CN101971394A - 具有增强的质子电导率的组合物 - Google Patents

具有增强的质子电导率的组合物 Download PDF

Info

Publication number
CN101971394A
CN101971394A CN2009801089626A CN200980108962A CN101971394A CN 101971394 A CN101971394 A CN 101971394A CN 2009801089626 A CN2009801089626 A CN 2009801089626A CN 200980108962 A CN200980108962 A CN 200980108962A CN 101971394 A CN101971394 A CN 101971394A
Authority
CN
China
Prior art keywords
composition
carbon nano
polymer
ionogen
structured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801089626A
Other languages
English (en)
Inventor
V·K·皮莱
R·卡南
B·A·卡卡德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Council of Scientific and Industrial Research CSIR
Original Assignee
Council of Scientific and Industrial Research CSIR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Council of Scientific and Industrial Research CSIR filed Critical Council of Scientific and Industrial Research CSIR
Publication of CN101971394A publication Critical patent/CN101971394A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本文公开了显示出增强的质子电导率的组合物,包含至少具有含质子的可电离基团(A)的聚合物和用含质子的可电离基团(B)官能化的碳纳米结构,其中A和B相同或不同。

Description

具有增强的质子电导率的组合物
发明领域
本发明涉及显示出增强的质子电导率的包含质子传导聚合物和适当官能化的碳纳米结构的组合物。
背景技术
聚合物电解质膜(PEM)的质子电导率是限制聚合物电解质膜燃料电池(PEMFC)性能的关键因素之一。显著增强目前常用于PEMFC中的全氟磺酸基膜的质子电导率不仅是迫切需要,而且是对于本领域的非常有价值的贡献。
现有技术中存在一些改善聚合物电解质膜的质子电导率的尝试,如Zhai等人,Journal of Membrane Science 280(2006)148-155已表明可以通过保留水来提高质子电导率,Pereira等人,Chem.Mater.2008,20,1710-1718表明通过在Nafion基质中掺入介孔二氧化硅(mesoporous silica)获得了增强的性能。但是,之前没有关于使用官能化的碳纳米结构增强这类膜的质子电导率的报告。
此外,现有技术中有一些使用聚合物电解质和碳纳米结构的组合物的报告,如US 7361430,其中公开了碳纳米管(SWNT)-聚合物复合致动器(actuator)和制造这样的致动器的方法;且标题为″Photo Actuators Based on Carbon Nanotube-Nafion Composites″的WO/2006/016907公开了由有机复合材料构成的光学机械致动(actuating)材料和形成这种结构的方法。
Liu等人,Electrochemical Solid-State Letters.2006,9,A356已报导了用于燃料电池电解质应用的Nafion-碳纳米管复合材料。然而,这些复合材料没有显示出质子电导率的显著改善。
Thomassin等人,Journal of membrane science 303,2007,252-257认定:用具有羧基的多壁碳纳米管修饰的nafion膜显著降低甲醇渗透性,但只是略微降低离子电导率。
但是,这些现有技术文件都没有报告可以显著增强质子电导率的聚合物电解质与适当官能化的碳纳米结构的组合物。
本发明的目的是提供质子导电聚合物与碳纳米结构的新型组合物,其具有增强质子转运。现有技术的评述清楚地表明,磺酸膜和碳纳米结构及它们的组合、制备该膜的方法及其各种应用是已知的。WO 2006/099392公开了以各种功能对纳米材料进行官能化的方法。文献中已知具有碳纳米结构的磺酸膜在聚合物电解质燃料电池的电极中的用途。文献中也讨论了所述材料进一步增强电子转运。但是,当制备具有磺酸官能化的碳纳米结构的磺酸膜组合物时,本发明人令人惊讶地发现,质子转运有至少一个对数级的增强。
因此,在本发明中,我们公开了质子导电聚合物与适当官能化的碳纳米结构的新组合物,其显示出质子电导率的出人意料的增强。
附图说明
图1:全氟磺酸膜(Nafion 1135)和全氟磺酸与官能化的单壁碳纳米管膜在空气中以10℃/分钟的速度进行的热解重量分析。
图2:在100%相对湿度中,由自制两探针阻抗装置在1MHz至0.1Hz的范围内测定的全氟磺酸膜(Nafion 1135)和全氟磺酸与官能化的单壁碳纳米管膜的温度依赖性质子电导率。由该图可以看出,本发明的复合材料膜的质子电导率比全氟磺酸膜(Nafion 1135膜)提高一个数量级。
图3:在60℃下,全氟磺酸与官能化的单壁碳纳米管膜和全氟磺酸膜(Nafion 1135)以润湿的H2和O2获得的极化曲线。流速为0.4slpm。在测量前,电池在开路电势下适应30分钟,在0.2V下适应15分钟。这里显示了包含本发明的组合物的复合材料膜的增强的性能。相比使用全氟磺酸膜(Nafion 1135)的电池,使用本发明的复合材料膜的电池的活化损耗(activation loss)和电阻损耗较小。
图4:具有磺酸官能化的碳纳米结构材料与全氟磺酸的不同组成的复合材料膜在60℃下的电导率。
缩写:
S-SWCNT:官能化的单壁碳纳米管
MEA:膜电极装置
发明概述
因此,本发明提供了具有增强的质子电导率的组合物,包含
a.具有含质子的可电离基团(A)的聚合物,和
b.用含质子的可电离基团(B)官能化的碳纳米结构。
在本发明的一种实施方式中,聚合物可以是磺化聚合物。
在本发明的另一种实施方式中,官能化的碳纳米结构包含sp2碳。
在本发明的另一种实施方式中,官能化的碳纳米结构是单独的管、棒或微粒的形式或其组合。
在本发明的再另一实施方式中,官能化的碳纳米结构以重量计占0.01%至10%。
在本发明的再另一种实施方式中,可电离基团(A)和(B)选自磺酸基(sulphonate group)、羧基、膦酸基(phosphonate group)和胺基。
在本发明的进一步的实施方式中,可电离基团(A)和所述可电离基团(B)相同。
在本发明的一种实施方式中,可电离基团(A)和所述可电离基团(B)不同。
在本发明的另一种实施方式中,聚合物选自掺杂咪唑的磺化聚(醚酮)甲基苯、磺化聚苯并咪唑类、甲基苯磺化的聚(对苯二甲酰对苯二胺)(p-phenyleneterephthalamide)、萘型聚酰亚胺(naphthalenic polyimide)、全氟羧酸、全氟磺酸、二(全氟烷基磺酰基)酰亚胺、胺化的邻位砜(ortho-sulfone aminated)、聚砜、磺化聚(醚醚酮)、磺化聚(4-苯氧基苯甲酰基-1,4-亚苯基)和磺化聚砜。
在本发明的再另一种实施方式中,聚合物可以优选是全氟磺化的聚合物。
在本发明的另一种实施方式中,碳纳米结构上的官能团是磺酸基。
在本发明的一种实施方式中,组合物用于聚合物燃料电解质电池、氢传感器和电极中。
本文公开了显示出增强的质子电导率的组合物,其至少包含:具有含质子的可电离基团(A)的聚合物和用含质子的可电离基团(B)官能化的碳纳米结构,其中A和B相同或不同。
发明详述
根据本发明,本文公开了质子导电聚合物与适当官能化的碳纳米结构的组合物。本发明的组合物显示出增强的质子电导率。显示出增强的质子电导率的本发明的组合物至少包含:具有含质子的可电离基团(A)的聚合物和用含质子的可电离基团(B)官能化的碳纳米结构。所述聚合物是磺化聚合物,且选自掺杂咪唑的磺化聚(醚酮)甲基苯、磺化聚苯并咪唑类、甲基苯磺化的聚(对苯二甲酰对苯二胺)、萘型聚酰亚胺、全氟羧酸、全氟磺酸、二(全氟烷基磺酰基)酰亚胺、胺化的邻位砜、聚砜、磺化聚(醚醚酮)、磺化聚(4-苯氧基苯甲酰基-1,4-亚苯基)和磺化聚砜,优选全氟磺化的聚合物。聚合物中的离子基团(A)选自磺酸基、羧基、膦酸基和胺基等。离子基团A和B任选相同或不同。基团A和B优选为磺酸基。本发明的官能化的碳纳米结构包含sp2碳。
根据本发明,通过混合包含sp2碳的官能化的碳纳米结构材料和磺化聚合物的溶液来制备该组合物。碳纳米结构是单独的管、棒或微粒的形式或其组合。
在本发明的一种实施方式中,在溶剂中混合并搅拌磺酸官能化的碳纳米结构材料和全氟磺酸。所述溶剂选自N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、水和低级脂族醇。在具有磺化聚合物的官能化的单壁碳纳米结构中,官能化的碳纳米结构占0.01%至10%。
通过文献中的已知方法制备组合物。
本发明的组合物以膜为例以研究质子转运的增强。本发明的组合物的电导率经研究发现,如图2所示和本文举例说明,其相比于具有未官能化的碳纳米管的膜增强一个对数级。此外,图4显示包含具有磺酸官能化的碳纳米结构材料的不同组成的本发明组合物的膜的质子电导率。
本发明的组合物有助于实现更高的功率密度值,并有助于减少燃料电池应用中的燃料/千瓦成本。组合物中的碳纳米管改善电极-电解质界面,并增强膜的机械稳定性。
本发明的组合物可用于聚合物燃料电解质电池、水电解装置(water electrolyzer)、氢传感器和其中跨膜的质子转运增强对于获得更好的效率和更高的性能有益的类似设备中。
为了进一步说明本发明,在此提出下面的实施例。这些实施例不应该被解释为以任何方式限制本发明。
本发明的组合物以膜为例以研究质子转运的增强。
实施例
实施例1
将10毫克的碳材料添加到反应室中20mL的70%硝酸和97%硫酸水溶液的1∶1混合物中。微波功率设定为600W总功率的70%。然后使反应容器经受微波辐射5分钟。过滤由此制备的磺酸官能化的碳材料,并在真空烘箱中在70℃下干燥10小时。将这种碳材料溶解于二甲基乙酰胺中,并在60℃下与适量的Nafion的N,N-二甲基乙酰胺溶液混合,并在将其浇铸成均匀薄膜前搅拌4小时。在用于燃料电池-MEA的制造前,将这一膜用H2O2和H2SO4处理以获得质子化的形式。通过在特氟纶处理的碳布(carbon cloth)上涂刷Vulcan XC-72碳、PTFE于环己烷中的浆料,接着在350℃下韧化(annealing)半小时来制备用于电极的气体扩散层。通过在气体扩散层上涂刷20%Pt/C、Nafion和异丙醇混合物来制备催化剂层。在这一催化剂层的顶部,提供Nafion的薄涂层,然后通过热鼓风机对电极进行干燥。在120℃的温度和1吨的压制压力下,这些电极与复合材料膜单轴地进行压制。如此制备的MEA分别使用氢气和氧气作为燃料和氧化剂,通过连接到负载上进行测试以进行燃料电池极化研究。通过上述方法制备用0.05%的官能化单壁碳纳米结构与磺化聚合物制备的膜并进行测试。如图2和图4所示,相比于单独的Nafion,它显示出质子电导率的一个对数级的增强。
实施例2
在333K下,用50ml硝酸(1摩尔)氧化碳材料(大约0.50克)3小时,然后冲洗并在393K下干燥12小时,以获得酸化的碳纳米管。将这种碳材料与97%的硫酸混合,并在523K下、氮气流中搅拌18小时。冷却到室温后,用蒸馏水反复清洗产物,并在烘箱中在393K下干燥12小时以获得磺化碳纳米管。过滤如此制备的磺酸官能化的碳材料,并在70℃下在真空烘箱中干燥10小时。将这种碳材料溶解于N,N-二甲基乙酰胺中,在60℃下与适量的Nafion的二甲基乙酰胺溶液混合,并在将其浇铸成均匀薄膜电解质和如实施例1所示测试前搅拌4小时。通过上述方法制备用0.01%的官能化的单壁碳纳米结构与磺化聚合物制备的膜并进行测试。如图4所示,它显示0.003S/cm的质子电导率。
实施例3
将500毫克碳材料溶于250毫升脱水甲苯中,并加入200毫克碘和2.5克NaI。伴随搅拌,加入过量的甲烷二磺酰氯(methane disulfonic acid chloride)(1.6克)。在氩气气氛下,在室温下搅拌24至96小时。然后用大量的甲苯、乙醚和己烷冲洗未反应的杂质,获得磺酸型碳衍生物的前体。室温下在100毫升的1M NaOH溶液中搅拌这种前体1小时至30小时,以进行水解。将由此获得的溶液进行质子离子交换,获得磺酸碳纳米管衍生物。将这种碳材料溶解于二甲基乙酰胺中,在60℃下与适量的Nafion的二甲基乙酰胺溶液混合,并在将其浇铸成均匀薄膜前搅拌4小时。通过上述方法制备用0.1%和0.5%的官能化的单壁碳纳米结构与磺化聚合物制备的膜并进行测试。如图4所示,它们分别显示0.0032S/cm和0.003S/cm的质子电导率。
实施例4
将500毫克碳材料溶于250毫升脱水甲苯中,并加入200毫克碘和2.5克NaI。伴随搅拌,加入过量的甲烷二磺酸二乙酯(1.85克)。在氩气气氛下,在室温下搅拌24至96小时。然后用大量的甲苯、乙醚和己烷冲洗未反应的杂质,获得磺酸型碳衍生物的前体。室温下在100毫升的1M NaOH溶液中搅拌这种前体1小时至30小时,以进行水解。将由此获得的溶液进行质子离子交换,获得磺酸碳纳米管衍生物。将这种碳材料溶于二甲基乙酰胺中,在60℃下与适量的Nafion的二甲基乙酰胺溶液混合,并在将其浇铸成均匀薄膜前搅拌4小时。在用于燃料电池MEA的制造前,将这种膜用H2O2和H2SO4处理,以获得质子化形式的膜。通过在特氟纶处理的碳布上涂刷Vulcan XC-72碳、PTFE于环己烷中的浆料,接着在350℃下韧化半小时来制备用于电极的气体扩散层。通过在气体扩散层上涂刷20%Pt/C、Nafion和异丙醇混合物来制备催化剂层。在这一催化剂层的顶部,提供nafion的薄涂层,然后通过热鼓风机干燥电极。在120℃的温度和1吨的压制压力下,这些电极与复合材料膜单轴地压制在一起。测试由此制备的MEA以进行燃料电池极化研究。通过上述方法制备用1%的官能化单壁碳纳米结构与磺化聚合物制备的膜并进行测试。如图4所示,它显示0.0028S/cm的质子电导率。
实施例5:通过阻抗技术对质子电导率进行测量
将膜样品放置于具有内置加热器的自制两探针电池的两个不锈钢板之间。腔内的湿度为饱和的(100%RH),并在1MHz至0.1Hz的频率范围内进行实验。X轴的高频截距给出了关于膜样品的电阻率的信息。在25℃(室温)至120℃的温度范围内进行测量。如图2所示,本发明的膜显示出质子电导率一个对数级的增强。

Claims (12)

1.具有增强质子电导率的组合物,包含
a)具有含质子的可电离基团(A)的聚合物,和
b)用含质子的可电离基团(B)官能化的碳纳米结构。
2.根据权利要求1的组合物,其中,所述可电离基团(A)和(B)选自磺酸基、羧基、膦酸基和胺基。
3.根据权利要求1的组合物,其中,所述官能化的碳纳米结构包含sp2碳。
4.根据前述权利要求中的任一项的组合物,其中,所述官能化的碳纳米结构是单独的管、棒或微粒的形式或其组合。
5.根据前述权利要求中的任一项的组合物,其中,所述官能化的碳纳米结构以重量计占0.01%至10%。
6.根据前述权利要求中的任一项的组合物,其中,所述可电离基团(A)和所述可电离基团(B)相同。
7.根据权利要求1的组合物,其中,所述可电离基团(A)和所述可电离基团(B)不同。
8.根据前述权利要求中的任一项的组合物,其中,所述聚合物是磺化聚合物。
9.根据权利要求1-8中的任一项的组合物,其中,所述聚合物选自掺杂咪唑的磺化聚(醚酮)甲基苯、磺化聚苯并咪唑类、甲基苯磺化的聚(对苯二甲酰对苯二胺)、萘型聚酰亚胺、全氟羧酸、全氟磺酸、二(全氟烷基磺酰基)酰亚胺、胺化的邻位砜、聚砜、磺化聚(醚醚酮)、磺化聚(4-苯氧基苯甲酰基-1,4-亚苯基)和磺化聚砜。
10.根据权利要求1-9中的任一项的组合物,其中,所述聚合物优选是全氟磺化聚合物。
11.根据权利要求1-10中的任一项的组合物,其中,所述碳纳米结构上的官能团是磺酸基。
12.根据权利要求1-10中的任一项的组合物,其中,所述组合物用于聚合物燃料电解质电池、氢传感器和电极中。
CN2009801089626A 2008-02-12 2009-02-12 具有增强的质子电导率的组合物 Pending CN101971394A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN0371/DEL/2008 2008-02-12
IN371DE2008 2008-02-12
PCT/IN2009/000100 WO2009101635A1 (en) 2008-02-12 2009-02-12 'composition with enhanced proton conductivity'

Publications (1)

Publication Number Publication Date
CN101971394A true CN101971394A (zh) 2011-02-09

Family

ID=40673933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801089626A Pending CN101971394A (zh) 2008-02-12 2009-02-12 具有增强的质子电导率的组合物

Country Status (5)

Country Link
US (1) US8399149B2 (zh)
EP (1) EP2253038B1 (zh)
JP (1) JP5398744B2 (zh)
CN (1) CN101971394A (zh)
WO (1) WO2009101635A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540951A (zh) * 2013-11-04 2014-01-29 山东东岳高分子材料有限公司 一种用于氧阴极电解的离子交换膜及其制备方法
CN103556178A (zh) * 2013-11-04 2014-02-05 山东东岳高分子材料有限公司 用于超高电流密度氧阴极电解的离子交换膜及其制备方法
CN103556179A (zh) * 2013-11-04 2014-02-05 山东东岳高分子材料有限公司 碳纳米管改性的高电流密度全氟离子交换膜及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5398744B2 (ja) * 2008-02-12 2014-01-29 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ 高プロトン伝導性を持つ組成物
KR101758237B1 (ko) * 2013-11-25 2017-07-17 현대일렉트릭앤에너지시스템(주) 이온 교환막 및 그 제조방법
TWI549754B (zh) * 2015-03-17 2016-09-21 國立中央大學 具優先取向紋理的離子交換薄膜
US10734660B2 (en) * 2016-03-10 2020-08-04 Nissan North America, Inc. Functionalized carbon layer for membrane degradation mitigation under fuel cell operating conditions

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ516548A (en) * 1999-07-19 2004-03-26 Sony Corp Proton conductor containing a carbon and electrochemical device thereof
US7153608B2 (en) 1999-07-19 2006-12-26 Sony Corporation Ionic conductor, process for production thereof, and electrochemical device
US6495290B1 (en) 1999-07-19 2002-12-17 Sony Corporation Proton conductor, production method thereof, and electrochemical device using the same
US20030077515A1 (en) * 2001-04-02 2003-04-24 Chen George Zheng Conducting polymer-carbon nanotube composite materials and their uses
WO2003100884A2 (en) * 2002-05-23 2003-12-04 Columbian Chemicals Company Sulfonated conducting polymer-grafted carbon material for fuel cell applications
JP4534445B2 (ja) * 2002-07-19 2010-09-01 ソニー株式会社 イオン伝導体とその製造方法、並びに電気化学デバイス
JP4908846B2 (ja) * 2002-10-31 2012-04-04 三星電子株式会社 炭素ナノチューブ含有燃料電池電極
US7361430B1 (en) 2003-04-08 2008-04-22 The United States Of America As Represented By The United States Department Of Energy Carbon nanotube-polymer composite actuators
WO2006016907A2 (en) 2004-04-21 2006-02-16 The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations Photoactuators based on carbon nanotube-nafion composites
US20060093885A1 (en) * 2004-08-20 2006-05-04 Krusic Paul J Compositions containing functionalized carbon materials
CA2578088A1 (en) * 2004-08-31 2006-03-09 Hyperion Catalysis International, Inc. Conductive thermosets by extrusion
US20060291142A1 (en) 2004-12-13 2006-12-28 Ohio State University Research Foundation Composite material containing nanotubes and an electrically conductive polymer
US7754054B2 (en) 2005-03-11 2010-07-13 New Jersey Institute Of Technology Microwave induced functionalization of single wall carbon nanotubes and composites prepared therefrom
US20070128491A1 (en) 2005-07-13 2007-06-07 California Institute Of Technology Advanced solid acid electrolyte composites
JP2007258111A (ja) * 2006-03-24 2007-10-04 Fujifilm Corp 燃料電池用触媒材料、触媒膜、電極膜接合体および燃料電池
US20070246689A1 (en) 2006-04-11 2007-10-25 Jiaxin Ge Transparent thin polythiophene films having improved conduction through use of nanomaterials
JP2009127038A (ja) * 2007-11-28 2009-06-11 Showa Denko Kk 樹脂組成物およびその製造方法、並びに、その用途
JP4945419B2 (ja) * 2007-12-05 2012-06-06 憲幸 倉本 導電性組成物
JP5398744B2 (ja) * 2008-02-12 2014-01-29 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ 高プロトン伝導性を持つ組成物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540951A (zh) * 2013-11-04 2014-01-29 山东东岳高分子材料有限公司 一种用于氧阴极电解的离子交换膜及其制备方法
CN103556178A (zh) * 2013-11-04 2014-02-05 山东东岳高分子材料有限公司 用于超高电流密度氧阴极电解的离子交换膜及其制备方法
CN103556179A (zh) * 2013-11-04 2014-02-05 山东东岳高分子材料有限公司 碳纳米管改性的高电流密度全氟离子交换膜及其制备方法
CN103556179B (zh) * 2013-11-04 2016-04-06 山东东岳高分子材料有限公司 碳纳米管改性的高电流密度全氟离子交换膜及其制备方法
CN103556178B (zh) * 2013-11-04 2016-04-06 山东东岳高分子材料有限公司 用于超高电流密度氧阴极电解的离子交换膜及其制备方法
CN103540951B (zh) * 2013-11-04 2016-08-17 山东东岳高分子材料有限公司 一种用于氧阴极电解的离子交换膜及其制备方法

Also Published As

Publication number Publication date
JP5398744B2 (ja) 2014-01-29
WO2009101635A1 (en) 2009-08-20
EP2253038B1 (en) 2014-12-03
JP2011514915A (ja) 2011-05-12
EP2253038A1 (en) 2010-11-24
US20110171561A1 (en) 2011-07-14
US8399149B2 (en) 2013-03-19

Similar Documents

Publication Publication Date Title
Zhang et al. Sulfonated polysulfone proton exchange membrane influenced by a varied sulfonation degree for vanadium redox flow battery
Abouzari-Lotf et al. Highly durable polybenzimidazole composite membranes with phosphonated graphene oxide for high temperature polymer electrolyte membrane fuel cells
Steffy et al. Uncovering Nafion-multiwalled carbon nanotube hybrid membrane for prospective polymer electrolyte membrane fuel cell under low humidity
Rambabu et al. Sulfonated fullerene in SPEEK matrix and its impact on the membrane electrolyte properties in direct methanol fuel cells
CN101971394A (zh) 具有增强的质子电导率的组合物
US20150171454A1 (en) Membrane with laminated structure and orientation controlled nanofiber reinforcement additives for fuel cells
Rambabu et al. Nanocomposite membranes of sulfonated poly (phthalalizinone ether ketone)–sulfonated graphite nanofibers as electrolytes for direct methanol fuel cells
JP2018116935A (ja) 向上した性能を有する活性層の形成
Zhang et al. Investigation of self-humidifying membranes based on sulfonated poly (ether ether ketone) hybrid with sulfated zirconia supported Pt catalyst for fuel cell applications
JP2002298867A (ja) 固体高分子型燃料電池
Tawalbeh et al. Highly proton conductive membranes based on lignin/ZrP/PTFE composite for high temperature PEM fuel cells
Yu et al. Thin bonding layer using sulfonated poly (arylene ether sulfone)/PVdF blends for hydrocarbon-based membrane electrode assemblies
Wang et al. Novel multilayer Nafion/SPI/Nafion composite membrane for PEMFCs
Park et al. Nafion® nanocomposite membranes: Effect of fluorosurfactants on hydrophobic silica nanoparticle dispersion and direct methanol fuel cell performance
Fang et al. Modification of Nafion membranes with ternary composite materials for direct methanol fuel cells
Tsai et al. Novel bilayer composite membrane for passive direct methanol fuel cells with pure methanol
JP2002367629A (ja) 固体高分子型燃料電池用電極構造体
JPWO2002058177A1 (ja) プロトン伝導体膜及びその製造方法並びにプロトン伝導体膜を備えた燃料電池及びその製造方法
CN111969232B (zh) 一种燃料电池隔膜材料的制备方法
KR20160006819A (ko) 술폰산기를 포함하는 다면체 올리고머형 실세스퀴옥산을 포함하는 나노 복합막 및 이의 제조방법
Reichman et al. A novel PTFE-based proton-conductive membrane
JP3467476B2 (ja) 固体高分子電解質膜型電極構造体及びその製造方法並びにそれを用いた燃料電池
KR101539280B1 (ko) 고분자 전해질 연료전지의 장기성능 향상을 위한 나노필러 및 이를 포함하는 수소이온전도성 복합막
JP4754083B2 (ja) 固体高分子型燃料電池
Fang et al. Suppression of methanol cross-over in novel composite membranes for direct methanol fuel cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20110209