CN101975939A - 一种基于压缩感知理论的多普勒解模糊处理方法 - Google Patents

一种基于压缩感知理论的多普勒解模糊处理方法 Download PDF

Info

Publication number
CN101975939A
CN101975939A CN 201010295649 CN201010295649A CN101975939A CN 101975939 A CN101975939 A CN 101975939A CN 201010295649 CN201010295649 CN 201010295649 CN 201010295649 A CN201010295649 A CN 201010295649A CN 101975939 A CN101975939 A CN 101975939A
Authority
CN
China
Prior art keywords
doppler
sampling
doppler frequency
prf
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010295649
Other languages
English (en)
Other versions
CN101975939B (zh
Inventor
孙进平
田继华
张冰尘
洪文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronics of CAS
Beihang University
Original Assignee
Institute of Electronics of CAS
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronics of CAS, Beihang University filed Critical Institute of Electronics of CAS
Priority to CN 201010295649 priority Critical patent/CN101975939B/zh
Publication of CN101975939A publication Critical patent/CN101975939A/zh
Application granted granted Critical
Publication of CN101975939B publication Critical patent/CN101975939B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

一种基于压缩感知理论的多普勒解模糊处理方法步骤为:(1)利用Q重PRF值对总相参处理期内的连续回波脉冲进行非均匀采样;(2)设计目标可能的多普勒频率范围,并保证Q重PRF值在该多普勒频率范围内无多普勒盲区;(3)利用总相参处理期内采样数据的时域欠采样特性及待检测目标在可能的多普勒频率范围内频谱的稀疏特性,构造CS模型;(4)采用OMP重构算法解CS模型,直接估计无模糊多普勒谱的幅度响应。本发明消除了雷达系统采用的PRF重数对待检测目标数目的限制。同时在采用OMP重构算法解CS模型时(估计无模糊多普勒幅度响应)考虑了噪声对重构结果地影响,进行了去噪声运算,因此避免了常规方法受测量误差影响出现虚假值的情况。

Description

一种基于压缩感知理论的多普勒解模糊处理方法
技术领域
本发明属于目标检测领域,涉及一种基于压缩感知理论的多普勒解模糊处理方法。
背景技术
脉冲多普勒(PD)技术具有良好的杂波抑制性能,在雷达尤其在机载雷达上得到了广泛的应用。根据不同的需求,PD雷达可采用低重频、中重频和高重频的工作方式。其中低重频方式下没有距离模糊,但对空中目标一般都存在严重的多普勒(速度)模糊。地面和舰载远程雷达在探测时为获得可靠的目标距离测量值,普遍采用低重频方式,机载PD雷达在上视情况下也通常采用低重频方式。为得到较为准确的目标径向速度测量值,低重频雷达需要进行多普勒解模糊处理,以扩大测速的不模糊范围。此外,对于低重频的动目标指示(MTI)或PD雷达,位于杂波多普勒频率处的滤波器凹口具有一定的宽度,会因多普勒模糊而造成周期性的盲速区域,从而对目标检测性能产生大的影响。低重频雷达一般采用多重脉冲重复频率(Pulse Repetition Frequency PRF)参差的方式以克服盲速问题,如果采用脉组参差方式,则可以根据同一目标在不同PRF下的视在多普勒频率模糊值进行解模糊处理。目前常用的解模糊方法都基于中国余数定理(ChineseRemainder Theorem CRT),基本CRT方法的一个严重问题是它对噪声误差的极度敏感,实际采用的解模糊方法都是考虑误差后的改进CRT方法,如Trunk等人提出的聚类方法或其改进形式。这些方法所存在的一个共同缺陷是,对N个目标的解模糊,需要至少N+1种不同的PRF值,且要求每个目标在至少N+1种PRF下都是可检测的,从而使得待检测目标的数目受到雷达系统采用的PRF重数的限制。
发明内容
本发明要解决的技术问题是:针对目前常用的基于CRT解模糊方法存在的不足,提供一种基于压缩感知理论的多普勒解模糊处理方法,该方法利用多重PRF方式下相参处理间隔内的时域欠采样特性及多普勒频谱的稀疏特性,达到了利用很少PRF值实现多目标多普勒解模糊的目的,消除了雷达系统采用的PRF重数对待检测目标数目的限制,同时避免了常规方法受测量误差影响出现虚假值的情况。
本发明解决其技术问题所采用的技术方案是:一种基于压缩感知(CompressiveSensing CS)理论的多普勒解模糊处理方法实现步骤如下:首先获取非均匀欠采样的时间序列,充分利用多重PRF方式下相参处理间隔内的时域欠采样特性以及多普勒频谱的稀疏特性,依据压缩感知理论构造多普勒解模糊的CS模型,并采用正交匹配追踪(OMP)重构算法直接估计无模糊多普勒谱的幅度响应,从而有效实现PRF分组参差方式下对多个目标的多普勒解模糊处理。具体包括以下步骤:
(1)利用Q重PRF值对总相参处理期内的连续回波脉冲进行非均匀采样;
(2)设计目标可能的多普勒频率范围,并保证Q重PRF值在该多普勒频率范围内无多普勒盲区;
(3)利用总相参处理期内采样数据的时域欠采样特性及待检测目标在可能多普勒频率范围内频谱的稀疏特性,构造CS模型;
(4)采用OMP重构算法解CS模型,直接估计无模糊多普勒谱的幅度响应。
所述步骤(1)中的利用Q重PRF值对总相参处理期内的连续回波脉冲进行非均匀采样实现过程如下:
a.确定雷达所采用的Q重PRF值fR(q),q=0,1,…,Q-1,以及所对应脉冲采样间隔
T ( q ) = 1 f R ( q ) , q = 0,1 , . . . , Q - 1
b.利用脉冲采样间隔计算每个脉冲采样所对应的取样时刻
t m = Σ i = 0 m T ( int ( i / L ) mod ( Q ) ) , m = 0,1 , . . . , M - 1
式中int(·)为求整运算,mod(·)为求余数运算,M为采样序列的数目。
c.通过取样时刻tm对连续回波脉冲采样获得总相参处理期内的M个非均匀采样时间序列y(t0),y(t1),…,y(tM-1)。
所述步骤(2)设计目标可能的多普勒频率范围,并保证Q重PRF值在该多普勒频率范围内无多普勒盲区的原则如下:设目标可能的最大多普勒频率为fdmax,对每一重频的PRF值,都有fR(q)<<fdmax,且Q个PRF值应该保证在区间0~fdmax内无多普勒盲区。
所述步骤(3)利用总相参处理期内采样数据的时域欠采样特性及待检测目标多普勒频谱的稀疏特性,构造CS模型为:
y=Φψs=As
其中ψ为基矩阵,Φ为观测矩阵,y为通过步骤(1)获取的非均匀采样时间序列,s为具有稀疏特性的多普勒频谱幅度响应,A为CS矩阵,所述CS矩阵为
Figure BSA00000288267100031
其中tm,m=0,1,…,M-1为时域脉冲采样时间,fn,n=0,1,…,N-1为多普勒采样位置。
所述步骤(4)采用OMP重构算法解CS模型,直接估计无模糊多普勒谱的幅度响应如下:通过局部最优化依次从大到小找到s的各非零系数,进而得到无模糊多普勒谱的幅度响应。
本发明与现有技术相比优点在于:
(1)充分利用了多重PRF方式下相参处理间隔内的时域欠采样特性及多普勒频谱的稀疏特性,并结合压缩感知理论构造了多普勒解模糊的CS模型。
(2)本发明在采用OMP重构算法估计无模糊多普勒幅度响应时考虑了噪声对重构结果地影响,进行了去噪声运算,因此避免了常规方法受测量误差影响出现虚假值的情况;
(3)本发明通过构造CS模型,达到了利用很少的PRF值实现多目标的多普勒解模糊的目的,从而消除了雷达系统采用的PRF重数对待检测目标数目的限制。
附图说明
图1为本发明基于压缩感知理论的多普勒解模糊处理方法的流程图;
图2为两重PRF的脉组参差方式;
图3为不同K-稀疏情况下CS矩阵的RIC近似值;
图4为采用CS算法得到的无模糊多普勒谱;
图5为100次Monte Carlo仿真平均后的多普勒谱响应。
具体实施方式
下面结合附图及具体实施方式详细介绍本发明。
本发明中利用多重PRF方式下相参处理间隔内的时域欠采样特性及多普勒频谱的稀疏特性,构造了多普勒解模糊的CS模型,并采用正交匹配跟踪重构算法直接估计出无模糊多普勒谱的幅度响应。本发明的基于压缩感知理论的多普勒解模糊处理方法,其实施流程如图1所示,具体包含以下4个步骤:
1、利用Q重PRF值对总相参处理期内的连续回波脉冲进行非均匀采样
PRF是脉冲体制雷达波形的关键参数,对给定的PRF值fR,不模糊距离和不模糊径向速度分别为
R u = c 2 · f R , v u = λ · f R 2 - - - ( 1 )
其中fR代表PRF值,c为光速,λ为波长。对低重频雷达,需要采用较小的PRF值以满足不模糊距离Ru超出雷达最大作用距离的条件,但小的PRF值将使得不模糊径向速度vu远小于目标实际径向速度,造成多普勒模糊和盲速现象。低重频雷达需要采用多重PRF参差的方式克服盲速问题,并通过解模糊处理扩大测速的不模糊范围。对相参处理脉冲数较多的PD雷达,一般采用脉组参差方式。以两重PRF为例,脉组参差方式的脉冲采样时序如图2所示。即在一个子相参处理期(CPI)内以某一重频fR(1)发射L个脉冲,接着以不同的重频fR(2)发射第二个子CPI的L个脉冲,再重复以fR(1)发射。雷达分别先在每个子CPI上进行多普勒处理和目标检测,再结合每个子CPI上的检测结果进行多普勒解模糊处理。
多重频雷达各PRF的取值原理上应满足互质条件,实际中需要根据系统可选择参数和特定应用所要求的目标多普勒范围,通过绘制多普勒盲区图进行确认。假定雷达所采用的Q(Q是一个数量词,表示所采用的PRF值的重数)重PRF值分别为fR(q),q=0,1,…,Q-1,所对应脉冲采样间隔为
T ( q ) = 1 f R ( q ) , q = 0,1 , . . . , Q - 1 - - - ( 2 )
对总的相参处理期内的M个连续脉冲采样,可计算出每个脉冲采样所对应的取样时刻。对于上述脉组参差方式,设每个子CPI的脉冲数为L,以重频fR(0)发射时的第一个脉冲为起始脉冲,则每个脉冲采样所对应的取样时刻为
t m = Σ i = 0 m T ( int ( i / L ) mod ( Q ) ) , m = 0,1 , . . . , M - 1 - - - ( 3 )
其中int(x)为取x的整数部分,令j=int(i/L),则
j mod(Q)=j-int(j/Q)·Q                                (4)
为j整除Q后的余数。
根据(3)式,由上述总的相参处理期的M(M≥Q·L)个脉冲采样构成的时间序列y(t0),y(t1),…,y(tM-1),在时域具有非均匀采样的特性,以向量形式表示为
y=[y(t0)y(t1)…y(tM-1)]T                              (5)
2、设计目标可能的多普勒频率范围,并保证Q重PRF值在该多普勒频率范围内无多普勒盲区
对低重频雷达,设目标可能的最大多普勒频率为fdmax,对每一重频的PRF值,都有fR(q)<<fdmax,且Q个PRF值应该保证在区间0~fdmax内无多普勒盲区。
如果对时间范围t0~tM-1内的信号进行等间隔采样,即只采用一重PRF,要得到0~fdmax区间上的无模糊多普勒频谱,根据Nyquist采样定理,要求该PRF值fR≥fdmax,即在时间范围t0~tM-1内,对y(t)的全采样数要求为
N≥(tM-1-t0)fdmax                            (6)
由于fR(q)<<fdmax,故N>>M。在全采样情况下,假定0~fdmax范围上的多普勒频谱响应为
s=[s(f0)s(f1)…s(fN-1)]T                    (7)
频率取样位置f0,f1,…,fN-1在区间0~fdmax上等间隔分布。多普勒频率间隔即多普勒门宽度为
Δf ≈ f d max N - - - ( 8 )
对(7)进行逆傅立叶变换,即可得到全采样条件下的长度为N的时域采样序列
x=FHs                                       (9)
其中F为N×N维的傅立叶变换矩阵,H表示共轭转置。
因此克服目标多普勒盲区及目标的多普勒解模糊处理,可以转换为如下问题的求解:如何由非均匀严重欠采样的时间序列y,无模糊地得到0~fdmax范围上的多普勒频谱响应s。
3、利用总相参处理期内采样数据的时域欠采样特性及待检测目标在可能的多普勒频率范围内频谱的稀疏特性,构造CS模型
基于CS理论进行多普勒解模糊处理,依据是低重频雷达单个距离门上的目标数非常有限,因而(5)式的非均匀采样时间序列y所对应多普勒频谱响应具有显著的稀疏特征。将(7)式的频谱响应简记为s=[s0 s1 … sN-1]T,其中sm=s(fm),m=0,1,…,N-1为多普勒fm处的频谱响应,可认为向量s是K-稀疏的,这里K为目标数。为此可以构造基于CS理论的多普勒解模糊模型:
y=Φψs=As                               (10)
由雷达系统所选定的各PRF值、目标多普勒频率范围、总的相参处理期内的脉冲采样数M,根据(3)式确定时域脉冲采样时刻tm,m=0,1,…,M-1,并根据(6)式和(8)式确定出多普勒频率抽样位置fn,n=0,1,…,N-1后,可直接得到解模糊处理所对应的CS矩阵
对应的基矩阵和观测矩阵分别为
ψ=FH,Φ=AψH=AF                               (12)
由于脉冲采样数即观测数M远小于信号全采样长度N,所以直接由观测数据y重构x的线性方程是欠定的,CS理论证明当矩阵A具有如下限制等距性质(RIP)时,s能够以很大的概率由观测数据y精确重构,并由x=ψs重构出信号x。
定义矩阵A的限制等距常量(Restricted isometry constant RIC)δK为满足下式的最小值
1 - δ K ≤ | | As | | 2 2 | | s | | 2 2 ≤ 1 + δ K - - - ( 13 )
其中s为任意K-稀疏向量。如果δK<1,称矩阵A满足K阶RIP,此时矩阵可近似地保证K-稀疏信号s的欧氏距离不变,这意味着s不可能在A的零空间中(否则s将有无穷多解)。Candes进一步证明,对式(13)中的A,如果满足
&delta; 2 K < 2 - 1 - - - ( 14 )
则能够实现对K-稀疏信号s的无失真恢复。RIP的一个等价描述是矩阵A的所有K列子向量集几乎正交(矩阵的列比行多,因此矩阵的列不会严格正交)。
由于(11)式所示多普勒解模糊模型中所用CS矩阵是确定矩阵,验证其是否满足RIP需要测试
Figure BSA00000288267100064
种组合,是NP难问题。本发明中采用随机测试的方式,即足够多次(如10×K×N次)得随机产生K-稀疏信号s,计算测试值
&gamma; = | | As | | 2 2 / | | s | | 2 2 - 1 - - - ( 15 )
并将所有结果中|γ|的最大值作为该矩阵的RIC值δK的近似值。
4、采用OMP重构算法解CS模型,直接估计无模糊多普勒谱的幅度响应
CS信号重构算法即是求解满足y=As的最稀疏解,此问题可转化为如下的l1优化问题
min||s||l1  s.t.  y=As                  (16)
在考虑噪声的情况下,需要引入l2范数约束条件
min||s||l1  s.t.  ||y-As||l2≤ε                (17)
其中ε为噪声门限,其取值范围取决于实际应用中噪声的大小,可利用很多成熟的凸优化算法对上述问题进行求解。目前为止出现的CS重构算法已有很多,其中包括迭代贪婪算法,如基追踪(BP)、正交匹配追踪(OMP)、多级式正交匹配追踪(StOMP)和正则化正交匹配追踪(ROMP)等算法。
对(17)式优化问题的求解,本发明中采用OMP算法,该算法通过局部最优化依次从大到小找到s的各非零系数,在限定目标数K之后,可减小迭代次数以提高计算效率。
OMP算法是一个很成熟的解欠定方程的算法,在本发明技术人员是很容易实现的,因此不作为重点。
下面通过仿真的方法对本发明进行验证。对低重频雷达脉组参差方式,仿真所采用的两种PRF值分别为fR(0)=1100Hz及fR(1)=909Hz;每种PRF发射的子CPI脉冲数为32,总相参处理时间内的脉冲数为M=64,每个脉冲采样所对应的取样时刻tm按(3)式计算;设计目标多普勒频率范围为0~15kHz,通过绘制多普勒盲区图,可以证明采用上述两种PRF值,在目标多普勒频率范围内不含盲区。仿真信号包含三个目标,多普勒频率分别为ft(1)=2.4kHz;ft(2)=6.8kHz;ft(3)=11.35kHz,并设置不同的目标多普勒信号幅度,如下式所示:
y(tm)=0.8exp(j2π·ft(1)·tm)+1.0exp(j2π·ft(2)·tm)+1.2exp(j2π·ft(3)·tm)+w(tm)        (18)
其中噪声分量w(tn)为零均值复高斯白噪声序列,实部和虚部的标准差σ=0.4。可计算出每个目标分量的信噪比分别为SNR1=3.01dB;SNR2=4.95dB;SNR3=6.53dB。
采用本发明基于压缩感知理论的多普勒解模糊处理方法,根据(6)式和(8)式设置多普勒门宽度Δf=10Hz,频率抽样数M=1500。按(11)式构造CS矩阵A,对不同K-稀疏情况下的RIP属性验证结果如图3所示,随机验证次数为10×K×N次,RIC近似值按(15)式计算。根据图3的结果,解模糊处理中所用的确定型CS矩阵A具有RIP属性,因而可以保证对多普勒谱s的有效估计。
在多普勒频率范围0~15kHz上,采用OMP算法对一次样本实现进行处理,所估计出的无模糊多普勒频谱如图4所示,由该结果可以对3个目标实现正确的检测,同时对目标多普勒频率的估计精度可以控制在Δf=10Hz的范围之内。
与全采样条件下用FFT所得多普勒频谱不同,图4中噪声分量也表现为明显的稀疏性,这是含噪情况下CS处理的特点。为得到统计意义下的结果,在保持目标信号分量及信噪比不变的情况下,进行100次Monte Carlo仿真,平均后的多普勒谱响应如图5所示。
本发明未详细阐述部分属于本领域技术人员的公知技术。

Claims (5)

1.一种基于压缩感知理论的多普勒解模糊处理方法,其特征在于实现步骤如下:
(1)利用Q重PRF值对总相参处理期内的连续回波脉冲进行非均匀采样;
(2)设计目标可能的多普勒频率范围,并保证Q重PRF值在所述多普勒频率范围内无多普勒盲区;
(3)利用总相参处理期内采样数据的时域欠采样特性及待检测目标在可能的多普勒频率范围内频谱的稀疏特性,构造CS模型;
(4)采用OMP重构算法解CS模型,直接估计无模糊多普勒谱的幅度响应。
2.根据权利要求1所述的基于压缩感知理论的多普勒解模糊处理方法,其特征在于:所述步骤(1)中的利用Q重PRF值对总相参处理期内的连续回波脉冲进行非均匀采样实现过程如下:
a.确定雷达所采用的Q重PRF值fR(q),q=0,1,…,Q-1,以及所对应脉冲采样间隔
T ( q ) = 1 f R ( q ) , q = 0,1 , . . . , Q - 1 ;
b.利用脉冲采样间隔T(q)计算每个脉冲采样所对应的取样时刻
t m = &Sigma; i = 1 m T ( int ( i / L ) mod ( Q ) ) , m = 0,1 , . . . , M - 1 ;
式中int(·)为求整运算,mod(·)为求余数运算,M为采样序列的数目;
c.通过取样时刻tm对连续回波脉冲采样获得总相参处理期内的M个非均匀采样时间序列y(t0),y(t1),…,y(tM-1)。
3.根据权利要求1所述的基于压缩感知理论的多普勒解模糊处理方法,其特征在于:所述步骤(2)设计目标可能的多普勒频率范围,并保证Q重PRF值在该多普勒频率范围内无多普勒盲区的原则如下:设目标可能的最大多普勒频率为fdmax,对每一重频的PRF值,都有fR(q)<<fdmax,且Q个PRF值应该保证在区间0~fdmax内无多普勒盲区。
4.根据权利要求1所述的基于压缩感知理论的多普勒解模糊处理方法,其特征在于:所述步骤(3)利用总相参处理期内采样数据的时域欠采样特性及待检测目标多普勒频谱的稀疏特性,构造CS模型为:
y=Φψs=As
其中ψ为基矩阵,Φ为观测矩阵,y为通过步骤(1)获取的非均匀采样时间序列,s为具有稀疏特性的多普勒频谱幅度响应,A为CS矩阵,所述CS矩阵为
Figure FSA00000288267000021
其中tm,m=0,1,…,M-1为时域脉冲采样时间,fn,n=0,1,…,N-1为多普勒采样位置。
5.根据权利要求1所述的基于压缩感知理论的多普勒解模糊处理方法,其特征在于:所述步骤(4)采用OMP重构算法解CS模型,直接估计无模糊多普勒谱的幅度响应如下:通过局部最优化依次从大到小找到s的各非零系数,进而得到无模糊多普勒谱的幅度响应。
CN 201010295649 2010-09-28 2010-09-28 一种基于压缩感知理论的多普勒解模糊处理方法 Expired - Fee Related CN101975939B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010295649 CN101975939B (zh) 2010-09-28 2010-09-28 一种基于压缩感知理论的多普勒解模糊处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010295649 CN101975939B (zh) 2010-09-28 2010-09-28 一种基于压缩感知理论的多普勒解模糊处理方法

Publications (2)

Publication Number Publication Date
CN101975939A true CN101975939A (zh) 2011-02-16
CN101975939B CN101975939B (zh) 2013-07-17

Family

ID=43575841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010295649 Expired - Fee Related CN101975939B (zh) 2010-09-28 2010-09-28 一种基于压缩感知理论的多普勒解模糊处理方法

Country Status (1)

Country Link
CN (1) CN101975939B (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102298141A (zh) * 2011-05-16 2011-12-28 中国人民解放军海军航空工程学院 机载脉冲多普勒雷达迭代解距离模糊法
CN102445691A (zh) * 2011-10-11 2012-05-09 北京航空航天大学 一种多通道星载合成孔径雷达方位频谱稀疏重建方法
CN102830409A (zh) * 2012-08-30 2012-12-19 西安电子科技大学 一种基于压缩感知的导航信号采集方法
CN103364768A (zh) * 2012-03-31 2013-10-23 中国科学院电子学研究所 压缩感知雷达重构方法
CN104122539A (zh) * 2014-07-01 2014-10-29 四川大学 基于欠采样的高速运动目标微多普勒参数估计方法
CN105259410A (zh) * 2015-10-26 2016-01-20 天津大学 一种强噪声干扰下的欠采样波形的频率估计方法及其装置
CN106291531A (zh) * 2016-08-04 2017-01-04 上海无线电设备研究所 一种采用高重频步进频与脉冲多普勒体制结合的参差跟踪方法
CN106595863A (zh) * 2016-12-29 2017-04-26 中国科学院光电技术研究所 一种提高液晶可调谐滤波器光谱重建精度和分辨率的方法
CN107850997A (zh) * 2015-07-15 2018-03-27 华为技术有限公司 Cs本振序列生成方法、装置、发射机及接收机
CN108594233A (zh) * 2018-04-24 2018-09-28 森思泰克河北科技有限公司 一种基于mimo汽车雷达的速度解模糊方法
CN108733777A (zh) * 2018-05-03 2018-11-02 湖南城市学院 一种基于概率统计的互联网舆情分析方法
CN108919195A (zh) * 2018-07-12 2018-11-30 中国船舶重工集团公司第七二四研究所 一种交替优化搜索脉组参差中重频pd系统设计方法
CN109061648A (zh) * 2018-07-27 2018-12-21 廖双珍 基于频率分集的速度/距离解模糊雷达波形设计方法
CN109188353A (zh) * 2018-08-14 2019-01-11 西安电子科技大学 基于多普勒频率差和压缩感知的单站无源定位方法
CN109870687A (zh) * 2019-03-14 2019-06-11 北京航空航天大学 一种用于互质采样星载sar的成像处理方法
CN110231603A (zh) * 2019-06-27 2019-09-13 中国航空工业集团公司雷华电子技术研究所 一种基于gmti的快速解算目标速度的方法
CN110726988A (zh) * 2019-10-30 2020-01-24 中国人民解放军海军航空大学 Pd雷达探测高超声速目标的距离和速度模糊互解方法
CN111708011A (zh) * 2020-07-10 2020-09-25 南京天朗防务科技有限公司 一种基于压缩感知的微多普勒测速的方法
CN113341418A (zh) * 2021-05-21 2021-09-03 南京航空航天大学 基于dbf机载气象雷达前视快速扫描下的解模糊方法
CN114415008A (zh) * 2022-01-13 2022-04-29 国网福建省电力有限公司莆田供电公司 一种基于物联网的gis在线监测系统故障诊断方法
CN117434511A (zh) * 2023-12-13 2024-01-23 广东大湾区空天信息研究院 一种基于毫米波雷达的多目标角度解模糊方法及相关设备

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
《IEEE Transactions on Aerospace and Electronic Systems》 19941031 Trunk, G.V.; Kim, M.W. Ambiguity resolution of multiple targets using pulse-Doppler waveforms 1130-1137 1-5 第30卷, 第4期 *
《IEEE Transactions on Signal Processing》 20071231 Elad, M. Optimized Projections for Compressed Sensing 5695-5702 1-5 第55卷, 第12期 *
《SSP "09. IEEE/SP 15th Workshop on Statistical Signal Processing 》 20090903 ung, A. ; Taubock, G. ; Hlawatsch, F. Compressive nonstationary spectral estimation using parsimonious random sampling of the ambiguity function 642-645 1-5 , *
《现代雷达》 20021130 朱晓华; 陆锦辉; 许佰魁 一种改进的交错脉冲解速度模糊方法 32-34 1-5 第24卷, 第6期 *
《系统工程与电子技术》 20081130 井伟; 邢孟道; 李燕平; 保铮 存在通道误差情况下的多普勒解模糊方法 2045-2049 1-5 第30卷, 第11期 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102298141A (zh) * 2011-05-16 2011-12-28 中国人民解放军海军航空工程学院 机载脉冲多普勒雷达迭代解距离模糊法
CN102445691A (zh) * 2011-10-11 2012-05-09 北京航空航天大学 一种多通道星载合成孔径雷达方位频谱稀疏重建方法
CN102445691B (zh) * 2011-10-11 2013-07-24 北京航空航天大学 一种多通道星载合成孔径雷达方位频谱稀疏重建方法
CN103364768A (zh) * 2012-03-31 2013-10-23 中国科学院电子学研究所 压缩感知雷达重构方法
CN103364768B (zh) * 2012-03-31 2015-03-04 中国科学院电子学研究所 压缩感知雷达重构方法
CN102830409A (zh) * 2012-08-30 2012-12-19 西安电子科技大学 一种基于压缩感知的导航信号采集方法
CN104122539A (zh) * 2014-07-01 2014-10-29 四川大学 基于欠采样的高速运动目标微多普勒参数估计方法
CN107850997A (zh) * 2015-07-15 2018-03-27 华为技术有限公司 Cs本振序列生成方法、装置、发射机及接收机
CN107850997B (zh) * 2015-07-15 2020-08-07 华为技术有限公司 Cs本振序列生成方法、装置、发射机及接收机
CN105259410A (zh) * 2015-10-26 2016-01-20 天津大学 一种强噪声干扰下的欠采样波形的频率估计方法及其装置
CN105259410B (zh) * 2015-10-26 2017-12-05 天津大学 一种强噪声干扰下的欠采样波形的频率估计方法及其装置
CN106291531A (zh) * 2016-08-04 2017-01-04 上海无线电设备研究所 一种采用高重频步进频与脉冲多普勒体制结合的参差跟踪方法
CN106291531B (zh) * 2016-08-04 2018-08-17 上海无线电设备研究所 一种采用高重频步进频与脉冲多普勒体制结合的参差跟踪方法
CN106595863B (zh) * 2016-12-29 2018-05-15 中国科学院光电技术研究所 一种提高液晶可调谐滤波器光谱重建精度和分辨率的方法
CN106595863A (zh) * 2016-12-29 2017-04-26 中国科学院光电技术研究所 一种提高液晶可调谐滤波器光谱重建精度和分辨率的方法
CN108594233A (zh) * 2018-04-24 2018-09-28 森思泰克河北科技有限公司 一种基于mimo汽车雷达的速度解模糊方法
CN108733777A (zh) * 2018-05-03 2018-11-02 湖南城市学院 一种基于概率统计的互联网舆情分析方法
CN108919195A (zh) * 2018-07-12 2018-11-30 中国船舶重工集团公司第七二四研究所 一种交替优化搜索脉组参差中重频pd系统设计方法
CN108919195B (zh) * 2018-07-12 2021-03-09 中国船舶重工集团公司第七二四研究所 一种交替优化搜索脉组参差中重频pd系统设计方法
CN109061648A (zh) * 2018-07-27 2018-12-21 廖双珍 基于频率分集的速度/距离解模糊雷达波形设计方法
CN109188353A (zh) * 2018-08-14 2019-01-11 西安电子科技大学 基于多普勒频率差和压缩感知的单站无源定位方法
CN109188353B (zh) * 2018-08-14 2022-08-26 西安电子科技大学 基于多普勒频率差和压缩感知的单站无源定位方法
CN109870687A (zh) * 2019-03-14 2019-06-11 北京航空航天大学 一种用于互质采样星载sar的成像处理方法
CN110231603A (zh) * 2019-06-27 2019-09-13 中国航空工业集团公司雷华电子技术研究所 一种基于gmti的快速解算目标速度的方法
CN110726988A (zh) * 2019-10-30 2020-01-24 中国人民解放军海军航空大学 Pd雷达探测高超声速目标的距离和速度模糊互解方法
CN110726988B (zh) * 2019-10-30 2021-08-27 中国人民解放军海军航空大学 Pd雷达探测高超声速目标的距离和速度模糊互解方法
CN111708011B (zh) * 2020-07-10 2022-06-03 南京天朗防务科技有限公司 一种基于压缩感知的微多普勒测速的方法
CN111708011A (zh) * 2020-07-10 2020-09-25 南京天朗防务科技有限公司 一种基于压缩感知的微多普勒测速的方法
CN113341418A (zh) * 2021-05-21 2021-09-03 南京航空航天大学 基于dbf机载气象雷达前视快速扫描下的解模糊方法
CN114415008A (zh) * 2022-01-13 2022-04-29 国网福建省电力有限公司莆田供电公司 一种基于物联网的gis在线监测系统故障诊断方法
CN117434511A (zh) * 2023-12-13 2024-01-23 广东大湾区空天信息研究院 一种基于毫米波雷达的多目标角度解模糊方法及相关设备
CN117434511B (zh) * 2023-12-13 2024-03-01 广东大湾区空天信息研究院 一种基于毫米波雷达的多目标角度解模糊方法及相关设备

Also Published As

Publication number Publication date
CN101975939B (zh) 2013-07-17

Similar Documents

Publication Publication Date Title
CN101975939B (zh) 一种基于压缩感知理论的多普勒解模糊处理方法
CN106526568B (zh) 基于短时稀疏分数阶傅里叶变换的雷达动目标检测方法
CN102426354A (zh) 基于加权顺序统计和多脉冲相参积累的宽带雷达检测方法
CN104865568B (zh) 基于稀疏重构的宽带雷达高速群目标分辨方法
CN105549002B (zh) 一种基于组合波形的调频连续波雷达测量方法
CN106872969B (zh) 基于mtd脉冲积累及滑动处理的雷达目标角度估计方法
CN110208785A (zh) 基于稳健稀疏分数阶傅立叶变换的雷达机动目标快速检测方法
CN104239683B (zh) 一种基于改变信号调频率的解距离—速度模糊方法
CN106249209B (zh) 一种抗速度欺骗干扰的自适应迭代估计方法
CN109061625A (zh) 一种距离速度匹配的运动目标检测方法
CN104375139B (zh) 一种基于一维集方法的脉冲多普勒雷达改进测距方法
Smith et al. High power coherent-on-receive radar for marine surveillance
Krichene et al. Compressive sensing and stretch processing
CN106342239B (zh) 一种脉冲多普勒雷达目标检测方法
CN101526609A (zh) 一种基于无线信道频域幅度响应的匹配定位方法
CN104950292A (zh) 一种气象雷达的二次回波识别方法及装置
Chen et al. WIOBSS: The Chinese low-power digital ionosonde for ionospheric backscattering detection
Struiksma et al. 2D matched filtering with time-stretching; application to orthogonal matching pursuit (OMP)
CN116719000A (zh) 双通道并行检测机载相控阵雷达地面运动目标提取方法
CN104237864B (zh) 基于匹配模糊函数的距离扩展目标检测方法
CN106646422A (zh) 增强相干测风雷达多普勒频移信号信噪比的预处理系统
CN115480220A (zh) 基于脉冲域的epc-mimo雷达抗欺骗式干扰方法
KR20150058682A (ko) 표적 속도에 따른 도플러 효과를 보상하는 고속 lfm 표적 검출 방법 및 장치
Deng et al. Doppler rate estimation on coherent sinusoidal pulse train and its Cramer–Rao lower bound
Sun et al. Doppler ambiguity resolution for multiple PRF radar using iterative adaptive approach

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130717

Termination date: 20140928

EXPY Termination of patent right or utility model