CN109001018A - 一种易氧化材料的透射样品制备及二维材料加固方法 - Google Patents

一种易氧化材料的透射样品制备及二维材料加固方法 Download PDF

Info

Publication number
CN109001018A
CN109001018A CN201810745568.4A CN201810745568A CN109001018A CN 109001018 A CN109001018 A CN 109001018A CN 201810745568 A CN201810745568 A CN 201810745568A CN 109001018 A CN109001018 A CN 109001018A
Authority
CN
China
Prior art keywords
sample
deposition
ion beam
transmission
dimensional material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810745568.4A
Other languages
English (en)
Inventor
曲迪
白国人
陈墨
姬静远
宋学颍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hua Huixin Technology (tianjin) Co Ltd
Original Assignee
Hua Huixin Technology (tianjin) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hua Huixin Technology (tianjin) Co Ltd filed Critical Hua Huixin Technology (tianjin) Co Ltd
Priority to CN201810745568.4A priority Critical patent/CN109001018A/zh
Publication of CN109001018A publication Critical patent/CN109001018A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2255Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident ion beams, e.g. proton beams
    • G01N23/2258Measuring secondary ion emission, e.g. secondary ion mass spectrometry [SIMS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • G01N2001/4083Concentrating samples by other techniques involving separation of suspended solids sedimentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/054Investigating materials by wave or particle radiation by diffraction, scatter or reflection small angle scatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/081Investigating materials by wave or particle radiation secondary emission incident ion beam, e.g. proton
    • G01N2223/0816Investigating materials by wave or particle radiation secondary emission incident ion beam, e.g. proton incident ion beam and measuring secondary ion beam [SIMS]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明公开了一种易氧化材料的透射样品制备及二维材料加固方法;包括:S1、真空环境下,在样品的目标位置诱导沉积Pt保护层;S2、对样品进行减薄切割分离,获得留有目标位置的样品;S3、在样品上表面和下表面沉积诱导得到10nm~20nm的SiO2薄膜。本发明将样品密封在SiO2薄膜中,达到隔绝外界空气的作用,减缓样品氧化。采用电子束诱导沉积,电子束较离子束能量低,诱导沉积过程中不会损伤样品,起到了保护样品的作用。上表面和下表面各诱导沉积10nm~20nm SiO2薄膜,对样品的透射测试及其他光学测试均没有明显影响;二维材料表面沉积10nm~20nm SiO2薄膜,达到加固二维材料,提高了物理硬度。

Description

一种易氧化材料的透射样品制备及二维材料加固方法
技术领域
本发明属于半导体制造技术及材料分析技术领域,特别是涉及一种易氧化材料的透射样品制备及二维材料加固方法。
背景技术
目前,透射电子显微镜(TEM)越来越多地被用于通过观察材料的微观形貌对材料进行分析。TEM的主要工作原理是把经过加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度有关,因而可以形成明暗不同的影像,后续再对图形进行观察、测量以及分析。在进行TEM分析中,样品厚度在一定程度上决定了TEM分析的准确性,一般的,TEM样品被减薄到0.1μm以下。
现有技术中,TEM样品的制备方法有很多,较为有效的是采用FIB系统制备TEM样品。FIB系统是利用电透镜将离子束聚焦成非常小尺寸的显微切割仪器,它可以将液态金属离子源产生的离子束经过离子枪加速,聚焦后照射于样品表面产生二次电子信号取得电子像。通过FIB制备TEM样品是指用FIB在材料特定区域作截面断层,能从纳米或微米尺度的试样中直接切取可供透射电镜研究的薄膜。
现有技术存在的缺陷为:
但透射制样时,会经常遇到易氧化材料,比如ZnS。透射制样完成取出样品后,材料很容易氧化,影响TEM测试结果。传统的解决方法是:透射制样后,尽快进行TEM测试,缩短氧化时间。但该方法效果不好且有一定的局限性。
二维材料如石墨烯,因厚度纳米级别,在测试及加工工程中,很容易出现物理折断损坏。
发明内容
本发明的目的在于:提出一种易氧化材料的透射样品制备及二维材料加固方法;该易氧化材料的透射样品制备及二维材料加固方法能够克服易氧化透射样品的制备缺陷,克服二维材料因厚度限制易损坏的缺陷,具有操作简单、高效、实用的特点。
为了达到上述目的,本发明的技术方案为:
一种易氧化材料的透射样品制备及二维材料加固方法,包括以下步骤:
S1、真空环境下,在样品的目标位置诱导沉积Pt保护层;
S2、对样品进行减薄切割分离,获得留有目标位置的样品;
S3、在样品上表面和下表面沉积诱导得到10nm~20nm的SiO2薄膜。
进一步,所述S1具体为:
S101、清洁样品;随后将样品用导电胶带粘在样品台上,设备抽取真空;所用设备为聚焦离子束刻蚀系统,该设备为FIB-SEM双束系统;
S102、调节优中心及共焦点后,通过扫描找到所取透射样品区域;随后在取样表面沉积一层Pt保护层;沉积参数为:离子束束流70pA~80pA,沉积时长为2-5min,沉积尺寸为10μm×2um~13μm×4μm,沉积厚度为700nm~900nm。
进一步,所述S2具体为:
S201、在样品贴近Pt保护层的两侧各取一个7μm×10μm左右的矩形区域,分别在选区用垂直于样品表面的700pA~900pA大束流先进行粗切,然后再采用100pA~200pA小束流进行细切;
S202、待细切至目标样品厚度2μm~4μm时,将机械手移至制备处的样品上方,用Pt保护层将针尖和目标样品一角点焊连接;用平行样品表面的离子束轰切样品底部,使需要观测的透射样品脱离,移动机械手,直至半圆铜网上方;
S203、用Pt点焊,将目标样品下方与半圆铜网固定连接;然后用离子束轰切机械手尖端,使其与目标样品分离,在目标样品两侧用聚焦离子束精细减薄样品。
更进一步,在S203中,在目标样品两侧用聚焦离子束精细减薄样品具体为:
A、首先用电压30kV,电流80pA的离子束将样品厚度减至200nm~300nm;
B、然后用电压5kV,电流40pA将样品减薄至70nm~80nm。
进一步,所述S3具体为:
S301、关闭离子束,通入SiO2前驱气体二叔丁氧基二乙酰氧基硅烷(C12H24O6Si);
S302、在电子束诱导下,在样品上表面和下表面沉积厚度为10nm~20nm的SiO2薄膜。
更进一步,所述S302中的沉积条件为:电子束电流:500pA~800pA电压为2KV,时长为30s~40ss。
本发明具有的优点和积极效果为:
1.本发明在透射样品上下表面诱导沉积10nm级别的薄膜,将样品密封在薄膜中,从而达到隔绝外界空气的作用,减缓样品氧化。
2.本发明采用电子束诱导沉积,因电子束较离子束能量低,诱导沉积过程中,不会损伤样品。从而起到了保护样品的作用。
3.本发明表面诱导沉积SiO2薄膜,SiO2除较W、Pt、C等常用的沉积材料有更好的密封性外,经过实验发现,沉积10nm-20nm的SiO2薄膜对样品的透射测试及其他光学测试均没有明显影响。
4.二维材料表面沉积10nm~20nm SiO2薄膜,达到加固二维材料,提高了物理硬度,降低了物理折断的概率。
附图说明
图1:本发明优选实施例的流程图
图2:本发明优选实施例得到的改进后透射样品试样示意图;
图3:本发明优选实施例得到的二维材料加固示意图。
其中:1、Pt保护层;2、SiO2薄膜;3、透射样品;4、二维材料。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,详细说明如下:
请参阅图1至图3,一种易氧化材料的透射样品制备及二维材料加固方法,包括以下步骤:
步骤一:样品清洁后,将样品用导电胶带牢固的粘在样品台上,设备抽取真空。所用设备为聚焦离子束刻蚀系统,该设备为FIB-SEM双束系统。
步骤二:调节优中心及共焦点后,通过扫描找到所取透射样品区域。为保护表面不受损伤。在取样表面沉积一层Pt保护层1。沉积参数:离子束束流75pA,沉积时间2min,沉积尺寸:10μm×2um,沉积厚度900nm。
步骤三:在样品贴近Pt保护层的两侧表面各取一个7μm×10μm的矩形区域,分别在选区用垂直于样品表面的700pA大束流先进行粗切,然后再采用100pA小束流进行细切,用小束流减小对目标样品的损伤。
步骤四:待细切至目标样品厚度3μm左右时,将机械手移至制备出的样品上方,用Pt将针尖和目标样品一角点焊连接。用接近于平行样品表面的离子束轰切样品底部,使需要观测的透射样品3脱离,移动机械手,直至半圆铜网上方。
步骤五:用Pt点焊,将目标样品下方与半圆铜网固定连接;然后用离子束轰切机械手尖端,使其与目标样品分离。在目标样品两侧用聚焦离子束精细减薄样品,为了得到较好的薄区,开始用电压30kV,电流80pA的离子束将样品厚度减至200nm~300nm,后用5kV,40pA将样品减薄至70nm~80nm。
步骤六:关闭离子束,通入二叔丁氧基二乙酰氧基硅烷(C12H24O6Si)前驱气体,在电子束诱导下,在样品上下沉积10nm SiO2薄膜2。沉积条件:电子束电流:500-800pA,电压2KV,时间30s~40s。
步骤七:制样完成,取出透射样品。
图3是上述优选实施例得到的二维材料4加固示意图。
以上对本发明的实施例进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之内。

Claims (6)

1.一种易氧化材料的透射样品制备及二维材料加固方法,其特征在于,包括以下步骤:
S1、真空环境下,在样品的目标位置诱导沉积Pt保护层;
S2、对样品进行减薄切割分离,获得留有目标位置的样品;
S3、在样品上表面和下表面沉积诱导得到10nm~20nm的SiO2薄膜。
2.根据权利要求1所述易氧化材料的透射样品制备及二维材料加固方法,其特征在于,
所述S1具体为:
S101、清洁样品;随后将样品用导电胶带粘在样品台上,设备抽取真空;所用设备为聚焦离子束刻蚀系统,该设备为FIB-SEM双束系统;
S102、调节优中心及共焦点后,通过扫描找到所取透射样品区域;随后在取样表面沉积一层Pt保护层;沉积参数为:离子束束流70pA~80pA,沉积时长为2-5min,沉积尺寸为10μm×2um~13μm×4μm,沉积厚度为700nm~900nm。
3.根据权利要求1所述易氧化材料的透射样品制备及二维材料加固方法,其特征在于,
所述S2具体为:
S201、在样品贴近Pt保护层的两侧各取一个7μm×10μm左右的矩形区域,分别在选区用垂直于样品表面的700pA~900pA大束流先进行粗切,然后再采用100pA~200pA小束流进行细切;
S202、待细切至目标样品厚度2μm~4μm时,将机械手移至制备处的样品上方,用Pt保护层将针尖和目标样品一角点焊连接;用平行样品表面的离子束轰切样品底部,使需要观测的透射样品脱离,移动机械手,直至半圆铜网上方;
S203、用Pt点焊,将目标样品下方与半圆铜网固定连接;然后用离子束轰切机械手尖端,使其与目标样品分离,在目标样品两侧用聚焦离子束精细减薄样品。
4.根据权利要求3所述易氧化材料的透射样品制备及二维材料加固方法,其特征在于,
在S203中,在目标样品两侧用聚焦离子束精细减薄样品具体为:
A、首先用电压30kV,电流80pA的离子束将样品厚度减至200nm~300nm;
B、然后用电压5kV,电流40pA将样品减薄至70nm~80nm。
5.根据权利要求1所述易氧化材料的透射样品制备及二维材料加固方法,其特征在于,
所述S3具体为:
S301、关闭离子束,通入SiO2前驱气体二叔丁氧基二乙酰氧基硅烷(C12H24O6Si);
S302、在电子束诱导下,在样品上表面和下表面沉积厚度为10nm~20nm的SiO2薄膜。
6.根据权利要求5所述易氧化材料的透射样品制备及二维材料加固方法,其特征在于,
所述S302中的沉积条件为:电子束电流:500pA~800pA电压为2KV,时长为30s~40s。
CN201810745568.4A 2018-07-09 2018-07-09 一种易氧化材料的透射样品制备及二维材料加固方法 Pending CN109001018A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810745568.4A CN109001018A (zh) 2018-07-09 2018-07-09 一种易氧化材料的透射样品制备及二维材料加固方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810745568.4A CN109001018A (zh) 2018-07-09 2018-07-09 一种易氧化材料的透射样品制备及二维材料加固方法

Publications (1)

Publication Number Publication Date
CN109001018A true CN109001018A (zh) 2018-12-14

Family

ID=64599186

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810745568.4A Pending CN109001018A (zh) 2018-07-09 2018-07-09 一种易氧化材料的透射样品制备及二维材料加固方法

Country Status (1)

Country Link
CN (1) CN109001018A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110553885A (zh) * 2019-10-14 2019-12-10 长江存储科技有限责任公司 采用fib制备测试样品的方法以及测试样品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052906A (zh) * 2009-11-10 2011-05-11 中芯国际集成电路制造(上海)有限公司 用于透射电子显微镜的器件绝缘隔离区观测样品制备方法
CN105136539A (zh) * 2015-08-26 2015-12-09 上海华力微电子有限公司 一种制备tem芯片样品的方法
CN105334086A (zh) * 2014-08-13 2016-02-17 中芯国际集成电路制造(上海)有限公司 Tem样品的制备方法及tem样品
CN105806679A (zh) * 2016-05-17 2016-07-27 上海华力微电子有限公司 一种tem样品的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052906A (zh) * 2009-11-10 2011-05-11 中芯国际集成电路制造(上海)有限公司 用于透射电子显微镜的器件绝缘隔离区观测样品制备方法
CN105334086A (zh) * 2014-08-13 2016-02-17 中芯国际集成电路制造(上海)有限公司 Tem样品的制备方法及tem样品
CN105136539A (zh) * 2015-08-26 2015-12-09 上海华力微电子有限公司 一种制备tem芯片样品的方法
CN105806679A (zh) * 2016-05-17 2016-07-27 上海华力微电子有限公司 一种tem样品的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
梁雪 等: "FIB在锆合金氧化膜截面透射样品制备上的应用", 《实验室研究与探索》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110553885A (zh) * 2019-10-14 2019-12-10 长江存储科技有限责任公司 采用fib制备测试样品的方法以及测试样品
CN110553885B (zh) * 2019-10-14 2022-04-12 长江存储科技有限责任公司 采用fib制备测试样品的方法以及测试样品

Similar Documents

Publication Publication Date Title
US7375325B2 (en) Method for preparing a sample for electron microscopic examinations, and sample supports and transport holders used therefor
US20100187433A1 (en) Improved particle beam generator
US6777674B2 (en) Method for manipulating microscopic particles and analyzing
US9455120B2 (en) Particle beam device and method for processing and/or analyzing a sample
CN103196728A (zh) 使用fib技术制备sem或tem样品保护层的方法
US10347461B2 (en) Method for the in situ preparation of microscopic specimens
Stehling et al. New perspectives on nano-engineering by secondary electron spectroscopy in the helium ion and scanning electron microscope
CN110174428B (zh) 岩样成像方法、装置以及系统
Liang et al. Nanoscale surface analysis that combines scanning probe microscopy and mass spectrometry: A critical review
Vieweg et al. TEM preparation method for site-and orientation-specific sectioning of individual anisotropic nanoparticles based on shadow-FIB geometry
CN109001018A (zh) 一种易氧化材料的透射样品制备及二维材料加固方法
JP2012168027A (ja) 電子顕微鏡用試料の作製方法
CA2543396A1 (en) Method for manipulating microscopic particles and analyzing the composition thereof
KR20110070031A (ko) 원자간력 현미경 탐침의 팁용 탄소나노튜브 부착방법 및 그 방법에 의해 팁에 탄소나노튜브가 부착된 원자간력 현미경용 탐침
WO2017186198A1 (en) Method for characterization of a sample surface by using scanning electron microscope and scanning probe microscope
CN107917923B (zh) 用于x射线层析摄影术的布置
Hwang et al. Laser ablation-induced spectral plasma characteristics in optical far-and near fields
Lekstrom et al. Using the in situ lift-out technique to prepare TEM specimens on a single-beam FIB instrument
DE102008049833A1 (de) Verfahren und Vorrichtung zur Durchführung einer quantitativen ortsaufgelösten Lokal- und Verteilunganalyse chemischer Elemente und in-situ Charakterisierung der ablatierten Oberflächenregionen
Li et al. Three-dimensional nanostructures by focused ion beam techniques: Fabrication and characterization
WO2012060056A1 (ja) サンプリング装置
He et al. Optimization study of direct morphology observation by cold field emission SEM without gold coating
CN106430082B (zh) 一种基于单电子晶体管的电荷探针及其制备方法
Khoroshilov et al. On the precision preparation of samples for atom probe tomography using a focused ion beam in a SEM
Song et al. Fabrication of co-axial field emitter tips for scanning probe energy loss spectroscopy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Qu Di

Inventor after: Bai Guoren

Inventor after: Chen Mo

Inventor after: Ji Jingyuan

Inventor after: Song Xueying

Inventor before: Qu Di

Inventor before: Bai Guoren

Inventor before: Chen Mo

Inventor before: Ji Jingyuan

Inventor before: Song Xueying

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181214