CN102052906A - 用于透射电子显微镜的器件绝缘隔离区观测样品制备方法 - Google Patents

用于透射电子显微镜的器件绝缘隔离区观测样品制备方法 Download PDF

Info

Publication number
CN102052906A
CN102052906A CN200910198564XA CN200910198564A CN102052906A CN 102052906 A CN102052906 A CN 102052906A CN 200910198564X A CN200910198564X A CN 200910198564XA CN 200910198564 A CN200910198564 A CN 200910198564A CN 102052906 A CN102052906 A CN 102052906A
Authority
CN
China
Prior art keywords
device isolation
isolated area
transmission electron
electron microscope
isolation isolated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910198564XA
Other languages
English (en)
Other versions
CN102052906B (zh
Inventor
李剑
段淑卿
王玉科
庞凌华
陆冠兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN200910198564XA priority Critical patent/CN102052906B/zh
Publication of CN102052906A publication Critical patent/CN102052906A/zh
Application granted granted Critical
Publication of CN102052906B publication Critical patent/CN102052906B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

本发明提供一种用于透射电子显微镜的器件绝缘隔离区观测样品制备方法,提供一样品,所述样品包括衬底及器件绝缘隔离区,包括以下步骤:A.在所述器件绝缘隔离区之上淀积氮化硅层;B.在所述淀积的氮化硅层上淀积二氧化硅层;C.使用聚焦离子束对所述样品进行切割,形成暴露出所述器件绝缘隔离区截面的透射电子显微镜观测薄片。采用本发明方法制备的透射电子显微镜器件绝缘隔离区观测样品由于在器件绝缘隔离区上还淀积了氮化硅层上和二氧化硅层对疏松的器件绝缘隔离区进行保护,使得使用聚焦离子束切割样品时,高能离子束不会使器件绝缘隔离区顶部的氧化层收缩变形。

Description

用于透射电子显微镜的器件绝缘隔离区观测样品制备方法
技术领域
本发明涉及半导体制造技术和材料分析领域,特别涉及一种用于透射电子显微镜的器件绝缘隔离区观测样品制备方法。
背景技术
随着集成电路尺寸的减小,构成电路的器件必须更密集地放置,以适应芯片上可用的有限空间。目前的研究致力于增大半导体衬底的单位面积上有源器件的密度,故器件间的有效器件绝缘隔离区变得更加重要。现有技术中形成隔离区域的方法主要有局部氧化隔离(LOCOS)工艺或浅沟槽隔离(STI)工艺。LOCOS工艺是在晶片表面淀积一层氮化硅,然后再进行刻蚀,对部分凹进区域进行氧化生长氧化硅,有源器件在氮化硅所确定的区域生成。STI工艺是在半导体衬底上刻蚀形成开口,再在该开口内沉积氧化硅等绝缘材料以填充该开口的器件隔离技术。
为观测器件绝缘隔离区的关键尺寸,现有技术中通常使用透射电子显微镜(transmission electron microscope,TEM)观测样品器件绝缘隔离区的尺寸。透射电子显微镜用来观测小于0.2μm的细微结构,其以电子束作为光源,用电磁场作透镜,将经过加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。由于电子束的穿透力很弱,因此用于电镜的样品必须制成厚度100nm左右的超薄切片。现有技术中,制备用于测量器件绝缘隔离区尺寸的透射电子显微镜观测样品时,通常采用机械研磨或聚焦离子束(FIB)对样品进行切割减薄,同时使样品器件绝缘隔离区的截面暴露出来,制成透射电子显微镜的观测样品。使用机械研磨的方法制备样品时不对器件绝缘隔离区的氧化层截面造成损害,但该方法其无法实现精确定位;使用聚焦离子束制备样品时可精确定位切割样品的位置和方式,但高能离子束对器件绝缘隔离区质地疏松的氧化层有较大伤害。请参看图1,图1为现有技术使用聚焦离子束制备的器件绝缘隔离区观测样品的结构示意图。如图1所示,使用聚焦离子束切割样品使器件绝缘隔离区1的截面暴露出来时,高能离子束会使器件绝缘隔离区1顶部疏松的氧化层收缩变形,影响对器件绝缘隔离区1尺寸的准确量测以及对其形貌的准确观察判断。现有技术中为避免聚焦离子束对器件绝缘隔离区1产生上述损害,通常会在器件绝缘隔离区1上首先使用电子束(E-Beam)淀积一层第一金属层2,再在第一金属层2上再使用离子束(I-Beam)淀积一层第二金属层3,通过这两层金属层对器件绝缘隔离区1进行保护。分别淀积两层金属层是因为电子束淀积第一金属层2时由于其能量较小,不会对器件绝缘隔离区1造成损伤,而采用离子束淀积的第二金属层3更加致密,可对器件绝缘隔离区起到更好的保护作用。但实践操作中,即便是在器件绝缘隔离区1上淀积了第一金属层2和第二金属层3仍然不能很好的保护器件绝缘隔离区,如图1所示,使用聚焦离子束对器件绝缘隔离区1进行切割,使其截面暴露的时候,高能离子束仍会使器件绝缘隔离区1顶部疏松的氧化层收缩变形,致使其上的第一金属层2和第二金属层3失去支撑,整体塌陷,影响对器件绝缘隔离区1尺寸的准确量测以及对其形貌的准确观察判断。
发明内容
本发明要解决的技术问题是提供一种用于透射电子显微镜的器件绝缘隔离区观测样品制备方法,以解决使用聚焦离子束切割样品,使器件绝缘隔离区的截面暴露出来时,高能离子束使器件绝缘隔离区顶部疏松的氧化层收缩变形,影响到对器件绝缘隔离区尺寸的准确量测以及对器件绝缘隔离区形貌进行准确观察判断的问题。
为解决上述技术问题,本发明提供一种用于透射电子显微镜的器件绝缘隔离区观测样品制备方法,提供一样品,所述样品包括衬底及器件绝缘隔离区,包括以下步骤:
A.在所述器件绝缘隔离区之上淀积氮化硅层;
B.在所述淀积的氮化硅层上淀积二氧化硅层;
C.使用聚焦离子束对所述样品进行切割,形成暴露出所述器件绝缘隔离区截面的透射电子显微镜观测薄片。
可选的,完成B步骤后,进行C步骤前,还在所述淀积的二氧化硅层上淀积金属层。
可选的,所述淀积氮化硅层的具体工艺为采用等离子体增强化学气相淀积,通入SiH4和NH3气体,NH3的流量为270-360sccm,SiH4的流量为500-630sccm,反应温度为400-480℃。
可选的,所述淀积的氮化硅层的厚度小于等于600埃。
可选的,所述淀积二氧化硅层的具体工艺为采用亚常压化学气相淀积,通入TEOS(正硅酸乙酯)和O3气体,TEOS的流量为1000-5000mgm,O3的流量为5000-6000sccm,反应温度为400-480℃。
可选的,所述淀积的二氧化硅层的厚度大于等于3600埃。
可选的,所述淀积的金属层的厚度为2-3um。
可选的,所述金属层为铂金属层。
可选的,所述淀积铂金属层的具体工艺为采用离子束(I-Beam)溅射法,在电压为30KV,电流为30-50PA的条件下沉积铂金属层。
采用本发明方法制备的透射电子显微镜器件绝缘隔离区观测样品由于在器件绝缘隔离区上还淀积了氮化硅层上和二氧化硅层对疏松的器件绝缘隔离区进行保护,使得使用聚焦离子束切割样品时,高能离子束不会使器件绝缘隔离区顶部的氧化层收缩变形。同时,在淀积的二氧化硅层上再淀积的金属层除对器件绝缘隔离区有进一步的保护作用外,还可起到导电作用,防止淀积二氧化硅层的表面由于高能离子束的作用具有电荷积累效应。在90nm、65nm以及sub-65nm技术中现已开始使用新型的低介电常数的氧化层材料如黑金刚(Black Diamond)、高深宽比制程的SiO2材料(HARP)等制备器件绝缘隔离区,但低介电常数的氧化层材料为多孔柔软材质,故在使用聚焦离子束对其进行切割时会不可避免会使其产生收缩变形,而本发明的样品制备方法则很好地解决了这一问题,对量测隔绝层精确厚度及失效分析意义重大。
附图说明
图1为现有技术使用聚焦离子束制备的器件绝缘隔离区观测样品的结构示意图;
图2为现有技术通过浅沟槽隔离工艺形成的器件绝缘隔离区域结构示意图;
图3为采用本发明方法制备的器件绝缘隔离区观测样品的结构示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
本发明所述的一种用于透射电子显微镜的器件绝缘隔离区观测样品制备方法可利用多种替换方式实现,下面是通过较佳的实施例来加以说明,当然本发明并不局限于该具体实施例,本领域内的普通技术人员所熟知的一般的替换无疑涵盖在本发明的保护范围内。
其次,本发明利用示意图进行了详细描述,在详述本发明实施例时,为了便于说明,示意图不依一般比例局部放大,不应以此作为对本发明的限定。
本发明的用于透射电子显微镜的器件绝缘隔离区观测样品制备方法适用于多种不同工艺制成的器件绝缘隔离区,包括采用局部氧化隔离(LOCOS)工艺或浅沟槽隔离(STI)工艺制成的器件绝缘隔离区。以下实施例以浅沟槽隔离工艺形成的器件绝缘隔离区域为例说明本发明方法。
请参看图2,图2为现有技术通过浅沟槽隔离工艺形成的具有器件绝缘隔离区的样品结构示意图。如图2所示,衬底4的表面沉积有氮化硅层5,通过对氮化硅层5和衬底4的刻蚀,在不同器件区域对应的衬底4中形成有浅沟槽,在浅沟槽中淀积氧化硅,并将浅沟槽填满,形成器件绝缘隔离区1。
请参看图3,图3为采用本发明方法制备的器件绝缘隔离区观测样品的结构示意图。为避免使用聚焦离子束等高能离子束对器件绝缘隔离区进行切割使其截面暴露出来时,高能离子束使器件绝缘隔离区顶部疏松的氧化层收缩变形,影响对器件绝缘隔离区尺寸的准确量测以及对其形貌的准确观察判断,如图3所示,本发明的用于透射电子显微镜的器件绝缘隔离区观测样品制备方法包括以下步骤:
首先,提供一样品,所述样品包括衬底4及器件绝缘隔离区1,在所述器件绝缘隔离区1上淀积氮化硅层6。淀积所述氮化硅层6的具体工艺可采用等离子体增强化学气相淀积(PECVD),通入SiH4和NH3气体,NH3的流量为270-360sccm(标准状况下毫升/分钟),SiH4的流量为500-630sccm,在400-480℃的反应温度下,生成厚度小于等于600埃的氮化硅层6。
其次,在所述淀积的氮化硅层6上再淀积二氧化硅层7。淀积所述二氧化硅层7的具体工艺可采用亚常压化学气相淀积(SACVD),通入TEOS(正硅酸乙酯)和O3气体,TEOS的流量为1000-5000mgm(标准状况下毫克/分钟),O3的流量为5000-6000sccm,在400-480℃的反应温度下,TEOS被分解,产生固态的二氧化硅沉积到所述氮化硅层6上。淀积的二氧化硅层7的厚度大于等于3600埃。
再次,可选的,还可进一步在所述淀积的二氧化硅层7上淀积金属层8,如淀积铂金属层。淀积铂金属层的具体工艺可采用在离子束(I-Beam)溅射法,在电压为30KV,电流为30-50PA的条件下沉积铂金属层。所述淀积的金属层8的厚度为2-3um。
最后,使用聚焦离子束对所述样品进行切割,形成暴露出所述器件绝缘隔离区截面的透射电子显微镜观测薄片。
经过实验证实,采用本发明方法制备的透射电子显微镜器件绝缘隔离区观测样品由于在器件绝缘隔离区上还淀积了氮化硅层上和二氧化硅层对疏松的器件绝缘隔离区进行保护,使得使用聚焦离子束切割样品时,高能离子束不会使器件绝缘隔离区顶部的氧化层收缩变形。同时,在淀积的二氧化硅层上再淀积的金属层除对器件绝缘隔离区有进一步的保护作用外,还可起到导电作用,防止淀积二氧化硅层的表面由于高能离子束的作用具有电荷积累效应。在90nm、65nm以及sub-65nm技术中现已开始使用新型的低介电常数的氧化层材料如黑金刚(Black Diamond)、高深宽比制程的SiO2材料(HARP)等制备器件绝缘隔离区,但低介电常数的氧化层材料为多孔柔软材质,故在使用聚焦离子束对其进行切割时会不可避免会使其产生收缩变形,而本发明的样品制备方法则很好地解决了这一问题,对量测隔绝层精确厚度及失效分析意义重大。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (9)

1.一种用于透射电子显微镜的器件绝缘隔离区观测样品制备方法,包括提供一样品,所述样品包括衬底及器件绝缘隔离区,其特征在于,还包括以下步骤:
A.在所述器件绝缘隔离区之上淀积氮化硅层;
B.在所述淀积的氮化硅层上淀积二氧化硅层;
C.使用聚焦离子束对所述样品进行切割,形成暴露出所述器件绝缘隔离区截面的透射电子显微镜观测薄片。
2.如权利要求1所述的用于透射电子显微镜的器件绝缘隔离区观测样品制备方法,其特征在于,完成B步骤后,进行C步骤前,还在所述淀积的二氧化硅层上淀积金属层。
3.如权利要求1所述的用于透射电子显微镜的器件绝缘隔离区观测样品制备方法,其特征在于,所述淀积氮化硅层的具体工艺为采用等离子体增强化学气相淀积,通入SiH4和NH3气体,NH3的流量为270-360sccm,SiH4的流量为500-630sccm,反应温度为400-480℃。
4.如权利要求1所述的用于透射电子显微镜的器件绝缘隔离区观测样品制备方法,其特征在于,所述淀积的氮化硅层的厚度小于等于600埃。
5.如权利要求1所述的用于透射电子显微镜的器件绝缘隔离区观测样品制备方法,其特征在于,所述淀积二氧化硅层的具体工艺为采用亚常压化学气相淀积,通入TEOS(正硅酸乙酯)和O3气体,TEOS的流量为1000-5000mgm,O3的流量为5000-6000sccm,反应温度为400-480℃。
6.如权利要求1所述的用于透射电子显微镜的器件绝缘隔离区观测样品制备方法,其特征在于,所述淀积的二氧化硅层的厚度大于等于3600埃。
7.如权利要求2所述的用于透射电子显微镜的器件绝缘隔离区观测样品制备方法,其特征在于,所述淀积的金属层的厚度为2-3um。
8.如权利要求2或7所述的用于透射电子显微镜的器件绝缘隔离区观测样品制备方法,其特征在于,所述金属层为铂金属层。
9.如权利要求8所述的用于透射电子显微镜的器件绝缘隔离区观测样品制备方法,其特征在于,所述淀积铂金属层的具体工艺为采用离子束(I-Beam)溅射法,在电压为30KV,电流为30-50PA的条件下沉积铂金属层。
CN200910198564XA 2009-11-10 2009-11-10 用于透射电子显微镜的器件绝缘隔离区观测样品制备方法 Expired - Fee Related CN102052906B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910198564XA CN102052906B (zh) 2009-11-10 2009-11-10 用于透射电子显微镜的器件绝缘隔离区观测样品制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910198564XA CN102052906B (zh) 2009-11-10 2009-11-10 用于透射电子显微镜的器件绝缘隔离区观测样品制备方法

Publications (2)

Publication Number Publication Date
CN102052906A true CN102052906A (zh) 2011-05-11
CN102052906B CN102052906B (zh) 2012-05-23

Family

ID=43957473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910198564XA Expired - Fee Related CN102052906B (zh) 2009-11-10 2009-11-10 用于透射电子显微镜的器件绝缘隔离区观测样品制备方法

Country Status (1)

Country Link
CN (1) CN102052906B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313521A (zh) * 2011-03-29 2012-01-11 上海华碧检测技术有限公司 一种有机保护膜厚度测量方法
CN103645073A (zh) * 2013-11-22 2014-03-19 上海华力微电子有限公司 一种制备tem样品的方法
CN104075918A (zh) * 2013-03-29 2014-10-01 中国科学院金属研究所 一种微互连通孔结构透射电镜样品的制备方法
CN104596818A (zh) * 2015-01-18 2015-05-06 北京工业大学 一种基于透射电子显微镜观察激光诱导晶化纳米薄膜截面晶粒特征的样品制备方法
CN105241718A (zh) * 2015-10-13 2016-01-13 武汉新芯集成电路制造有限公司 一种tem样品制备方法
CN106226134A (zh) * 2016-07-29 2016-12-14 上海华力微电子有限公司 制备透射电子显微镜样品的方法
CN106556721A (zh) * 2015-09-29 2017-04-05 中芯国际集成电路制造(上海)有限公司 测试样品及其制备方法
CN108398302A (zh) * 2018-02-09 2018-08-14 上海华虹宏力半导体制造有限公司 微结构制样方法
CN109001018A (zh) * 2018-07-09 2018-12-14 华慧芯科技(天津)有限公司 一种易氧化材料的透射样品制备及二维材料加固方法
CN109632853A (zh) * 2018-12-29 2019-04-16 上海华力集成电路制造有限公司 透射电子显微镜样品及其制造方法
CN109765466A (zh) * 2018-12-24 2019-05-17 西安交通大学 基于fib-sem双束系统的纳米真空间隙击穿特性实验装置及方法
CN113834831A (zh) * 2020-06-08 2021-12-24 宸鸿科技(厦门)有限公司 制备透射电子显微镜样品的方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313521A (zh) * 2011-03-29 2012-01-11 上海华碧检测技术有限公司 一种有机保护膜厚度测量方法
CN104075918A (zh) * 2013-03-29 2014-10-01 中国科学院金属研究所 一种微互连通孔结构透射电镜样品的制备方法
CN104075918B (zh) * 2013-03-29 2016-04-13 中国科学院金属研究所 一种微互连通孔结构透射电镜样品的制备方法
CN103645073A (zh) * 2013-11-22 2014-03-19 上海华力微电子有限公司 一种制备tem样品的方法
CN104596818B (zh) * 2015-01-18 2017-05-10 北京工业大学 一种基于透射电子显微镜观察激光诱导晶化纳米薄膜截面晶粒特征的样品制备方法
CN104596818A (zh) * 2015-01-18 2015-05-06 北京工业大学 一种基于透射电子显微镜观察激光诱导晶化纳米薄膜截面晶粒特征的样品制备方法
CN106556721A (zh) * 2015-09-29 2017-04-05 中芯国际集成电路制造(上海)有限公司 测试样品及其制备方法
CN105241718A (zh) * 2015-10-13 2016-01-13 武汉新芯集成电路制造有限公司 一种tem样品制备方法
CN106226134A (zh) * 2016-07-29 2016-12-14 上海华力微电子有限公司 制备透射电子显微镜样品的方法
CN108398302A (zh) * 2018-02-09 2018-08-14 上海华虹宏力半导体制造有限公司 微结构制样方法
CN109001018A (zh) * 2018-07-09 2018-12-14 华慧芯科技(天津)有限公司 一种易氧化材料的透射样品制备及二维材料加固方法
CN109765466A (zh) * 2018-12-24 2019-05-17 西安交通大学 基于fib-sem双束系统的纳米真空间隙击穿特性实验装置及方法
CN109632853A (zh) * 2018-12-29 2019-04-16 上海华力集成电路制造有限公司 透射电子显微镜样品及其制造方法
CN113834831A (zh) * 2020-06-08 2021-12-24 宸鸿科技(厦门)有限公司 制备透射电子显微镜样品的方法
CN113834831B (zh) * 2020-06-08 2023-07-21 全德科技(厦门)有限公司 制备透射电子显微镜样品的方法

Also Published As

Publication number Publication date
CN102052906B (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
CN102052906B (zh) 用于透射电子显微镜的器件绝缘隔离区观测样品制备方法
EP1630849B1 (en) Localized plasma processing
EP3018696B1 (en) Manufacturing method for semiconductor substrate
KR101493301B1 (ko) 반도체 웨이퍼의 제작 방법
JPH1070181A (ja) 静電チャック上の誘電体被膜としてダイヤモンド膜を用いる方法及び装置
US20070238254A1 (en) Method of etching low dielectric constant films
TW200901312A (en) Method of dry etching
JP4191692B2 (ja) SiC系膜の成膜方法及び半導体装置の製造方法
US6268296B1 (en) Low temperature process for multiple voltage devices
US8395196B2 (en) Hydrogen barrier liner for ferro-electric random access memory (FRAM) chip
US6251796B1 (en) Method for fabrication of ceramic tantalum nitride and improved structures based thereon
KR20160124796A (ko) 복합 기판
US8058159B2 (en) Method of making low work function component
US20020104612A1 (en) Method for fabricating transmission electron microscope
CN104843634B (zh) 用于结构化由两个半导体层组成的层结构的方法及微机械部件
US20050194662A1 (en) Semiconductor component and micromechanical structure
CN102019577B (zh) 化学机械研磨工艺的优化方法
CN106290544B (zh) 一种二次离子质谱分析方法
CN111656527B (zh) 制造电隔离金刚石纳米线和应用
JP2007165878A (ja) 基板上に少なくとも1つの単結晶層を含む構成要素の製作方法
TW202320110A (zh) 影響帶電粒子射束的靜電裝置
US8927433B2 (en) Conductive via hole and method for forming conductive via hole
TW202312277A (zh) 用於直接半導體接合的異質接合層的裝置及其方法
US8178426B2 (en) Method for manufacturing a structure of semiconductor-on-insulator type
US20190333765A1 (en) Semiconductor Device and Manufacturing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120523

Termination date: 20191110