CN101974487A - 具有最高迁移效率的神经干细胞的制备方法及其应用 - Google Patents

具有最高迁移效率的神经干细胞的制备方法及其应用 Download PDF

Info

Publication number
CN101974487A
CN101974487A CN2010105424238A CN201010542423A CN101974487A CN 101974487 A CN101974487 A CN 101974487A CN 2010105424238 A CN2010105424238 A CN 2010105424238A CN 201010542423 A CN201010542423 A CN 201010542423A CN 101974487 A CN101974487 A CN 101974487A
Authority
CN
China
Prior art keywords
neural stem
stem cell
migration
cell
chemokine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010105424238A
Other languages
English (en)
Inventor
张焕相
贺丽虹
徐晓静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN2010105424238A priority Critical patent/CN101974487A/zh
Publication of CN101974487A publication Critical patent/CN101974487A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本发明属于生物制品领域,公开了一种具有最高迁移效率的神经干细胞的制备方法,包括以下步骤:(1)分离培养神经干细胞,诱导分化,在分化的不同时段收集细胞,得到处于不同分化状态的神经干细胞;(2)确定迁移区域趋化因子情况,所述趋化因子情况包括趋化因子的种类和浓度,分析计算步骤(1)所得不同分化状态神经干细胞对该趋化因子情况作用下的迁移效率,找到迁移效率最高的神经干细胞的分化状态,由此即可制备得到对该迁移区域所需的具有最高迁移效率的神经干细胞。本发明所述神经干细胞,可以针对不同情况的病灶区提供最佳迁移效率的神经干细胞,增加迁移到病灶区的神经干细胞,改善治疗效果,为干细胞移植治疗提供了最根本的保障。

Description

具有最高迁移效率的神经干细胞的制备方法及其应用
技术领域
本发明属于生物制品领域,具体涉及一种具有最高迁移效率的神经干细胞的制备方法及其治疗各种神经系统疾病、运动系统疾病、心血管系统疾病的应用。
背景技术
长期以来,神经系统疾病包括帕金森病、Alzheimer’s病、脑卒中、恶性神经胶质瘤及中枢和外周神经损伤等缺乏有效的治疗方法,严重影响着人类的生命健康和生活质量。临床上对中枢和外周神经系统损伤治疗的常规方法主要是以减少或防止继发性损伤为主,基本上没有治愈的可能。自从20世纪90年代神经干细胞被发现以来,人们对其寄予厚望,希望能在神经系统康复方面有重大突破,从而掀起了神经干细胞研究热潮。随着实验室研究的深入,人们对神经干细胞的自我更新、自我复制、永生化的特性认识越来越深,并且对于神经干细胞的提取、培养、纯化、诱导等方面都积累了丰富的经验,为临床应用奠定了深厚的基础。
从理论上讲,神经干细胞移植可应用于各种神经系统疾病的治疗,包括神经系统损伤、坏死性疾病、退行性疾病、遗传代谢性疾病、肿瘤等。现临床开展的神经干细胞移植已经应用于帕金森病、脱髓鞘病变和脑、脊髓损伤的治疗。神经干细胞移植疗效取决于与宿主神经系统在结构和功能上的整合性。神经干细胞天生具有向脑损伤区域趋化性迁移的能力。Gao等(2006)研究发现,在受损伤的发育期脑内,移植的神经干细胞向损伤部位移行并替代缺失的细胞,这为治疗中枢神经损伤后引起的广泛神经元受损提供了理论依据,借助它们的迁移能力,可以避免多点移植带来的副损伤。并且,神经干细胞移植后可定位分化为功能细胞,替代补充缺失细胞的结构和功能,释放神经递质、产生神经营养因子等,促进病损神经组织再生和抑制神经变性。原代、永生化及胚胎干细胞来源的神经干细胞也可以趋向性迁移至脑胶质瘤、恶性黑色素瘤、髓母细胞瘤和成神经细胞瘤等肿瘤区域,从而使之成为基因工程药物的载体靶向性攻击肿瘤细胞,肿瘤细胞分泌的多种炎症趋化因子和生长因子介导了神经干细胞的这种趋向性迁移。
虽然干细胞移植取得了一定的临床效果,但治疗后与正常人仍有较大的差异。其中很重要的一个原因是由于移植的干细胞须由移植部位迁移到受损伤部位,且迁移到损伤部位的细胞数量要足够多并且要同时分化为神经元才能起到明显的修复效果。如果干细胞的迁移效率低、迁移细胞数量少或者分化效率低都会极大地影响修复效果。而目前临床上的细胞移植往往是将未知状态的神经干细胞注射入体内,在治疗周期完成后,真正迁移到病灶部位的细胞十分有限,其中真正分化为神经元并行使功能的细胞更为稀少。这使得神经干细胞在临床应用上遇到了一个瓶颈。
发明内容
本发明目的是提供一种具有最高迁移效率的神经干细胞的制备方法,以提高神经干细胞的迁移效率,增加迁移到病灶部位的神经干细胞数量。
为达到上述目的,本发明采用的技术方案是:一种具有最高迁移效率的神经干细胞的制备方法,包括以下步骤:
Figure 2010105424238100002DEST_PATH_IMAGE001
分离培养神经干细胞,诱导分化,在分化的不同时段收集细胞,得到处于不同分化状态的神经干细胞;
Figure 321314DEST_PATH_IMAGE002
确定迁移区域趋化因子情况,所述趋化因子情况包括趋化因子的种类和浓度,分析计算步骤
Figure 564207DEST_PATH_IMAGE001
所得不同分化状态神经干细胞对该趋化因子情况作用下的迁移效率,找到迁移效率最高的神经干细胞的分化状态,由此即可制备得到对该迁移区域所需的具有最高迁移效率的神经干细胞。
上述技术方案中,步骤
Figure 242051DEST_PATH_IMAGE001
所述神经干细胞的体外培养,分化的方法为本领域技术人员公知的现有技术。
上述技术方案中,步骤
Figure 517175DEST_PATH_IMAGE002
中,所述迁移区域为目的病灶区域,迁移区域趋化因子情况一般指病灶区域的趋化因子的种类和浓度;优选的技术方案中,可以向病灶区域补充趋化因子,更好地诱导移植的神经干细胞趋向性迁移到病灶部位,提高治疗效果,所述补充趋化因子的方法为本领域技术人员惯用手段。其中,测定目标病灶区的趋化因子的种类和浓度为本领域技术人员公知的现有技术,例如:临床上测定病人体内诱导干细胞迁移的细胞因子的含量的方法为:采集病人血液样品,经夹心酶联免疫吸附试验(Sandwich ELISA)法测定即可(参见:A. Morita等. 临床化学学报(Clinica Chimica Acta) 322 (2002) 67-75; S.V. Maru等. 神经免疫学杂志(Journal of Neuroimmunology) 199(2008) 35-45)。
上述技术方案中,步骤
Figure 973695DEST_PATH_IMAGE002
所述迁移效率,是指细胞迁移起始点到终点的最短距离与细胞迁移总距离的比值,数值越大表明迁移的持续性越高,定向迁移至病灶部位的能力越强;测定神经干细胞的迁移效率的方法可选自但不限于:运用Dunn chamber 测定干细胞的迁移效率(参见:Zhang 等. 细胞生物学杂志(The Journal of Cell Biology) 163 (2003) 1375-1384)。
上述技术方案中,步骤 具体包括以下步骤:确定迁移区域趋化因子情况,所述趋化因子情况包括趋化因子的种类和浓度,在分化培养基中加入与迁移区域相同种类、相同浓度的趋化因子,诱导细胞迁移;对细胞的定向迁移效率进行分析,找到对迁移区域具有最高迁移效率的神经干细胞的分化状态,所述分化状态的神经干细胞即为该迁移区域所需的具有最高迁移效率的神经干细胞。
上述技术方案中,所述的神经干细胞来源于人、动物(包括猿、猴、猪、大鼠、小鼠、兔等)的胚胎或成体脑组织、脐带血、实施癫痫病灶切除或外伤手术的患者的脑组织、经过基因工程修饰或其他经过人工改造的神经干细胞或神经干细胞系;在完全培养液中培养3-6 d开始诱导分化。
上述技术方案中,制备处于不同的分化状态的神经干细胞的方法为:在完全培养液中培养3-6 d的神经干细胞,细胞汇合度达到50-90%左右时,吸掉完全培养液,更换为分化培养基(H-DMEM+0.1-1% FCS,或撤掉bFGF的完全培养基),从更换分化培养基开始,不同时间段取样即得到不同分化状态的神经干细胞。
上述技术方案中,所述神经干细胞迁移效率的分析方法为:运用邓恩室(Dunnchamber),结合活细胞工作站(LeicaAF6000,Germany)对单个细胞的迁移行为进行追踪,使用ImageJ软件分析神经干细胞迁移的具体轨迹,计算干细胞的迁移效率,即从细胞迁移起始点到终点的最短距离与细胞迁移总距离的比值。
上述技术方案中,所述趋化因子为诱导神经干细胞趋向性迁移的因子,包括所有能够引起不同分化状态的神经干细胞定向迁移的炎症趋化因子和细胞生长因子,如SDF、TPO、G-CSF、bFGF、EGF、PDGF、EGF、BDNF、LIF、VEGF、SCF、HGF、NGF、TGF-β、TNF-α、IL-1、IL-6、IL-7、IL-8、IL-11、IL-12、IL-14、IL-15等。
所述具有最高迁移效率的神经干细胞可以结合组织工程材料再应用于临床移植。通过体外培养、诱导得到不同分化状态的神经干细胞,结合或不结合趋化因子,应用于组织工程材料上再移植;或将神经干细胞与组织工程材料共培养,结合或不结合趋化因子,以取得最佳迁移状态的神经干细胞,再用于移植。
采用上述技术方案所得的具有最佳迁移效率的神经干细胞的临床适用范围包括各种神经系统疾病(帕金森病、阿尔海默兹病、中枢神经系统损伤、外周神经系统损伤、脑卒中、恶性胶质瘤、脑出血后遗症、老年性痴呆)、运动系统疾病(运动神经元病、共济失调)、心血管系统(缺血性心脏病)、视神经发育不全、视神经萎缩等。
采用上述技术方案所得的具有最佳迁移效率的神经干细胞可以通过注射或其它途径应用于临床移植治疗,注射方式包括:肌肉注射、血液(静脉、动脉)注射、局部定点注射、脑脊液注射、立体定位注射法(病灶近端、远端)、腰穿细胞悬液注射法、静脉内细胞悬液输入法等。
因此,本发明同时要求保护一种治疗神经系统疾病、运动系统疾病、心血管系统疾病的药物,所述药物包括:采用上述技术方案所得的神经干细胞;优选的技术方案中,还包括趋化因子。
本发明同时要求保护一种治疗神经系统疾病、运动系统疾病、心血管系统疾病的药物载体,所述药物载体包括:采用上述技术方案所得的神经干细胞;优选的技术方案中,还包括趋化因子。
所述趋化因子为诱导神经干细胞趋向性迁移的因子,选自:所有能够引起不同分化状态的神经干细胞定向迁移的炎症趋化因子或细胞生长因子中的一种或两种以上的混合物。
上述技术方案中,所述趋化因子包括:SDF、TPO、G-CSF、bFGF、EGF、PDGF、EGF、BDNF、LIF、VEGF、SCF、HGF、NGF、TGF-β、TNF-α、IL-1、IL-6、IL-7、IL-8、IL-11、IL-12、IL-14、IL-15等。
本发明的思路是:发明人创造性的研究发现,不同分化状态的神经干细胞的趋向性迁移能力不同。未分化的神经干细胞往往具有较强的向损伤部位迁移的能力,但是这种细胞的定向分化能力差,可以不定向的分化为神经元或者胶质细胞,消减了临床治疗的效果。成熟的神经元迁移能力很弱,但它们却可以为组织损伤提供替代的功能细胞。因此只有在这两者中找到最适合的平衡点才能更好的使用细胞移植治疗神经系统疾病。另外,不同分化状态的神经干细胞对各种趋化因子的应答强弱不同,表现为趋向性迁移能力,尤其是迁移效率的差异。所谓迁移效率,是指细胞迁移起始点到终点的最短距离与细胞迁移总距离的比值,数值越大表明迁移的持续性越高,定向迁移至病灶部位的能力越强。因此,如果利用具有最高迁移效率的神经干细胞进行临床移植,那么定向迁移到病灶部位的神经干细胞数无疑会大大增加,从而提高治疗效果。鉴于临床上神经系统疾病和神经损伤的复杂性、多样性及病灶部位所分泌细胞因子的种类和含量的多样性,用于移植的神经干细胞的分化状态也应是不同的,但所要达到的临床效果都是相同的,那就是所移植的神经干细胞群体具有最高的迁移效率,能够高效地迁移到病灶部位,提高治疗效果。
因此,本发明根据目标病灶部位的趋化因子的具体情况,包括趋化因子的浓度和种类,测定该情况下不同分化程度的神经干细胞的迁移效率,选出迁移效率最佳的分化状态的神经干细胞。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:
利用本发明建立的方法制备得到的神经干细胞,处于特定的分化状态且具有最佳的趋化性迁移效率(针对目的病灶区的趋化因子的情况:种类、浓度),解决了困扰神经干细胞临床应用的主要问题,可以针对不同情况的病灶区提供最佳迁移效率的神经干细胞,增加迁移到病灶区的神经干细胞,改善治疗效果,为干细胞移植治疗提供了最根本的保障。
附图说明
图1为实施例一种神经干细胞在PLL(A、C、E,分别培养3 d、4 d、6 d)和Matrigel (B、D、F,分别培养3 d、4 d、6 d)包被的培养皿上贴壁生长的形态;其中,比例条(Bar)=50 μm;
图2为实施例一中神经干细胞分化潜能的免疫荧光鉴定。A 在Matrigel贴壁培养第5 d的神经干细胞;B 诱导分化48 h的神经干细胞;C神经干细胞Nestin免疫荧光鉴定;D、E、F 神经干细胞诱导分化48 h的GFAP和Tuj1免疫荧光鉴定;其中,比例条(Bar)=50 μm;
图3为实施例一中神经干细胞在H-DMEM+1% FCS分化培养基中诱导分化0~48 h的形态学观察;其中,比例条(Bar)=50 μm;
图4为实施例一中神经干细胞在C6 conditioned medium+1% FCS分化培养基中诱导分化0~48 h的形态学观察;其中,比例条(Bar)=50 μm;
图5 为实施例一中Dunn chamber示意图,其中,B中白色箭头所指方向为外槽方向;
图6为实施例一中不同分化状态神经干细胞的迁移行为观察(分化培养基为H-DMEM+1% FCS),其中A为单个神经干细胞在不同分化阶段(0~12 h)的形态学照片 (*);B为5个神经干细胞在分化0~4 h内的非定向迁移路径,每个细胞的迁移起始点都被标准化为X、Y轴的交叉点 (0, 0) ;其中,比例条(Bar)=50 μm;
图7为实施例一中不同分化状态神经干细胞的迁移效率,其中A实线为细胞迁移的实际路径,虚线为迁移起点和终点的距离,迁移效率FMI为二者的比值;B为不同分化状态神经干细胞的迁移效率(mean±SE,来自至少三次独立实验,* P<0.05);
图8为实施例二中C6胶质瘤细胞培养及条件培养基的收集;其中,A为C6胶质瘤细胞1:5传代后第1 d的形态;B为C6细胞融合度达到60%,收集条件培养基前细胞形态;C为更换为H-DMEM,24 h后收集C6条件培养基时C6的细胞形态;其中,比例条(Bar)=50 μm;
图9为实施例三中不同分化状态的神经干细胞对不同浓度SDF-1α的趋化性迁移效率(mean±SE,来自至少三次独立实验,* P<0.05);
图10为实施例四中不同分化状态的神经干细胞对不同浓度SCF-1的趋化性迁移效率;其中,A为实线为细胞迁移的实际路径,虚线为迁移起点和终点的距离,迁移效率FMI为二者的比值;B为不同分化状态NSCs的迁移效率(mean±SE,来自至少三次独立实验,*P<0.05);
图11为实施例五中不同分化阶段C17.2细胞系的免疫荧光染色结果;Nestin:神经干细胞特异性标志物,绿色荧光;β-Ⅲ tubulin:早期神经元标志物,绿色荧光;A2B5:神经胶质细胞标志物,绿色荧光;GFAP:星形胶质细胞标志物,绿色荧光;比例尺(Bar)=50 μm;
图12为实施例五中不同分化状态的C17.2细胞对50 ng/ml VEGF的趋向性迁移效率;以0 d、不添加VEGF的分化培养基为对照组;* P<0.05 (与对照组相比较),** P<0.05 (与分化0d和12 h相比较);
图13为实施例六中不同分化状态的C17.2细胞对50 ng/ml HGF的趋向性迁移效率;以不添加HGF的分化培养基为对照组;* P<0.05 (与对照组相比较)。
具体实施方式
下面结合附图及实施例对本发明作进一步描述:
实施例一:
1 神经干细胞的分离、培养与鉴定
1.1 神经干细胞完全培养液:含有20 ng/ml bFGF、2 mmol/L N-acetyl-cysteine、2 mmol/L L-glutamate,1 mmol/L sodium pyruvate、2% B27、1% penicillin–streptomycin的Neurobasal medium。
 1.2神经干细胞的分离、培养:
取新生48 h内的SD大鼠,75%酒精擦拭消毒后断头处死。剪开头部皮肤,外撕,然后剪破颅骨,用眼科镊沿大脑前方夹断视神经,小心取出大脑置于90 mm塑料培养皿预冷的无菌D-Hank’s液中。半球正面朝上。用薄的手术刀片垂直于皿底方向切取,然后用脑膜镊在解剖显微镜下分离得到SVZ区域,置于预冷的9 ml D-Hank’s中,按照10 μl/大脑的比例加入0.25%的胰酶细胞消化液 (Trypsin-EDTA),缓慢吹打均匀后置于37℃培养箱中消化15 min。消化的同时,在10 ml离心管内配制22%的Percoll即7.8 ml的D-Hank’s内加入2.2 ml Percoll,1730 rpm 离心10 min。随后加入1 ml的胎牛血清(fetal calf serum, FCS)缓慢吹打均匀终止消化,800 rpm 离心8 min,弃上清,用1 ml D-Hanks重悬后加入到22%的Percoll液的顶部,1730 rpm离心10 min,弃上清。再使用Neurobasal medium,800 rpm,8 min离心三次,弃上清。用Neurobasal medium制成单细胞悬液,血球计数板计数,以3×10 5 /dish的密度接种到含有完全培养液的35 mm dish中,置于37℃、5% CO 2 培养箱培养。35 mm dish预先使用Matrigel进行包被,Matrigel提前置于4℃冰箱内冰上过夜,使用前用Neurobasal medium按照1:500稀释Matrigel,1.5 ml/dish室温包被2 h。接种细胞前吸掉包被液,并用Neurobasal medium清洗一遍,随后加上2 ml/dish完全培养液。取第3~6 d细胞诱导分化,并观察分化后的细胞,得图1。
 1.3神经干细胞的鉴定:将贴壁培养的神经干细胞培养液吸出后,0.01 M PBS (pH7.2) 洗两次,每次5-10 min。吸去PBS,加入4%多聚甲醛,4℃冰箱固定过夜。吸去4%多聚甲醛,PBS洗三次,每次5-10 min。滴加用PBS + NaN (0.02%)+BSA(3%)+TritonX-100(0.2%)mouseanti-NestinIgG(1:200),4℃冰箱固定过夜后PBS洗三次,每次5-10min,加入1μMH33258室温孵育5min,PBS洗两次,共5min,最后50%缓冲甘油(PBS配制)封片,荧光显微镜下观察阳性细胞。阴性对照采用PBS代替一抗,结果阴性。
正常培养第3~7 d时,吸去完全培养液,PBS洗两遍,加入含有0.1-1% FCS的H-DMEM培养基,培养48 h后,分别使用mouse anti-GFAP (1:1000)和Tuj1 (1:500)鉴定NSCs分化为神经元和星形胶质细胞的能力。PBS洗两遍,每次5-10 min。4%多聚甲醛室温固定2 h,然后PBS洗三次,每次5-10min。滴加用PBS + NaN3 (0.02%) + BSA (3%) + Triton X-100 (0.2%)稀释的mouse anti-GFAP IgG (1:1000)或mouse anti- Tuj1 (1:500),4℃冰箱固定过夜后PBS洗三遍,每次5-10min。加入FITC标记山羊抗鼠二抗或PE标记的山羊抗兔二抗。室温孵育5-10 min,PBS洗两次,每次5-10 min,最后使用50%缓冲甘油(PBS配制)封片,荧光显微镜下观察,得图2。
 2不同分化状态神经干细胞的准备
分化培养基:H-DMEM+0.1-1% FCS;或撤去bFGF的完全培养基
将原代NSCs接种于预先包被好Matrigel含有完全生长培养基的培养皿中,待第3~6 d,细胞融合度达到50-90% 左右时,吸掉培养皿中的培养液,使用预热至37℃的PBS缓冲液清洗培养皿2次,然后更换为分化培养基,置于37℃培养箱中。从更换分化培养基开始,每12 h为一个分化时间段,不同分化时段的神经干细胞处于不同的分化状态。持续48 h,就可以得到4批处于不同分化状态的神经干细胞群体,观察其形态得图3;
按照上述步骤,不同的是分化培养基为C6 conditioned medium+1% FCS分化培养基,同样制备不同分化状态的干细胞,从更换分化培养基开始,每12 h为一个分化时间段,不同分化时段的神经干细胞处于不同的分化状态。持续48 h,就可以得到4批处于不同分化状态的神经干细胞群体,观察其形态得图4。
 3不同分化状态神经干细胞迁移效率的分析
运用Dunn chamber 分析不同分化状态的神经干细胞的趋化性迁移能力。Dunn chamber 反映个体细胞的趋向性迁移速率与效率。
在Dunn chamber (参见图5)的外槽中加入趋化因子,在内槽中加入含1% FCS的H-DMEM进行诱导分化。将长有神经干细胞的盖片细胞面朝下盖在桥的正上方,并使盖玻片的一端盖住桥而不盖住外槽,用工业凡士林封住盖片的三面。用吸水纸吸出外槽的液体后加入趋化因子,工业凡士林封口。用Leica AF6000活细胞工作站(Germany)对桥上细胞的迁移行为进行跟踪观察,每5 min拍摄一次,4 h为一个拍摄周期。
使用Image J软件分析NSCs迁移的具体轨迹(参见图6,B),计算从细胞迁移起始点到终点的最短距离与细胞迁移总距离的比值,即为细胞的迁移效率,如图7 A,它反映细胞迁移持续性的高低,数值越大表明迁移的持续性越高。
实验数据和统计量化图由SYSTAT SigmaPlot 和SYSTAT SigmaStat计算并绘制,计量资料以均数±标准误(mean±SE)表示,P<0.05认为有显著性差异。
 4不同迁移能力神经干细胞的制备
根据Dunn chamber的分析结果,确定针对某一种细胞因子在某一浓度时具有最高迁移效率的神经干细胞的分化状态。按前述方法制备该分化状态的神经干细胞,即可得到针对该因子在该浓度时具有最高迁移效率的神经干细胞群体。由此,可为临床移植提供特定状态具有最高迁移效率的神经干细胞种子。
实施例二,不同分化状态的神经干细胞对大鼠C6神经胶质瘤细胞条件培养基的趋向性迁移效率
神经胶质瘤细胞可以释放多种炎症趋化因子和生长因子,如基质细胞衍生因子SDF-1α(stromal cell-derived factor-1α),干细胞生长因子SCF-1(stem cell factor-1),单核细胞趋化蛋白MCP-1(monocyte chemoattractant protein-1)。这些因子可以诱导神经干细胞定向迁移至肿瘤细胞所在区域。本实施例分析了不同分化状态的神经干细胞对C6 胶质瘤细胞系制备的条件培养基及趋化因子SDF-1α趋化性迁移效率。
 1.研究方法
1.1 不同分化状态神经干细胞的制备见实施例一。
 1.2 C6条件培养基的收集:采用大鼠的C6胶质瘤细胞系,用含10%小牛血清的H-DMEM培养基培养。当C6细胞融合度达到约60%左右时(图8),吸掉培养瓶里的培养基,使用PBS洗2~3次,随后加入H-DMEM,铺满培养瓶底部即可,置于37℃培养箱。培养24 h后(图8 C),吸出培液,300 r/min,3 min离心,将上清全部转移至新离心管中即可。为了保证所收集的C6条件培养基中所含因子的活力,每次实验之前收集新鲜的条件培养基。
 1.3 Dunn chamber:分析不同分化状态的单个神经干细胞对C6条件培养基的趋化性迁移行为。取生长第4~5 d的NSCs,吸去完全培养液,PBS洗两遍,更换为含1% FCS的预先收集好的C6条件培养基,以H-DMEM+1% FCS分化诱导液和NSCs完全培养液为对照组。Dunn chamber的使用方法和实验结果的统计同实施例一。
 2.研究结果
如图7B所示,使用含1% FCS的C6胶质瘤细胞条件培养基分化的NSCs与使用含1% FCS的H-DMEM分化培养基相比,在分化的0~36 h内迁移效率无显著性差异(P>0.05),但在分化的36~44 h内则存在显著性差异(P<0.05),表明分化36~44 h的神经干细胞对C6胶质瘤细胞条件培养基的趋向性迁移效率最高。
实施例三:不同分化状态的神经干细胞对SDF-1α的趋化性迁移效率
基质细胞衍生因子SDF-1α (stromal cell-derived factor)是由骨髓基质细胞产生的CXC型趋化因子。在缺血的脑组织、心肌组织、肢体肌肉组织中,趋化因子SDF-1α明显升高,促使成体干细胞定向迁移至病灶内,加速受损组织的修复再生。
 1.研究方法
1.1 不同分化状态神经干细胞的制备见实施例一。
 1.2 Dunn chamber:分析不同分化状态的单个神经干细胞对SDF-1α的趋化性迁移行为。取生长第4~5 d的NSCs,吸去完全培养液,PBS洗两遍,更换为含1% FCS的H-DMEM分化诱导液,每次分别加入5 ng/ml、20 ng/ml和80 ng/ml的SDF-1α,以H-DMEM+1% FCS分化诱导液和NSCs完全培养液为对照组。Dunn chamber的使用方法和实验结果的统计同实施例一。
 2.研究结果
如图9所示,不同分化状态的神经干细胞对SDF-1α表现出显著的趋向性迁移,迁移效率随分化状态及SDF-1α的浓度不同而有显著差异。对于5 ng/ml 的SDF-1α,分化16~20 h NSCs的迁移效率达到最高。对于20 ng/ml 的SDF-1α,分化0~4 h NSCs的迁移效率达到最高。对于80 ng/ml的 SDF-1α,分化28~32 h NSCs的迁移效率达到最高。
实施例四:不同分化状态神经干细胞对SCF-1的趋化性迁移效率
干细胞生长因子SCF-1(stem cell factor-1)是胶质瘤细胞系和脑损伤区域的神经元中过表达的一种细胞因子,能够诱导神经干细胞产生趋化性迁移。
 1.研究方法
1.1 不同分化状态神经干细胞的制备方法见实施例一。
 1.2 Dunn chamber:分析不同分化状态的单个神经干细胞对SCF-1的趋化性迁移行为。取生长第4~5 d的NSCs,吸去完全培养液,PBS洗两遍,更换为含1% FCS的H-DMEM分化诱导液,每次分别加入5 ng/ml、25 ng/ml的SCF-1,以H-DMEM+1% FCS分化诱导液和NSCs完全培养液为对照组。Dunn chamber的使用方法和实验结果的统计同实施例一。
 2.研究结果
如图10所示,在分化的0~36 h内NSCs对5 ng/ml、25 ng/ml的SCF的趋向性迁移效率均显著高于对照组(P<0.05)。在分化的36-48 h内,神经干细胞对5 ng/ml SCF的迁移效率下降且与对照组没有显著差异,而对25 ng/ml SCF的趋向性迁移效率则达到0.5,显著高于5 ng/ml浓度组和对照组(P<0.05)。可见,对于5 ng/ml SCF,分化28-32 h的神经干细胞的迁移效率最高;对于25 ng/ml SCF,分化44-48 h的神经干细胞的迁移效率最高。
实施例五:不同分化状态的神经干细胞系C17.2对VEGF的趋化性迁移效率
VEGF(vascular endothelial growth factor),即血管内皮生长因子,具有调节神经干细胞迁移的作用。本实施例考察了不同分化状态的神经干细胞系C17.2对VEGF的趋向性迁移效率。
 1.研究方法
1.1 不同分化状态C17.2的制备
C17.2神经干细胞系的传代培养:采用含有10% FCS和5% HS的H-DMEM/F12完全生长培养基,在37℃、5% CO 2 培养箱中培养2~3 d,待细胞汇合度达到80%时可按照1:2~1:10的比例进行传代,最大不超过1:10。传代时采用0.05%的胰酶(Trypsin-EDTA solution)消化,显微镜下观察细胞即将脱落时吸掉酶液,加入2 ml 完全生长培养基终止消化并重悬细胞,将细胞悬液分别转移至5个预先加有完全生长培养基的新培养瓶中,轻轻摇晃均匀,按上述方法培养并传代。
鉴定:待细胞汇合度达到70%时,使用神经干细胞特异性抗体Nestin进行免疫荧光染色,鉴定其是否对Nestin具备免疫阳性。
诱导分化:细胞接种24h后,待细胞汇合度达到70%时吸掉原有的完全生长培养基,加入PBS洗2~3遍,更换为含1% N2的DMEM/F12分化培养基,置于37℃、5% CO 2 培养箱中培养。取分化0 h、12 h、1 d、3 d的细胞进行形态学和免疫荧光染色观察,及趋化性迁移实验。
 1.2 Dunn chamber:分析不同分化状态的单个C17.2神经干细胞系对VEGF的趋化性迁移行为。取接种1 d的C17.2细胞,吸去完全培养液,PBS洗两遍,更换为含1% N2的DMEM/F12分化培养基,并加入50 ng/ml的VEGF,以不添加VEGF的分化培养基为对照。Dunn chamber的使用方法和实验结果的统计同实施例一。
 2.研究结果
2.1 不同分化状态C17.2细胞的形态学观察
如图11所示,未分化的C17.2细胞呈圆形或成纤维细胞状,全部表达神经干细胞特异性标志物nestin,但不表达早期神经元标志物β-Ⅲ tubulin 、神经胶质细胞标志物A2B5、星形胶质细胞标志物GFAP 及成熟神经元标志物NSE。诱导12 h,β-Ⅲ tubulin和A2B5阳性细胞开始出现。诱导1 d,GFAP阳性细胞开始出现,细胞形态呈扁平或有较长突触的两极状态。随着分化时间的推移,Nestin阳性细胞数下降,而β-Ⅲ tubulin、A2B5、GFAP阳性细胞数增加。分化3 d,绝大多数细胞为β-Ⅲ tubulin、A2B5、GFAP阳性,极少数呈nestin阳性,没有细胞表达成熟神经元标志物NSE。结果表明,我们实验中所使用的C17.2神经干细胞系大多处于成神经分化的早期阶段,所以不表达成熟神经元标志物。
 2.2不同分化状态C17.2细胞对VEGF的趋向性迁移效率
如图12所示,分化0 d、12 h、1 d的C17.2细胞对50 ng/ml的VEGF表现出显著的趋向性迁移,其趋向性迁移效率在分化1 d时达到最高,随着分化时间的推移,细胞的迁移效率下降。可见,对于50 ng/ml的VEGF,分化1 d的C17.2细胞的趋向性迁移效率最高。
实施例六:不同分化状态的神经干细胞系C17.2对HGF的趋化性迁移效率
HGF(Hepatocyte growth factor),即肝细胞生长因子,具有调节神经干细胞迁移的作用。本实施例考察了不同分化状态的神经干细胞系C17.2对HGF的趋向性迁移效率。
 1.研究方法
1.1 不同分化状态C17.2的制备,同实施例五。
 1.2 Dunn chamber:分析不同分化状态的单个C17.2神经干细胞系对HGF的趋化性迁移行为。取接种1 d的C17.2细胞,吸去完全培养液,PBS洗两遍,更换为含1% N2的DMEM/F12分化培养基,并加入50 ng/ml的HGF,以不添加HGF的分化培养基为对照。Dunn chamber的使用方法和实验结果的统计同发明实施例一。
 2.研究结果
如图13所示,分化0 d、12 h、1 d的C17.2细胞对50 ng/ml的HGF表现出显著的趋向性迁移,其趋向性迁移效率在分化12 h时达到最高,随着分化时间的推移,细胞的迁移效率显著下降。可见,对于50 ng/ml的HGF,分化12 h的C17.2细胞的趋向性迁移效率最高。

Claims (10)

1.一种具有最高迁移效率的神经干细胞的制备方法,其特征在于,包括以下步骤:
Figure 2010105424238100001DEST_PATH_IMAGE001
分离培养神经干细胞,诱导分化,在分化的不同时段收集细胞,得到处于不同分化状态的神经干细胞;
Figure 761355DEST_PATH_IMAGE002
确定迁移区域趋化因子情况,所述趋化因子情况包括趋化因子的种类和浓度,分析计算步骤所得不同分化状态神经干细胞对该趋化因子情况作用下的迁移效率,找到迁移效率最高的神经干细胞的分化状态,由此即可制备得到对该迁移区域所需的具有最高迁移效率的神经干细胞。
2.根据权利要求1所述制备方法,其特征在于,步骤
Figure 151196DEST_PATH_IMAGE002
所述迁移效率,是指细胞迁移起始点到终点的最短距离与细胞迁移总距离的比值,数值越大表明迁移的持续性越高,定向迁移至病灶部位的能力越强。
3.根据权利要求1所述制备方法,其特征在于,步骤
Figure 985160DEST_PATH_IMAGE002
具体包括以下步骤:确定迁移区域趋化因子情况,所述趋化因子情况包括趋化因子的种类和浓度,在分化培养基中加入与迁移区域相同种类、相同浓度的趋化因子,诱导细胞迁移;对细胞的定向迁移效率进行分析,找到对迁移区域具有最高迁移效率的神经干细胞的分化状态,所述分化状态的神经干细胞即为该迁移区域所需的具有最高迁移效率的神经干细胞。
4.根据权利要求1所述制备方法,其特征在于,步骤
Figure 935798DEST_PATH_IMAGE001
中制备处于不同的分化状态的神经干细胞的方法为:在完全培养液中培养3-6 d的神经干细胞,细胞汇合度达到50-90%左右时,吸掉完全培养液,更换为分化培养基,从更换分化培养基开始,不同时间段取样即得到不同分化状态的神经干细胞。
5.根据权利要求1所述制备方法,其特征在于,所述神经干细胞迁移效率的分析方法为:运用邓恩室,结合活细胞工作站对单个细胞的迁移行为进行追踪,分析神经干细胞迁移的具体轨迹,计算干细胞的迁移效率,即从细胞迁移起始点到终点的最短距离与细胞迁移总距离的比值。
6.根据权利要求1所述制备方法,其特征在于,所述趋化因子为诱导神经干细胞趋向性迁移的因子,包括所有能够引起不同分化状态的神经干细胞定向迁移的炎症趋化因子和细胞生长因子。
7.一种治疗神经系统疾病、运动系统疾病、心血管系统疾病的药物,其特征在于,所述药物包括:采用权利要求1所述制备方法所得的神经干细胞。
8.根据权利要求7所述药物,其特征在于,还包括趋化因子。
9.一种治疗神经系统疾病、运动系统疾病、心血管系统疾病的药物载体,其特征在于,所述药物载体包括:采用权利要求1所述制备方法所得的神经干细胞。
10.根据权利要求9所述药物载体,其特征在于,还包括趋化因子。
CN2010105424238A 2010-11-12 2010-11-12 具有最高迁移效率的神经干细胞的制备方法及其应用 Pending CN101974487A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105424238A CN101974487A (zh) 2010-11-12 2010-11-12 具有最高迁移效率的神经干细胞的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105424238A CN101974487A (zh) 2010-11-12 2010-11-12 具有最高迁移效率的神经干细胞的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN101974487A true CN101974487A (zh) 2011-02-16

Family

ID=43574395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105424238A Pending CN101974487A (zh) 2010-11-12 2010-11-12 具有最高迁移效率的神经干细胞的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN101974487A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108076642A (zh) * 2015-05-08 2018-05-25 威尔逊沃夫制造公司 改进的用于测试的培养方法和装置
CN109402050A (zh) * 2018-11-09 2019-03-01 沈阳中心血站 一种无血清成分的高效间充质干细胞培养液

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《中国优秀硕士学位论文全文数据库 医药卫生科技辑》 20090915 苏军 胶质瘤对NSCs不同分化状态下迁移能力的影响 E072-252 , 第 09 期 2 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108076642A (zh) * 2015-05-08 2018-05-25 威尔逊沃夫制造公司 改进的用于测试的培养方法和装置
US11613725B2 (en) 2015-05-08 2023-03-28 Wilson Wolf Manufacturing Culture methods and devices for testing
US11891595B2 (en) 2015-05-08 2024-02-06 Wilson Wolf Manufacturing Llc Culture methods and devices for testing
CN109402050A (zh) * 2018-11-09 2019-03-01 沈阳中心血站 一种无血清成分的高效间充质干细胞培养液

Similar Documents

Publication Publication Date Title
CN104726406B (zh) 一种诱导牙髓间充质干细胞分化为神经细胞的方法
CN105861430A (zh) 一种外泌体、外泌体的制备方法及其在制备治疗脓毒症药物或者制剂中的应用
CN101748096A (zh) 亚全能干细胞、其制备方法及其用途
CN103191154B (zh) 充质干细胞及其提取方法在制备银屑病的药物中的应用
CN106754668A (zh) 一种干细胞培养液及注射液
CN109988746A (zh) 一种间充质干细胞成脂诱导分化方法
CN103087977A (zh) 一种体外高效扩增动物细胞的培养液及其用途
CN106566803A (zh) 一种培养液及其应用和培养脐带间充质干细胞的方法
CN104774808A (zh) 将脐带间充质干细胞诱导分化成γ-氨基丁酸能神经元的方法
CN103881972B (zh) 一种适用于间充质干细胞无血清培养的方法
CN103215222A (zh) 一种将人脂肪间充质干细胞诱导成神经细胞的诱导培养基及方法
CN107083359A (zh) 干细胞培养基及干细胞分离方法
CN107384864B (zh) 将脐带间充质干细胞诱导成神经干细胞的细胞培养液及其使用方法
CN101974487A (zh) 具有最高迁移效率的神经干细胞的制备方法及其应用
CN103387959A (zh) 一种乳牙干细胞及其制备方法和应用
CN103382458A (zh) 诱导间充质干细胞向肾小球系膜细胞分化的培养液及方法
CN101974485A (zh) 具有最佳迁移能力的间充质干细胞的制备方法及其应用
CN104789531A (zh) 一种将脐带间充质干细胞诱导分化成多巴胺能神经元的方法
CN102206611A (zh) 一种羊水源性神经干细胞的分离培养方法
CN106754679A (zh) 一种细胞培养基和培养羊膜间充质干细胞的方法
CN105087475B (zh) 一种细胞培养液及其应用以及诱导牙髓干细胞向神经样细胞分化的方法
CN108034634B (zh) 一种从经血中分离宫内膜间充质干细胞的方法
CN102119936B (zh) 制备利用人羊膜间充质细胞治疗缺血性脑损伤注射液的方法及其注射液
CN111733133B (zh) 一种促进表皮干细胞分化和生长的方法
CN115820540A (zh) 一种间充质干细胞内皮分化诱导剂

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110216