CN102064827B - Rubidium oscillator-based standard frequency and time adjusting method - Google Patents
Rubidium oscillator-based standard frequency and time adjusting method Download PDFInfo
- Publication number
- CN102064827B CN102064827B CN2010105435228A CN201010543522A CN102064827B CN 102064827 B CN102064827 B CN 102064827B CN 2010105435228 A CN2010105435228 A CN 2010105435228A CN 201010543522 A CN201010543522 A CN 201010543522A CN 102064827 B CN102064827 B CN 102064827B
- Authority
- CN
- China
- Prior art keywords
- frequency
- time
- signal
- rubidium
- rubidium atomic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052701 rubidium Inorganic materials 0.000 title claims abstract description 75
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims abstract description 5
- 230000001360 synchronised effect Effects 0.000 claims abstract description 17
- 238000005259 measurement Methods 0.000 claims abstract description 8
- 238000004364 calculation method Methods 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 description 9
- 238000013461 design Methods 0.000 description 7
- 229910052792 caesium Inorganic materials 0.000 description 5
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/26—Automatic control of frequency or phase; Synchronisation using energy levels of molecules, atoms, or subatomic particles as a frequency reference
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electric Clocks (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Abstract
基于铷振荡器的标准频率与时间调整方法,铷原子振荡器被选为基准频率源后,FPGA对基准频率源进行倍频和分频工作,得到本地产生的秒脉冲信号。FPGA以外部输入的秒脉冲信号作为基准,对本征秒信号进行相差测量运算。测得的相差值被赋值给FPAG内部指定的寄存器,通过数据总线,传送给ARM。ARM计算本征秒信号和外部输入秒信号的相差随时间的变化值,根据差值计算出铷原子振荡器与外部标准频率的频差。ARM计算得到的频差值通过数据总线反馈给FPGA。FPGA依据收到的频差值,对铷原子振荡器进行调频操作,使铷原子振荡器的输出频率溯源同步到上级时间频率基准。本发明有益效果在于能提供高性能、高稳定和高精度的时间信号。
Based on the standard frequency and time adjustment method of the rubidium oscillator, after the rubidium atomic oscillator is selected as the reference frequency source, the FPGA performs frequency multiplication and frequency division on the reference frequency source to obtain the locally generated second pulse signal. The FPGA uses the externally input second pulse signal as a reference to perform phase difference measurement calculations on the intrinsic second signal. The measured phase difference value is assigned to the designated register inside FPAG, and transmitted to ARM through the data bus. ARM calculates the time-varying value of the phase difference between the intrinsic second signal and the external input second signal, and calculates the frequency difference between the rubidium atomic oscillator and the external standard frequency according to the difference. The frequency difference value calculated by the ARM is fed back to the FPGA through the data bus. According to the received frequency difference value, FPGA performs frequency modulation operation on the rubidium atomic oscillator, so that the output frequency of the rubidium atomic oscillator is traceable and synchronized to the superior time and frequency reference. The invention has the beneficial effects of being able to provide high-performance, high-stability and high-precision time signals.
Description
技术领域 technical field
本发明涉及电力系统中同步通信、同步相量测量、行波测距、广域动态监测与分析、电网稳定控制、故障录波等技术领域的高精度频率与时间源的组建技术。 The invention relates to the construction technology of high-precision frequency and time sources in the technical fields of synchronous communication, synchronized phasor measurement, traveling wave ranging, wide-area dynamic monitoring and analysis, power grid stability control, and fault wave recording in power systems.
背景技术 Background technique
目前,高性能的标准频率源主要采样铯原子振荡器和铷原子振荡器,其中铯原子振荡器性能最优,但价格高昂且难以采购,铷原子振荡器性能低于铯原子振荡器。本产品通过设计恰当的算法、采用有效适用的技术,使其针对电力系统的对高精度的频率和时间源的需求(准确度高、长期稳定性高、长期漂移小),获得接近铯原子振荡器的性能。本产品涉及到的算法与技术包括:多频率源的综合选择技术,高精度铷原子钟的驯服算法、UTC时间的接收技术、高精度时间信号的产生算法、自行钟秒相位的调整算法、秒信号相位大跳变处理技术等。 At present, high-performance standard frequency sources mainly sample cesium atomic oscillators and rubidium atomic oscillators. Among them, cesium atomic oscillators have the best performance, but are expensive and difficult to purchase, and the performance of rubidium atomic oscillators is lower than that of cesium atomic oscillators. By designing appropriate algorithms and adopting effective and applicable technologies, this product meets the requirements of power system for high-precision frequency and time sources (high accuracy, high long-term stability, and small long-term drift), and obtains close to cesium atomic oscillation device performance. The algorithms and technologies involved in this product include: comprehensive selection technology of multiple frequency sources, taming algorithm of high-precision rubidium atomic clock, UTC time receiving technology, high-precision time signal generation algorithm, self-clock-second phase adjustment algorithm, second signal Phase large jump processing technology, etc.
发明内容 Contents of the invention
发明目的 purpose of invention
本发明的目的在于,将高精度的铷原子振荡器与高精度测频技术及时间同步技术有机结合在一起,使铷原子振荡器输出的频率信号与时间信号同时驯服同步于更高等级的时间频率基准(国家授时中心维护的中国UTC(NTSC)、电网自主时间中心时间、北斗卫星时间、GPS卫星时间等),提高频率与时间信号的长期稳定性和准确度,降低漂移。 The purpose of the present invention is to organically combine the high-precision rubidium atomic oscillator with high-precision frequency measurement technology and time synchronization technology, so that the frequency signal and time signal output by the rubidium atomic oscillator can be tamed and synchronized with a higher level of time at the same time Frequency references (China UTC (NTSC) maintained by the National Time Service Center, grid autonomous time center time, Beidou satellite time, GPS satellite time, etc.), improve the long-term stability and accuracy of frequency and time signals, and reduce drift.
技术方案 Technical solutions
电力行业通用的频率标准为10MHz和2.048MHz频率信号,电力铷钟设备通过频率输入端口,接收来自上级时间中心的频率标准。 The common frequency standards in the power industry are 10MHz and 2.048MHz frequency signals, and the power rubidium clock equipment receives frequency standards from the superior time center through the frequency input port.
频率选择模块在有外部频率输入时,优先使用外部频率源,使电力铷钟设备输出的时间频率信号直接与上级时间中心同步。 When the frequency selection module has an external frequency input, the external frequency source is preferentially used, so that the time and frequency signal output by the power rubidium clock device is directly synchronized with the superior time center.
外部频率输入中断时,电力铷钟设备依靠自身的铷原子振荡器,继续输出稳定的频率信号。 When the external frequency input is interrupted, the electric rubidium clock device relies on its own rubidium atomic oscillator to continue to output a stable frequency signal.
铷原子振荡器被选为基准频率源后,FPGA对基准频率源进行倍频和分频工作,得到本地产生的秒脉冲信号。FPGA以外部输入的秒脉冲信号作为基准,对本征秒信号进行相差测量运算。 After the rubidium atomic oscillator is selected as the reference frequency source, the FPGA performs frequency multiplication and frequency division on the reference frequency source to obtain locally generated second pulse signals. The FPGA uses the externally input second pulse signal as a reference to perform phase difference measurement calculations on the intrinsic second signal.
测得的相差值被赋值给FPAG内部指定的寄存器,通过数据总线,传送给ARM。ARM计算本征秒信号和外部输入秒信号的相差随时间的变化值,根据差值计算出铷原子振荡器与外部标准频率的频差。 The measured phase difference value is assigned to the designated register inside FPAG, and transmitted to ARM through the data bus. ARM calculates the time-varying value of the phase difference between the intrinsic second signal and the external input second signal, and calculates the frequency difference between the rubidium atomic oscillator and the external standard frequency according to the difference.
ARM计算得到的频差值通过数据总线反馈给FPGA。 FPGA依据收到的频差值,对铷原子振荡器进行调频操作,使铷原子振荡器的输出频率溯源同步到上级时间频率基准。 The frequency difference value calculated by the ARM is fed back to the FPGA through the data bus. According to the received frequency difference value, the FPGA performs frequency modulation operation on the rubidium atomic oscillator, so that the output frequency of the rubidium atomic oscillator is traceable and synchronized to the superior time and frequency reference.
经过调频后的铷原子钟输出标准的秒脉冲信号,其中一路秒脉冲信号送给外部卫星比对设备或者溯源设备,计算得到时差报文值。FPGA解析时差报文得到要调整的相位差值,对输出秒信号进行调相操作,使本征秒信号的相位同步于标准秒信号。调频调相后的本征秒信号用于驱动本地自行钟模块,产生标准时间报文。 The frequency-modulated rubidium atomic clock outputs standard second pulse signals, and one of the second pulse signals is sent to external satellite comparison equipment or traceability equipment to calculate the time difference message value. The FPGA analyzes the time difference message to obtain the phase difference value to be adjusted, and performs phase modulation operation on the output second signal, so that the phase of the intrinsic second signal is synchronized with the standard second signal. The intrinsic second signal after frequency modulation and phase modulation is used to drive the local clock module to generate standard time messages.
外部输入的时间报文用于对本地自行钟进行对时操作,使输出的时间报文同步于上级时间标准。自行钟产生的时间值赋给ARM,ARM控制面板显示屏显示输出时间报文的值。 The externally input time message is used for the time synchronization operation of the local self-propelled clock, so that the output time message is synchronized with the superior time standard. The time value generated by the clock is assigned to the ARM, and the ARM control panel displays the value of the output time message.
有益效果 Beneficial effect
本发明的有益效果在于采取优先选择由外部输入、来自于更高级别时间频率基准信号的原则,在授时网络层分发经过多元比对(外部输入源与内部铷原子振荡器比对)后的频率与时间标准,为电力网络提供高性能、高稳定和高精度的时间信号。 The beneficial effect of the present invention is to adopt the principle of preferentially selecting an external input from a higher-level time-frequency reference signal, and distribute the frequency after multiple comparisons (comparison between the external input source and the internal rubidium atomic oscillator) at the timing network layer and time standards, providing high-performance, high-stability and high-precision time signals for power networks.
附图说明 Description of drawings
图1是电力铷钟设计方案; Fig. 1 is the design scheme of electric rubidium clock;
图2是秒信号调相技术; Figure 2 is the second signal phase modulation technology;
图3是时间报文的产生; Fig. 3 is the generation of time message;
图4是双铷钟时间中心站实施方式。 Fig. 4 is the embodiment of the dual rubidium clock time central station.
具体实施方式 Detailed ways
电力铷钟的设计方案如图1所示,根据实际需求,其需要实现的主要功能如下: The design scheme of the electric rubidium clock is shown in Figure 1. According to actual needs, the main functions to be realized are as follows:
提供多种高精频率源的输入接口,接入外部标准时间源,跟踪高精度时间; Provide a variety of high-precision frequency source input interfaces, access to external standard time sources, and track high-precision time;
频率选择单元,电力铷钟共有外部10MHz、2.048MHz和内部铷原子钟10MHz三个频率源,优先选择外部频率源; Frequency selection unit, the electric rubidium clock has three frequency sources of external 10MHz, 2.048MHz and internal rubidium atomic clock 10MHz, and the external frequency source is preferred;
调频单元,依据铷原子振荡器自身的频率稳定特性,将本地频率与外部输入的更高等级的时间基准谐振; The frequency modulation unit, according to the frequency stability characteristics of the rubidium atomic oscillator, resonates the local frequency with the higher-level time reference input from the outside;
时差报文接收单元,接收来自于比对设备的相差值,实时调整相位,使输出秒与标准秒同步; The time difference message receiving unit receives the phase difference value from the comparison device, adjusts the phase in real time, and synchronizes the output second with the standard second;
相位测量单元,测量本征秒与外部输入的时间基准的秒之间的相差; A phase measurement unit, which measures the phase difference between the intrinsic second and the second of the externally input time reference;
调相单元,接收来自于时差报文、网管和同步按键的相位调整; Phase adjustment unit, receiving phase adjustment from time difference messages, network management and synchronization buttons;
秒信号相位大跳变处理单元,对由各种异常引起的秒相位跳变进行平滑处理; The second signal phase jump processing unit smoothes the second phase jump caused by various abnormalities;
面板按键单元,提供与外部时间基准同步的手工触发机制; The panel key unit provides a manual trigger mechanism synchronized with the external time reference;
提供标准时间报文和秒信号输入接口,同步外部标准时间信号; Provide standard time message and second signal input interface to synchronize external standard time signal;
协调世界时UTC时间到北京时间的转换单元,完成不同时区的时间调整功能; Coordinate the conversion unit from UTC time to Beijing time, and complete the time adjustment function in different time zones;
时间信号输出单元,输出高度准确、高稳定的。无跳变的时间信号; Time signal output unit, the output is highly accurate and stable. Time signal without jumps;
管理信息串行接口单元,为统一网管系统提供通信接口。 The management information serial interface unit provides a communication interface for the unified network management system.
电力行业通用的频率标准为10MHz和2.048MHz频率信号,电力铷钟设备通过频率输入端口,接收来自上级时间中心的频率标准。频率选择模块在有外部频率输入时,优先使用外部频率源,使电力铷钟设备输出的时间频率信号直接与上级时间中心同步。外部频率输入中断时,电力铷钟设备依靠自身的铷原子振荡器,继续输出稳定的频率信号。铷原子振荡器被选为基准频率源后,FPGA对基准频率源进行倍频和分频工作,得到本地产生的秒脉冲信号。FPGA以外部输入的秒脉冲信号作为基准,对本征秒信号进行相差测量运算。测得的相差值被赋值给FPAG内部指定的寄存器,通过数据总线,传送给ARM。ARM计算本征秒信号和外部输入秒信号的相差随时间的变化值,根据差值计算出铷原子振荡器与外部标准频率的频差。ARM计算得到的频差值通过数据总线反馈给FPGA。 FPGA依据收到的频差值,对铷原子振荡器进行调频操作,使铷原子振荡器的输出频率溯源同步到上级时间频率基准。经过调频后的铷原子钟输出标准的秒脉冲信号,其中一路秒脉冲信号送给外部卫星比对设备或者溯源设备,计算得到时差报文值。FPGA解析时差报文得到要调整的相位差值,对输出秒信号进行调相操作,使本征秒信号的相位同步于标准秒信号。调频调相后的本征秒信号用于驱动本地自行钟模块,产生标准时间报文。外部输入的时间报文用于对本地自行钟进行对时操作,使输出的时间报文同步于上级时间标准。自行钟产生的时间值赋给ARM,ARM控制面板显示屏显示输出时间报文的值。 The common frequency standards in the power industry are 10MHz and 2.048MHz frequency signals, and the power rubidium clock equipment receives frequency standards from the superior time center through the frequency input port. When the frequency selection module has an external frequency input, the external frequency source is preferentially used, so that the time and frequency signal output by the power rubidium clock device is directly synchronized with the superior time center. When the external frequency input is interrupted, the electric rubidium clock device relies on its own rubidium atomic oscillator to continue to output a stable frequency signal. After the rubidium atomic oscillator is selected as the reference frequency source, the FPGA performs frequency multiplication and frequency division on the reference frequency source to obtain locally generated second pulse signals. The FPGA uses the externally input second pulse signal as a reference to perform phase difference measurement calculations on the intrinsic second signal. The measured phase difference value is assigned to the designated register inside FPAG, and transmitted to ARM through the data bus. ARM calculates the time-varying value of the phase difference between the intrinsic second signal and the external input second signal, and calculates the frequency difference between the rubidium atomic oscillator and the external standard frequency according to the difference. The frequency difference value calculated by the ARM is fed back to the FPGA through the data bus. According to the received frequency difference value, the FPGA performs frequency modulation operation on the rubidium atomic oscillator, so that the output frequency of the rubidium atomic oscillator is traceable and synchronized to the superior time and frequency reference. The frequency-modulated rubidium atomic clock outputs standard second pulse signals, and one of the second pulse signals is sent to external satellite comparison equipment or traceability equipment to calculate the time difference message value. The FPGA analyzes the time difference message to obtain the phase difference value to be adjusted, and performs phase modulation operation on the output second signal, so that the phase of the intrinsic second signal is synchronized with the standard second signal. The intrinsic second signal after frequency modulation and phase modulation is used to drive the local clock module to generate standard time messages. The externally input time message is used for the time synchronization operation of the local self-propelled clock, so that the output time message is synchronized with the superior time standard. The time value generated by the clock is assigned to the ARM, and the ARM control panel displays the value of the output time message.
针对电力铷钟设备所要实现的功能,电力铷钟的发明内容主要归结为: In view of the functions to be realized by the electric rubidium clock equipment, the invention content of the electric rubidium clock mainly comes down to:
以优先级的高低,选择系统频率源; Select the system frequency source according to the priority;
对铷原子钟频率的精确测量,对铷原子钟进行调频,使其频率驯服同步于更高等级的时间基准上; Accurate measurement of the frequency of the rubidium atomic clock, and frequency modulation of the rubidium atomic clock to tame and synchronize its frequency with a higher-level time reference;
基于频率源生成自行钟(秒信号和时间报文); Generate self-clock (seconds signal and time telegram) based on frequency source;
时差报文、时间报文的接收; Receiving of time difference message and time message;
依据时差报文值、网管值对输出秒相位进行调整; Adjust the output second phase according to the time difference message value and network management value;
秒信号调相大相位跳变处理; Second signal phase modulation and large phase jump processing;
通过网管手工对频率源、时间数据和相位参数的设置; Manually set the frequency source, time data and phase parameters through the network management;
为整个时间中心站提供标准10MHz频率、标准秒信号和标准时间报文。 Provide standard 10MHz frequency, standard second signal and standard time message for the whole time central station.
系统的功能模块包括频率选择模块、调相模块、自行钟模块、调频模块、处理器接口模块、告警及状态量采集模块、面板显示设计模块和网管设计模块。系统的电路主要由时间信号驱动电路、频率倍频器、铷原子钟、电池单元、现场可编程门阵列和微处理器组成。 The functional modules of the system include frequency selection module, phase modulation module, self-clocking module, frequency modulation module, processor interface module, alarm and state quantity collection module, panel display design module and network management design module. The circuit of the system is mainly composed of time signal drive circuit, frequency multiplier, rubidium atomic clock, battery unit, field programmable gate array and microprocessor.
各个模块功能如下: The functions of each module are as follows:
频率选择模块:从外部输入10MHz频率源或铷原子钟10MHz频率源中选择一路作为系统的工作时钟。上电后默认外部优先,若无外部则选择本地铷振荡器作为频率源,可通过网管软件进行选定频率源; Frequency selection module: select one from the external input 10MHz frequency source or rubidium atomic clock 10MHz frequency source as the working clock of the system. After power-on, the external priority is defaulted. If there is no external, the local rubidium oscillator is selected as the frequency source, and the frequency source can be selected through the network management software;
调相模块:解析来自于卫星比对设备的时差报文得到要调整的相位差值,对输出秒信号进行调相;支持网管程序手动设置调相值,对输出秒相位进行调相;支持或者直接按键手工同步外部输入秒信号;调相算法中对调相值进行限定,对由各种异常引起的秒相位跳变进行平滑处理,当调相值超过临界值的时候,取调相值的上限对秒信号进行调相,防止由于异常情况而引起的相位大跳变的产生。见附件图2。 Phase modulation module: analyze the time difference message from the satellite comparison device to obtain the phase difference value to be adjusted, and perform phase modulation on the output second signal; support the network management program to manually set the phase modulation value, and perform phase modulation on the output second phase; support or Directly press the key to manually synchronize the external input second signal; the phase modulation value is limited in the phase modulation algorithm, and the second phase jump caused by various abnormalities is smoothed. When the phase modulation value exceeds the critical value, the upper limit of the phase modulation value is taken Phase modulation is performed on the second signal to prevent large phase jumps caused by abnormal conditions. See attached Figure 2.
自行钟模块:依据系统时钟产生的本征秒信号自动运行的时钟,可以同步外部输入的时间报文,或者通过网管直接设置时间数据;系统以自行钟时间数据为基准对外输出时间报文。见附件图三。 Self-propelled clock module: a clock that runs automatically based on the intrinsic second signal generated by the system clock, which can synchronize externally input time messages, or directly set time data through the network management system; the system outputs time messages externally based on the self-propelled clock time data. See attached figure 3.
调频模块:系统时钟信号由铷原子振荡器提供时,以外部输入秒信号为基准,测量本地秒与外部输入基准秒之间的周期差,根据基于铷原子振荡器稳定度曲线的调频算法,计算出调频值对铷原子振荡器调频; Frequency modulation module: When the system clock signal is provided by the rubidium atomic oscillator, the external input second signal is used as a reference to measure the cycle difference between the local second and the external input reference second, and the frequency modulation algorithm based on the stability curve of the rubidium atomic oscillator is calculated. Output frequency modulation value to frequency modulation of rubidium atomic oscillator;
处理器接口模块:负责FPGA和ARM之间传递数据,这些数据包括:调频值、时间数据、调相值、网管配置的状态参量; Processor interface module: responsible for transferring data between FPGA and ARM, these data include: frequency modulation value, time data, phase modulation value, state parameters configured by network management;
告警及状态量采集模块:该模块主要采集各种输入端子、铷原子钟、电源、电池的状态量参数送给网管; Alarm and state quantity acquisition module: this module mainly collects various input terminals, rubidium atomic clock, power supply, battery state quantity parameters and sends them to the network management;
面板显示设计模块:通过LCD显示屏来显示设备时间信息。设备时间通过面板按键操作同步外部输入基准时间。 Panel display design module: Display device time information through LCD display. The device time is synchronized with the external input reference time through the operation of the panel keys.
网管设计模块:网管部分的功能包括:远程控制、状态监测两部分。状态监测包括:各种外部端子采集量、电源电池告警量、铷原子钟状态、当前调频值以及当前频率源等。远程控制包括:时间报设置、相位调整、频率调整、频率源选择设置等。 Network management design module: The functions of the network management part include: remote control and status monitoring. Status monitoring includes: various external terminal collection data, power battery alarm data, rubidium atomic clock status, current frequency modulation value and current frequency source, etc. Remote control includes: time report setting, phase adjustment, frequency adjustment, frequency source selection setting, etc.
铷原子钟调频算法 Frequency Modulation Algorithm of Rubidium Atomic Clock
电力铷钟采用的铷原子钟可以通过串口进行复位、调频等操作。没有外部频率输入时,系统时钟由铷原子钟提供,此时电路控制单元可以通过网管发送复位命令,使铷原子钟输出频率锁定在10MHz左右。以来自于GPS卫星铯原子钟的外部输入秒信号为基准,对铷原子钟输出频率进行测频计算,运用最小二乘法计算出频差值。调频算法根据获得的频差值,结合铷原子振荡器的频率稳定度曲线,计算出调频值。调频算法对调频数据进行过滤操作,舍去由于异常而引起的大调频数据。依据调频算法获得的调频值,发送调频命令,对铷原子钟进行调频,可以实现铷原子振荡器的输出频率溯源同步到更高级别的标准时间频率信号上,最终输出稳定的10MHz频率信号。 The rubidium atomic clock used in the electric rubidium clock can be reset, FM and other operations through the serial port. When there is no external frequency input, the system clock is provided by the rubidium atomic clock. At this time, the circuit control unit can send a reset command through the network management to lock the output frequency of the rubidium atomic clock at about 10MHz. Based on the external input second signal from the cesium atomic clock of the GPS satellite, the output frequency of the rubidium atomic clock is measured and calculated, and the frequency difference value is calculated by the least square method. The frequency modulation algorithm calculates the frequency modulation value based on the obtained frequency difference value and the frequency stability curve of the rubidium atomic oscillator. The frequency modulation algorithm performs filtering operation on the frequency modulation data, discarding large frequency modulation data caused by abnormalities. According to the frequency modulation value obtained by the frequency modulation algorithm, the frequency modulation command is sent to modulate the frequency of the rubidium atomic clock, which can realize the traceability and synchronization of the output frequency of the rubidium atomic oscillator to a higher-level standard time frequency signal, and finally output a stable 10MHz frequency signal.
调频命令如下: The FM command is as follows:
(1)FPGA根据RS232串口通信协议,以ASICII字符的形式,发送复位命令‘RST’,以“回车”键结束,即可实现复位; (1) According to the RS232 serial port communication protocol, the FPGA sends the reset command 'RST' in the form of ASICII characters, and ends with the "Enter" key to realize the reset;
(2)通过发送FRExxxxxxxx命令+回车可以实现调频功能;其中xxxxxxxx最高位是符号位:‘0’增大,‘1’减小。后7位数据为十进制调频值X,单位为毫赫兹。其计算公式为: (2) The frequency modulation function can be realized by sending the FRExxxxxxxx command + enter; the highest bit of xxxxxxxx is the sign bit: '0' increases, '1' decreases. The last 7 bits of data are the decimal frequency modulation value X, and the unit is millihertz. Its calculation formula is:
X= X=
其中,表示频差值。 in, Indicates the frequency difference value.
铷原子钟在接受调频命令所需要的稳定时间见表一。 See Table 1 for the stabilization time required for the rubidium atomic clock to receive the frequency modulation command.
表一、铷原子钟调频跟踪时间 Table 1. Frequency modulation tracking time of rubidium atomic clock
本发明中,通过对多种时间源的分级选择处理,充分利用铷原子振荡器自身优异的频率稳定性,驯服同步到更高等级的时间频率基准(国家授时中心维护的中国UTC(NTSC)、电网自主时间中心时间、北斗卫星时间、GPS卫星时间等),为整个时间系统主站提供稳定的频率(10MHz)基准、秒相位基准以及时间报基准。 In the present invention, through the hierarchical selection processing of multiple time sources, the excellent frequency stability of the rubidium atomic oscillator is fully utilized to tame and synchronize to a higher level of time and frequency reference (China UTC (NTSC) maintained by the National Time Service Center, Grid autonomous time center time, Beidou satellite time, GPS satellite time, etc.), providing stable frequency (10MHz) reference, second phase reference and time reporting reference for the master station of the entire time system.
鉴于智能电网的发展需求,电力铷钟作为时间中心站的实施方式如图4所示,通常采用双铷钟中心站的设计方案:配置两套电力铷钟作为频率基准,主备分频钟和分配放大设备。频率校准后的电力铷钟设备可以作为时间中心站的最高频率标准,通过光纤、以太网等传送介质组成的授时网络与PTP主钟、时钟扩展装置等设备组成电网时间统一系统。双铷钟设备互为备份,提高了时间中心站的可靠性,通过这种方式也可以摆脱对GPS的过渡依赖。 In view of the development needs of the smart grid, the implementation of the power rubidium clock as the time central station is shown in Figure 4, and the design scheme of the dual rubidium clock central station is usually adopted: configure two sets of power rubidium clocks as the frequency reference, the main and standby frequency division clock and Assign amplification devices. The power rubidium clock equipment after frequency calibration can be used as the highest frequency standard of the time central station, and the time service network composed of optical fiber, Ethernet and other transmission media, together with the PTP master clock, clock expansion device and other equipment, form a grid time unified system. The dual rubidium clock devices are mutual backup, which improves the reliability of the time center station, and in this way can also get rid of the transitional dependence on GPS.
Claims (1)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010105435228A CN102064827B (en) | 2010-11-11 | 2010-11-11 | Rubidium oscillator-based standard frequency and time adjusting method |
BR112013011079-1A BR112013011079B1 (en) | 2010-11-11 | 2011-11-09 | STANDARD FREQUENCY AND TIME-BASED ADJUSTMENT METHOD ON THE RUBY OSCILLATOR |
PCT/CN2011/081992 WO2012062207A1 (en) | 2010-11-11 | 2011-11-09 | Standard frequency and time adjusting method based on rubidium oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010105435228A CN102064827B (en) | 2010-11-11 | 2010-11-11 | Rubidium oscillator-based standard frequency and time adjusting method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102064827A CN102064827A (en) | 2011-05-18 |
CN102064827B true CN102064827B (en) | 2012-11-21 |
Family
ID=43999957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010105435228A Active CN102064827B (en) | 2010-11-11 | 2010-11-11 | Rubidium oscillator-based standard frequency and time adjusting method |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN102064827B (en) |
BR (1) | BR112013011079B1 (en) |
WO (1) | WO2012062207A1 (en) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102064827B (en) * | 2010-11-11 | 2012-11-21 | 国网电力科学研究院 | Rubidium oscillator-based standard frequency and time adjusting method |
CN102411147B (en) * | 2011-12-22 | 2013-06-19 | 成都金本华科技有限公司 | Unidirectional time-service discipline system and method for Beidou-I satellite system |
CN102624513A (en) * | 2012-03-06 | 2012-08-01 | 北京无线电计量测试研究所 | Device for verifying synchronization precision of two-way satellite time transfer modem |
CN103455085A (en) * | 2013-09-16 | 2013-12-18 | 四川和芯微电子股份有限公司 | Circuit and method for generating USB host work clock |
CN104506270B (en) * | 2014-12-25 | 2017-06-16 | 大唐电信(成都)信息技术有限公司 | A kind of temporal frequency synchronous integrated realizes system and implementation method |
CN104460312A (en) * | 2014-12-30 | 2015-03-25 | 四川九洲电器集团有限责任公司 | GPS and Big Dipper double-mode timing method and system |
CN105182733A (en) * | 2015-08-07 | 2015-12-23 | 北京利和顺达电子有限公司 | Precision improvement method and system for Beidou time service synchronization |
CN105610440A (en) * | 2015-12-17 | 2016-05-25 | 北京无线电计量测试研究所 | Method and device for adjusting CPT atomic frequency standard |
CN106647926B (en) * | 2016-11-18 | 2023-08-08 | 浙江工业大学 | DDS frequency hopping device for laser timing control of cold atom interferometer |
CN108375898B (en) * | 2018-03-15 | 2023-04-14 | 福建师范大学 | A computer high-precision timing control method |
CN108426586A (en) * | 2018-05-21 | 2018-08-21 | 浙江大学 | One kind being based on optical fibre gyro bandwidth test calibration method and calibrating installation |
CN109462525A (en) * | 2018-12-24 | 2019-03-12 | 中电科西北集团有限公司 | Clockwork detection system |
CN110161376B (en) * | 2019-06-24 | 2021-05-28 | 四川电安智能科技有限公司 | Traveling wave fault time extraction algorithm |
CN110989327B (en) * | 2019-12-26 | 2021-03-30 | 中国计量科学研究院 | Distributed high-precision time frequency real-time integrated system |
CN111538049B (en) * | 2020-06-12 | 2023-05-09 | 成都七维频控科技有限公司 | GNSS-based rubidium clock quick locking method |
CN114185836B (en) * | 2020-09-15 | 2024-09-06 | 阿里巴巴集团控股有限公司 | System on chip and method for regulating voltage and frequency |
CN112051724A (en) * | 2020-10-14 | 2020-12-08 | 国家电网有限公司 | Clock detector based on IRIG-B code time synchronization system and use method |
CN112433231B (en) * | 2020-11-30 | 2023-04-18 | 上海矢元电子股份有限公司 | Space-time reference equipment of vehicle-mounted platform |
CN112671464B (en) * | 2020-12-10 | 2023-02-24 | 中国计量科学研究院 | Dual-channel time-frequency high-precision transfer intermediate node device |
CN112688753B (en) * | 2020-12-10 | 2023-02-24 | 中国计量科学研究院 | High-precision transmission device for looped network double-channel time frequency |
CN112597097B (en) * | 2020-12-28 | 2022-11-22 | 山东浪潮科学研究院有限公司 | Communication system based on ADC data acquisition card, application method and medium thereof |
CN112994822B (en) * | 2021-02-09 | 2023-02-03 | 成都可为科技股份有限公司 | Method and system for realizing time synchronization |
CN112964930B (en) * | 2021-03-25 | 2023-10-13 | 西北工业大学 | Equipment frequency stability measuring method independent of rubidium clock |
CN113777640B (en) * | 2021-08-31 | 2023-12-15 | 武汉耐维斯顿科技有限公司 | Beidou coherent system and equipment aiming at unmanned aerial vehicle detection and positioning |
CN113778000B (en) * | 2021-09-26 | 2023-05-12 | 中科院南京天文仪器有限公司 | High-instantaneity motion control system and method |
CN114047684B (en) * | 2021-10-21 | 2023-05-30 | 中国人民解放军61081部队 | Atomic clock joint time keeping method and device |
CN113985719B (en) * | 2021-10-25 | 2022-09-16 | 中国科学院国家授时中心 | A method for taming cesium atomic clocks in pulsar time based on sliding windows |
CN113992296B (en) * | 2021-11-12 | 2024-05-28 | 中国电力科学研究院有限公司 | Clock taming method, time code monitoring device and time synchronization system |
CN114157379B (en) * | 2021-12-02 | 2023-11-10 | 江西边际科技有限公司 | Multi-module independent networking self-correction high-precision time synchronization device |
CN114978394B (en) * | 2022-04-02 | 2023-02-03 | 中国人民解放军93216部队 | Time service card, frequency correction method of time service card and time service card guarantee system |
CN114966767B (en) * | 2022-05-20 | 2024-08-09 | 中国科学院微小卫星创新研究院 | Method, device and system for constructing autonomous time and frequency reference of navigation satellite |
CN115470918B (en) * | 2022-09-26 | 2024-08-23 | 量子科技长三角产业创新中心 | Time-frequency signal generating device, quantum measurement and control system and measurement and control method |
CN116908537B (en) * | 2023-09-13 | 2023-12-19 | 西安西电高压开关有限责任公司 | Current voltage frequency calculation circuit and method |
CN118300740B (en) * | 2024-04-03 | 2024-11-01 | 中国计量科学研究院 | Time frequency in-situ calibration device and method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6130583A (en) * | 1997-09-01 | 2000-10-10 | Accubeat Ltd | Atomic frequency standard using digital processing in its frequency lock loop |
CN201008145Y (en) * | 2007-02-16 | 2008-01-16 | 中国科学院武汉物理与数学研究所 | A Rubidium Atomic Frequency Standard Digital Phase-locked Frequency Multiplier |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5440313A (en) * | 1993-05-27 | 1995-08-08 | Stellar Gps Corporation | GPS synchronized frequency/time source |
KR100429009B1 (en) * | 2001-09-05 | 2004-04-28 | 한국표준과학연구원 | Apparatus and Method for Synchronization of remotely located clock by common-view measurement of satellite time |
JP2007208367A (en) * | 2006-01-31 | 2007-08-16 | Kenwood Corp | Synchronizing signal generating apparatus, transmitter, and control method |
CN101231337B (en) * | 2008-02-15 | 2010-07-28 | 哈尔滨工程大学 | High precision time synchronization device |
US20090289728A1 (en) * | 2008-05-23 | 2009-11-26 | Accubeat Ltd. | Atomic frequency standard based on phase detection |
JP2010199779A (en) * | 2009-02-24 | 2010-09-09 | Epson Toyocom Corp | Atomic oscillator |
CN102064827B (en) * | 2010-11-11 | 2012-11-21 | 国网电力科学研究院 | Rubidium oscillator-based standard frequency and time adjusting method |
-
2010
- 2010-11-11 CN CN2010105435228A patent/CN102064827B/en active Active
-
2011
- 2011-11-09 WO PCT/CN2011/081992 patent/WO2012062207A1/en active Application Filing
- 2011-11-09 BR BR112013011079-1A patent/BR112013011079B1/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6130583A (en) * | 1997-09-01 | 2000-10-10 | Accubeat Ltd | Atomic frequency standard using digital processing in its frequency lock loop |
CN201008145Y (en) * | 2007-02-16 | 2008-01-16 | 中国科学院武汉物理与数学研究所 | A Rubidium Atomic Frequency Standard Digital Phase-locked Frequency Multiplier |
Non-Patent Citations (1)
Title |
---|
JP特开2010-199779A 2010.09.09 |
Also Published As
Publication number | Publication date |
---|---|
WO2012062207A1 (en) | 2012-05-18 |
CN102064827A (en) | 2011-05-18 |
BR112013011079A2 (en) | 2016-08-23 |
WO2012062207A9 (en) | 2013-06-06 |
BR112013011079B1 (en) | 2020-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102064827B (en) | Rubidium oscillator-based standard frequency and time adjusting method | |
CN103226324B (en) | A kind of high-accuracy temporal frequency source taming time and frequency standard in real time | |
Idrees et al. | IEEE 1588 for clock synchronization in industrial IoT and related applications: A review on contributing technologies, protocols and enhancement methodologies | |
CN102006159B (en) | Multi-slave clock sampling value multi-interface synchronizing system based on IEEE1588 | |
CN104917582B (en) | High precision clock distributes and phase automatic compensating system and its phase regulation method | |
CN101895385B (en) | Time-setting clock system of merging unit for realizing clock switching | |
CN202818320U (en) | Clock server based on multi-mode clock source synchronization | |
CN105376043B (en) | A kind of method for synchronizing time of double board systems | |
CN112866098B (en) | Gateway time service method, device, electronic equipment and computer readable medium | |
CN103458498A (en) | Intelligent wireless sensor network time synchronization method | |
Buevich et al. | Hardware assisted clock synchronization for real-time sensor networks | |
CN104333426A (en) | Pulse per second synchronization method based on merging unit SV message sampling sequence number learning | |
CN108872910B (en) | Timing system and method for online verification of power quality monitoring device | |
CN103346852B (en) | A kind of device that reference clock signal is provided | |
CN105338613A (en) | System and method for time setting synchronization of scattered nodes by use of wireless communication | |
CN202353572U (en) | Institute of Electrical and Electronic Engineers (IEEE) 1588 time synchronization system for electronic type mutual inductor merging units | |
Xue et al. | Wicsync: A wireless multi-node clock synchronization solution based on optimized UWB two-way clock synchronization protocol | |
CN201557117U (en) | GPS and nanosecond NTP two-way inputted synchronous networking clock | |
CN101799659A (en) | Multi-mode timing system and timing method based on wavelet transform | |
CN203849566U (en) | Time and frequency synchronization device in support of accurate and reliable power-off time keeping | |
CN202818369U (en) | Clock server supporting IEC61850 clock information publishing | |
CN205539994U (en) | Big dipper GPS bimodulus electric power time synchronization device | |
CN103873178A (en) | Concentrated inspection method for timing error of wide-area time synchronization system | |
CN115102657B (en) | Clock frequency synchronization method and device of metering device and storage medium | |
CN109818700B (en) | Synchronization method and device of wide area system protection device, plant station and topological architecture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: NANJING NARI CO., LTD. STATE ELECTRIC NET CROP. Free format text: FORMER OWNER: NANJING NARI CO., LTD. Effective date: 20130131 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20130131 Address after: Nan Shui Road Gulou District of Nanjing city of Jiangsu Province, No. 8 210003 Patentee after: STATE GRID ELECTRIC POWER Research Institute Patentee after: NANJING NARI Group Corp. Patentee after: State Grid Corporation of China Address before: Nan Shui Road Gulou District of Nanjing city of Jiangsu Province, No. 8 210003 Patentee before: STATE GRID ELECTRIC POWER Research Institute Patentee before: NANJING NARI Group Corp. |
|
CI01 | Publication of corrected invention patent application |
Correction item: Figure 1 Correct: Correct False: Error Number: 47 Volume: 28 |
|
CI03 | Correction of invention patent |
Correction item: Figure 1 Correct: Correct False: Error Number: 47 Page: Description Volume: 28 |
|
ERR | Gazette correction |
Free format text: CORRECT: FIGURE 1; FROM: ERROR TO: CORRECT |
|
RECT | Rectification | ||
TR01 | Transfer of patent right |
Effective date of registration: 20171115 Address after: 211106 Jiangning City, Nanjing Province, the integrity of the road No. 19, Co-patentee after: NARI TECHNOLOGY Co.,Ltd. Patentee after: STATE GRID ELECTRIC POWER Research Institute Co-patentee after: State Grid Corporation of China Address before: Nan Shui Road Gulou District of Nanjing city of Jiangsu Province, No. 8 210003 Co-patentee before: NANJING NARI Group Corp. Patentee before: STATE GRID ELECTRIC POWER Research Institute Co-patentee before: State Grid Corporation of China |
|
TR01 | Transfer of patent right |