所有元素之和之间的摩尔比低于0.5,以便从含铝基材取出所需的铝用以补偿该不足量,和2.通过将含有微孔主层的含铝基材在水性悬浮液中进行进一步处理,在微孔主层上形成微孔或中孔的次级材料,该水性悬浮液含有用于构建微孔或中孔次级材料所需的形成网络的元素。
以上在措施1.如下所述的“不足量-技术”的方法主要由开头已经讨论的WO2006/048211得知,即其中证实为优选的方法教导。此种情况下显然,为了在所使用的水性悬浮液中形成铝磷酸盐-沸石(ALPO)的微孔层(其中含铝基材设置有微孔主层),含有磷作为形成网络的元素。其中,例如以磷酸或者以磷酸盐,尤其是以水溶性的磷酸盐形式含有磷。另外,尤其是磷酸铵适合作为水溶性的磷酸盐。
对于铝磷酸盐-沸石(ALPO)是比如含有硅的沸石情形(例如SAPO),所述水性悬浮液还含有硅作为形成网络的元素。在此情况下,反应溶液的硅以硅酸、硅溶胶、高度分散的硅氧化物形式,例如气相二氧化硅(Aerosil),或者以硅酸酯形式加入。此外,还可以添加溶解性的硅酸盐,如硅酸钠。
个别情况下有利的可以是,额外使用模板化合物。本文中是指调控结构的试剂(SPA),例如烷基-或芳基-铵盐,在此优选磷酸盐,或者还有表面活性剂。
按照措施1)所示的教导,技术人员自由地对其这样设计,使得铝或者完全来源于含铝基材,或者部分来源于悬浮液,作为形成网络的元素。用于构建多孔的次级材料的特征″所需的形成网络的元素″也是对技术人员而言足够的信息。这也由本发明描述内容的上下文,尤其是还由以下实施例获悉。
该方法可以这样特别有利地改进,即通过使不足量存在的形成网络的铝与在悬浮液中含有的形成网络的所有元素之和之间的摩尔比低于0.2,尤其是低于0.1。另外,有利的是,将用于形成相应的层或待涂布的材料而引入的水性悬浮液调节到约50至250℃,尤其是约80至200℃的温度。
本发明方法通过在微孔或中孔的次级材料或者该次级材料的层上涂布其它的功能性多孔材料获得特别有利的改进方案,其中以上已经对其示例性加以探讨。
对于该功能性多孔材料,可以实现结果如下:
对本发明的孔宽现有的分等级应继续,优选可以满足对次级材料的保护功能,并防污,并有利地补充主层和次级材料不同的化学性质。
关于本发明的其他优点:
本发明优点尤其在于,通过所发现的本发明方法,首次基于具有高铝含量的铝磷酸盐(磷酸盐主沸石)实现以层形式的沸石的组合,所述铝磷酸盐很好地附着在金属铝上或附着在其他含Al的载体上。次级材料(例如第二沸石-层)在主层上的附着性由于主层的大的微观粗糙度(Mikrorauhigkeit)和化学相似性(OH-端基,铝四面体,有时可能是硅酸盐四面体)而非常强。根据本发明,双层和更多层有利地可以由不同的沸石-类型(例如铝硅酸盐-和铝磷酸盐-沸石)在铝磷酸盐-主层上产生。
本发明的结果表现出多种多样的使用可能性,尤其源于相对于现有技术以下方面的改善:不同的沸石-结构:铝磷酸盐和铝磷酸盐上的铝硅酸盐,包括由此衍生的具有其他晶格离子的体系;不同的孔径(大和小的孔腔),不同的孔体积,晶体或孔体系不同的取向,线性孔体系和3D-孔体系;不同的亲水性,酸性,不同的合成后改性,不同量和/或类型阳离子(金属)的离子交换;不同的形态(大的晶体或通径(Durchg
Figure BDA0000039808250000081
nge)),具有开放的宏观结构或纳米颗粒/微晶的单一晶体的连续的层,和迄今不可实现的沸石-层作为次级层。
看起来有益的是,本发明除了涉及以上实施方案外还在技术上描述了以下内容:首先可以在含铝基材上构建ALPO-,SAPO-,MeAPO-或MeSAPO-主层(磷酸盐-主沸石)。在此,本发明优选利用消耗性结晶(Aufkristallisation)。涉及使磷酸盐-沸石在所称的含铝基材上牢固地无粘合剂地生长的方法。然后将其引入其他合成溶液中,所述合成溶液导致功能性多孔次级材料结晶,比如以第二沸石(次级沸石)形式在磷酸盐-主层表面上结晶。有利的悬浮液具有形成非均相晶种的高度倾向,由此使次级材料,尤其是次级沸石,发生在所存在的具有大沸石表面的主层上生长。发生特别有利的均匀地晶种形成。有利的是,这样来调节第二合成溶液的反应技术性参数和物质的参数,使得不发生主层的溶解,不发生含铝基材的溶解以及不形成沸石的游离沸石粉末,并且在主层上结晶。次级沸石的结晶例如通过在直至250℃的温度下水热合成来实现。在制备本发明含铝基材时,具体条件根据组成对磷酸盐-主沸石/次级沸石的不同而改变,因此应分别调整,由技术人员熟练地实施。在明显不同的主沸石和次级沸石的情况下,符合目的是还在主层上先沉积次级沸石的晶种。
以上详细描述的本发明可以借助于附图7和8进一步解释:图7涉及由含铝基材、基于ALPO的主层和次级材料形成的复合体的示意图。图8表示根据本发明通过主层和次级材料的性质的变化可实现的复合体的示意图,其中,关于各个层或其定义可参见图7。通过涂布第二次级材料,可以相应拓宽以下变化方案:微孔ALPO-主层,具有多孔1)ALPO-,和2)铝硅酸盐-,或者硅酸盐次级材料;3)由较小晶体组成的主层和由较大晶体组成的次级材料,和反之:4).各晶体还可以分别相互生长。5)和6):晶体或孔体系(例如线性和三维孔体系)不同的取向。孔径的分等级:在7)中,主层中的孔径较小,次级材料中的则较大。在8)中,主层具有较大的孔径。9)和10)主层和次级材料中象征性表示不同的化学性质(例如亲水性,酸性,抗衡离子:类型和数量)。
以下借助于不同制备实施例更详细地阐明本发明。其中缩写MFI(ZSM-5),AFI(ALPO-5),AEI(SAPO-18),和CHA(SAPO-34)表示按照国际沸石联合会I ZA的术语表的沸石化合物(″Atlas of ZeoliteFrameworks″,Ch.Baer locher,L.B.McCusker,D.H.Olson,Elsevier,2007)。
实施例1(MFI,在SAPO-34上)
主层的合成:通过水热处理使Al-载体部分变形(Transformation)来制备SAPO-34(CHA)主层。作为Al-载体,使用Al-箔(厚160μm,尺寸6x8cm,~99%Al)。将其与含有其余的网络形成剂(磷和硅)和调控结构的模板(吗啉)的水性合成溶液一起加入高压釜(40ml)中。该合成溶液的组成,以氧化物比例计,为1.0P2O5∶0.4SiO2∶3.0吗啉∶70H2O。使用H3PO4(85%)作为磷源,使用硅溶胶(35%)作为Si源。这种水热结晶在200℃下进行48h。48h结晶时间后,将高压釜冷却到室温。随后将涂覆过的载体取出,用去离子水洗涤,并在室温下干燥12h。
次级层的合成:MFI次级层的结晶分两步进行。首先使涂覆过的载体经由硅石-1晶体摩擦(gerieben),由此使SAPO-34主层的表面占据有MFI晶体,这可以起到用来形成次级层的晶种的作用。硅石-1晶种的制备在160℃下进行,结晶时间48h,由具有以下组成:1.0SiO2∶0.16TPA2O∶29H2O的反应混合物开始。使用原硅酸四乙酯作为硅源,使用四丙基氢氧化铵作为模板。
预处理过的载体随后与用于ZSM-5(MFI)的结晶的反应混合物一起加入高压釜(40ml)中。该反应混合物的摩尔组成为1.0SiO20.0088Al2O3∶0.036K2O∶0.056TPA2OH∶111H2O。使用原硅酸四乙酯作为硅源,硝酸铝作为Al-源,四丙基溴化铵作为模板。水热结晶在24h和175℃进行。在24h的结晶时间后,将高压釜冷却到室温,将涂覆过的载体取出,用去离子水洗涤,并在室温下干燥12h。
图1表示涂覆步骤之前和之后Al-载体的X射线衍射图。还绘制了ZSM-5种晶的衍射图。图2表示在形成主层和次级层之后载体的电子显微镜照片。在图3中则看到形成次级层之后的照片。借助于这些衍射图和电子显微镜照片,可以明显证实形成了SAPO-34主层和ZSM-5次级层。
实施例2(ALPO-5(AFI),在SAPO-34(CHA)上)
主层的合成:通过水热处理使Al-载体部分变形(Transformation)来制备SAPO-34主层。作为Al-载体,使用Al-箔(厚160μm,尺寸6x8cm,~99%Al)。将其与含有其余的网络形成剂(磷和硅)和调控结构的模板(吗啉)的水性合成溶液一起加入高压釜(40ml)中。该合成溶液的组成相应于1.0P2O5∶0.4SiO2∶3.0吗啉∶70H2O。使用H3PO4(85%)作为磷源,使用硅溶胶(35%)作为Si源。水热结晶在200℃下进行48h。48h结晶时间后,将高压釜冷却到室温。随后将涂覆过的载体取出,用去离子水洗涤,并在室温下干燥12h。
次级层的合成:ALPO-5次级层的结晶通过涂覆过的Al-载体的第二次水热处理来实现。为此,制备具有以下摩尔组成的反应起始物料:0.9Al2O3∶1.0P2O5∶1.0TEA∶50H2O。使用假伯姆石(Pseudobhmit)作为Al-源,使用H3PO4作为磷源,并使用三乙胺作为模板。次级层的结晶在40ml高压釜中在175℃下进行24h。通过将高压釜冷却到室温来终止结晶。随后将涂覆过的载体从高压釜中取出,用去离子水洗涤,并在室温下干燥12h。
图4表示在形成主层和次级层之后的复合体的X射线衍射图,图5表示ALPO-5次级层的电子显微镜照片。借助于这些衍射图和电子显微镜照片,可以明显证实形成了SAPO-34主层和AIPO-5次级层。
实施例3(AFI,在SAPO-18(AEI)上)
主层的合成:通过水热处理使Al-载体部分变形(Transformation)来制备SAPO-18主层。作为Al-载体,使用Al-箔(厚160μm,尺寸6x8cm,~99%Al)。将其与含有其余的网络形成剂(磷和硅)和调控结构的模板(二异丙基乙基胺)的水性合成溶液一起加入高压釜(40ml)中。该合成溶液的组成相应于1.0P2O5∶0.4SiO2∶3.0二异丙基乙基胺∶70H2O。使用H3PO4(85%)作为磷源,使用硅溶胶(35%)作为Si源。这种水热结晶在175℃下进行48h。48h结晶时间后,将高压釜冷却到室温。随后将涂覆过的载体取出,用去离子水洗涤,并在室温下干燥12h。
次级层的合成:SAPO-34次级层的结晶通过第二次水热处理涂覆过的Al-载体来实现。为此,制备具有以下摩尔组成的反应起始物料:0.8Al2O3∶1.0P2O5∶0.4SiO2∶3.0吗啉∶70H2O。使用假伯姆石作为Al-源,使用H3PO4作为磷源,使用硅溶胶作为硅源,并使用吗啉作为模板。次级层的结晶在200℃下在40ml高压釜中进行48h。在高压釜冷却到室温后,将涂覆过的载体从高压釜中取出,用去离子水洗涤,并在室温下干燥12h。
图6表示在形成主层和次级层之后Al-载体的X射线衍射图。借助于这些衍射图可以观察到形成了SAPO-18主层和SAPO-34次级层。

Claims (22)

1.具有至少一个表面涂布的铝磷酸盐-沸石(ALPO)微孔层和其它层的含铝基材,其特征在于,铝磷酸盐-沸石微孔层是主层,其上存在与主层材料不同的微孔或中孔次级材料。
2.根据权利要求1的含铝基材,其特征在于,所述含铝基材基于铝、含铝的合金,尤其是与铝合金化的钢,或者含铝陶瓷。
3.根据权利要求1或2的含铝基材,其特征在于,所述微孔主层和微孔或中孔次级材料在多孔物质的化学类型或性质、多孔性或者孔体系的类型和取向方面具有差异性,尤其是在逐级的梯度式的多孔性形式方面。
4.根据权利要求1至3至少一项的含铝基材,其特征在于,铝磷酸盐-沸石(ALPO)以SAPO或MeALPO存在。
5.根据权利要求1至4至少一项的含铝基材,其特征在于,所述微孔主层的平均孔径小于约2.0nm,尤其是小于约1.0nm。
6.根据权利要求5的含铝基材,其特征在于,所述微孔主层的平均孔径为约0.2至1.0nm,尤其是约0.3至0.7nm。
7.根据权利要求1至6至少一项的含铝基材,其特征在于,所述微孔主层的平均孔径小于所述微孔或中孔次级材料的平均孔径。
8.根据权利要求1至7至少一项的含铝基材,其特征在于,所述微孔次级材料的平均孔径小于约2.0nm,尤其是约0.35至1.3nm。
9.根据权利要求1至7至少一项的含铝基材,其特征在于,所述中孔次级材料的平均孔径为约2至8nm,尤其是约3至5nm。
10.根据权利要求1至9至少一项的含铝基材,其特征在于,所述微孔主层的厚度为至少约1μm,和/或微孔或中孔次级材料的厚度为至少约1μm,尤其是至少约5μm。
11.根据权利要求1至10至少一项的含铝基材,其特征在于,所述微孔或中孔次级材料以ALPO,尤其是以SAPO或MeALPO存在。
12.根据权利要求1至11至少一项的含铝基材,其特征在于,所述微孔或中孔次级材料以铝硅酸盐或硅酸盐形式存在,尤其是作为FAU,MFI,LTA,BEA,CHA。
13.根据权利要求1至12至少一项的含铝基材,其特征在于,在微孔或中孔次级材料上连续或间断地构建至少一种其它材料,该材料尤其是基于多孔材料。
14.根据权利要求13的含铝基材,其特征在于,所述微孔主层,微孔或中孔次级材料和其它材料在应用时具有用以促进物质运输的逐级的梯度式的多孔性。
15.根据权利要求1至14至少一项的含铝基材,其特征在于,该含铝基材具有外层,该外层满足防污-层的功能。
16.根据权利要求1至15至少一项的含铝基材,其特征在于,所述微孔主层和/或微孔或中孔的次级材料含有起到功能性作用的物质和/或金属离子,尤其是起催化作用的金属离子和质子。
17.根据权利要求16的含铝基材,其特征在于,所述金属离子是铂离子、钯离子、钌离子、铁离子、铜离子、钴离子、锌离子或镍离子。
18.制备根据前述权利要求至少一项的含铝基材的方法,其特征在于,1.将含铝基材在含有至少磷作为形成网络的元素的水性悬浮液中水热处理,在其上通过原位结晶而形成铝磷酸盐-沸石的微孔主层,其中,尤其是在水性悬浮液中以不足量存在的形成网络的铝与在水性悬浮液中存在的形成网络的所有元素之和之间的摩尔比低于0.5,以便从含铝基材取出所需的铝用以补偿该不足量,和2.通过将含有微孔主层的含铝基材在水性悬浮液中进行进一步处理,在微孔主层上构建微孔或中孔的次级材料,该水性悬浮液含有用于构建微孔或中孔次级材料所需的形成网络的元素。
19.根据权利要求18的方法,其特征在于,以不足量存在的形成网络的铝与在悬浮液中含有的形成网络的所有元素之和之间的摩尔比低于0.2,尤其是低于0.1。
20.根据权利要求18或19的方法,其特征在于,将用于形成相应的层或待涂布的材料而引入的水性悬浮液调节到约50至250℃,尤其是约80至200℃的温度。
21.根据权利要求18至20至少一项的方法,其特征在于,在微孔或中孔的次级材料上涂布其它的多孔材料。
22.根据权利要求1至17至少一项的含铝基材作为换热器、作为催化反应器或者作为热转换技术中具有防污-作用的构件的用途。
CN2009801234386A 2008-05-15 2009-05-13 具有铝磷酸盐-沸石微孔层的含铝基材,其制备方法及其用途 Expired - Fee Related CN102066609B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008023634.9 2008-05-15
DE102008023634A DE102008023634A1 (de) 2008-05-15 2008-05-15 Aluminiumhaltiges Substrat mit einer mikroporösen Schicht eines Aluminiumphosphat-Zeoliths, ein Verfahren zu dessen Herstellung und dessen Verwendung
PCT/EP2009/003408 WO2009138223A2 (de) 2008-05-15 2009-05-13 Aluminiumhaltiges substrat mit einer mikroporösen schicht eines aluminiumphosphat-zeoliths, ein verfahren zu dessen herstellung und dessen verwendung

Publications (2)

Publication Number Publication Date
CN102066609A true CN102066609A (zh) 2011-05-18
CN102066609B CN102066609B (zh) 2013-07-10

Family

ID=41165440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801234386A Expired - Fee Related CN102066609B (zh) 2008-05-15 2009-05-13 具有铝磷酸盐-沸石微孔层的含铝基材,其制备方法及其用途

Country Status (9)

Country Link
US (1) US9175396B2 (zh)
EP (1) EP2279286B1 (zh)
JP (2) JP2011523678A (zh)
KR (1) KR101612975B1 (zh)
CN (1) CN102066609B (zh)
BR (1) BRPI0912669B1 (zh)
DE (1) DE102008023634A1 (zh)
ES (1) ES2755851T3 (zh)
WO (1) WO2009138223A2 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10533779B2 (en) 2011-06-30 2020-01-14 International Business Machines Corporation Adsorption heat exchanger devices
CN106461290A (zh) 2014-01-10 2017-02-22 百瑞空气工程(亚洲)有限公司 混合吸附热交换装置和制造方法
JP6915259B2 (ja) * 2015-11-04 2021-08-04 三菱ケミカル株式会社 プロピレン及び直鎖ブテンの製造方法
DE102015122301B4 (de) * 2015-12-18 2020-08-13 Fahrenheit Gmbh Verfahren zur Ausbildung einer Alumosilikat-Zeolith-Schicht auf einem aluminiumhaltigen metallischen Substrat sowie Verwendung des danach erhaltenen Substrats
CN113195112A (zh) * 2018-12-12 2021-07-30 尼蓝宝股份有限公司 陶瓷表面改性材料及其使用方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1741586A (en) * 1927-11-03 1929-12-31 Robert C Russell Index
US2052825A (en) * 1934-09-08 1936-09-01 Otto G Haussmann Ophthalmic lens with elliptic segment
US3960442A (en) * 1974-08-05 1976-06-01 American Optical Corporation Ophthalmic lens series
US4028743A (en) * 1975-08-04 1977-06-14 Christensen Cai V Protective head-wear
US4271538A (en) * 1980-03-24 1981-06-09 Norton Company Safety spectacles
US4536892A (en) * 1984-04-23 1985-08-27 Mine Safety Appliances Company Riot faceshield assembly
US4867550A (en) * 1985-01-11 1989-09-19 Oakley, Inc. Toroidal lens for sunglasses
US5208614A (en) * 1990-11-30 1993-05-04 Oakley, Inc. Concavely indented lenses for eyeware
CA2115343A1 (en) * 1991-08-09 1993-02-18 Steve Newman Toric lens with axis mislocation latitude
AU687776B2 (en) * 1993-05-25 1998-03-05 James H. Jannard Surface modified lens
GB2281635B (en) * 1993-09-01 1997-04-09 Gentex Optics Inc Aspheric sunglass or eye protector of substantially uniform thickness
US5416315A (en) * 1994-01-24 1995-05-16 Night Vision General Partnership Visor-mounted night vision visor
AU711013B2 (en) * 1994-07-08 1999-10-07 Exxon Research And Engineering Company A zeolite containing composition with a selectivity enhancing coating
US5617588A (en) * 1995-03-16 1997-04-08 Uvex Safety, Inc. Snap together protective goggle construction with toric lens
US5815848A (en) * 1995-07-14 1998-10-06 Oakley, Inc. Impact resistant face shield for sporting helmets
US5648832A (en) * 1995-12-05 1997-07-15 Oakley, Inc. Decentered noncorrective lens for eyewear
US5774201A (en) * 1995-12-05 1998-06-30 Oakley, Inc. Elliptical lens for eyewear
ES2200157T3 (es) * 1996-03-21 2004-03-01 Sola International Holdings, Ltd. Lentes de vision simple mejoradas.
US6254236B1 (en) * 1996-05-02 2001-07-03 Cabot Safety Intermediate Corporation Parabolic and hyperbolic aspheric eyewear
US5825455A (en) * 1996-05-02 1998-10-20 Cabot Safety Intermediate Corporation Aspheric plano eyewear
US5901369A (en) * 1997-08-15 1999-05-11 Honeywell Inc. Headgear having an articulated mounting mechanism for a visor
US6129435A (en) * 1998-04-09 2000-10-10 Nike, Inc. Decentered protective eyewear
US6009564A (en) * 1998-06-24 2000-01-04 Oakley, Inc. Optically corrected goggle
FR2792174B1 (fr) * 1999-04-16 2001-09-21 Sextant Avionique Visiere pour casque
US6343860B1 (en) * 1999-08-26 2002-02-05 Greenhouse Grown Products, Inc. Toric-shaped lenses and goggle assembly
US6500490B1 (en) 2000-03-23 2002-12-31 Honeywell International Inc. Hydrophilic zeolite coating
DE60336661D1 (de) 2002-08-01 2011-05-19 Chevron Usa Inc Molsieb ssz-64
DE10304322B4 (de) 2003-02-04 2007-09-13 Dechema Gesellschaft Für Chemische Technik Und Biotechnologie E.V. Herstellung von gestützten Zeolithschichten
JP4759724B2 (ja) * 2004-03-31 2011-08-31 独立行政法人産業技術総合研究所 ゼオライト膜及びその製造方法
US7389543B2 (en) * 2004-06-30 2008-06-24 Nike, Inc. Optically decentered face shield
DE102004041836A1 (de) 2004-08-27 2006-03-02 Wilhelm Prof. Dr. Schwieger Erzeugung von Zeolithschichten auf SiSiC-Keramiken
EP1657587A1 (en) * 2004-10-22 2006-05-17 Christian Dalloz Sunoptics S.A.S Non-corrective lenses with improved peripheral vision
DE102004052976A1 (de) 2004-10-29 2006-05-04 Sortech Ag Verfahren zur Herstellung eines mit einer Zeolith-Schicht beschichteten Substrats
US7403346B2 (en) * 2006-07-18 2008-07-22 Nike, Inc. Inclined-edged sports lens

Also Published As

Publication number Publication date
CN102066609B (zh) 2013-07-10
DE102008023634A1 (de) 2009-11-19
JP2011523678A (ja) 2011-08-18
US20110183836A1 (en) 2011-07-28
EP2279286A2 (de) 2011-02-02
KR20110018360A (ko) 2011-02-23
BRPI0912669A2 (pt) 2016-01-26
JP2015163739A (ja) 2015-09-10
KR101612975B1 (ko) 2016-04-15
WO2009138223A3 (de) 2010-02-25
ES2755851T3 (es) 2020-04-23
EP2279286B1 (de) 2019-08-21
BRPI0912669B1 (pt) 2020-02-11
US9175396B2 (en) 2015-11-03
JP6040273B2 (ja) 2016-12-07
WO2009138223A2 (de) 2009-11-19

Similar Documents

Publication Publication Date Title
CN102066609B (zh) 具有铝磷酸盐-沸石微孔层的含铝基材,其制备方法及其用途
Bouizi et al. Bi-phase MOR/MFI-type zeolite core–shell composite
Gábová et al. Control of Al distribution in ZSM-5 by conditions of zeolite synthesis
US20090266237A1 (en) Membrane for Gas Phase Separation and Suitable Method for Production Thereof
JP3184833B2 (ja) 小分子分離用の膜及びその製造方法
US20120132591A1 (en) Method for desalinating water using zeolite membrane
US8053032B2 (en) Method for production of a substrate coated with a zeolite layer
US20070104643A1 (en) Mesoporous nanocrystaline zeolite composition and preparation from amorphous colloidal metalosilicates
JP2014509927A5 (zh)
US10669158B2 (en) Methods of synthesizing chabazite zeolites with controlled aluminum distribution and structures made therefrom
JP4803494B2 (ja) 均一な外層によって取り囲まれた酸性で多孔性の芯を含む粒状形態の触媒
US11229898B2 (en) Nanometer-size zeolitic particles and method for the production thereof
JP2013538779A (ja) 基質上に三つの結晶軸がすべて一様に整列した、種子結晶の2次成長によって形成された膜
US20230051097A1 (en) Mesoporous zeolites prepared by alkaline treatment with precipitates
US20080160189A1 (en) Method for Manufacturing Zeolite Membrane
JP2019509968A (ja) 階層的多孔性を有するゼオライトベースの複合材料の製造
WO2011046016A1 (ja) Ddr型ゼオライトの製造方法
Wang et al. Fabrication of hollow zeolite fibers through layer-by-layer adsorption method
Ban et al. Crystallization and crystal morphology of silicalite-1 prepared from silica gel using different amines as a base
Serrano et al. Mechanism of CIT‐6 and VPI‐8 Crystallization from Zincosilicate Gels
JP2021186770A (ja) 合成ガス製造用触媒構造体、合成ガス製造装置および合成ガス製造用触媒構造体の製造方法
Jantarit Synthesis of EMT/FAU intergrowth and nanosized sod zeolite from gel of zeolite sodium x in ethanol-water systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130710