CN101952014B - 用于在不高于1000℃的方法的二氧化钛催化剂结构及其制备 - Google Patents

用于在不高于1000℃的方法的二氧化钛催化剂结构及其制备 Download PDF

Info

Publication number
CN101952014B
CN101952014B CN200980106037XA CN200980106037A CN101952014B CN 101952014 B CN101952014 B CN 101952014B CN 200980106037X A CN200980106037X A CN 200980106037XA CN 200980106037 A CN200980106037 A CN 200980106037A CN 101952014 B CN101952014 B CN 101952014B
Authority
CN
China
Prior art keywords
tio
catalyst structure
phosphorus
temperature
nano particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980106037XA
Other languages
English (en)
Other versions
CN101952014A (zh
Inventor
J·小普罗哈兹卡
J·老普罗哈兹卡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Materials JTJ sro
Original Assignee
Advanced Materials JTJ sro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40888108&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101952014(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Advanced Materials JTJ sro filed Critical Advanced Materials JTJ sro
Publication of CN101952014A publication Critical patent/CN101952014A/zh
Application granted granted Critical
Publication of CN101952014B publication Critical patent/CN101952014B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • B01J35/39
    • B01J35/393
    • B01J35/40
    • B01J35/613
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0532Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing sulfate-containing salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/90Other morphology not specified above
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

一种TiO2催化剂结构,包括锐钛矿型结晶形的TiO2纳米粒子,以TiO2为基准其掺杂有0.05-5重量%的磷,并构成比表面积为40到120m2/g的环形平面聚集体,该TiO2催化剂结构适用于在不高于800℃温度的催化方法;和一种具有聚集的致密粒子形态且比表面积为20到40m2/g的TiO2催化剂结构,其适用于在不高于1000℃温度的催化方法。可以将选自银、铜、金、铂类金属、镍、钼和除了碱金属氧化物之外的金属氧化物中的活性物质施加到这两种结构的表面上。

Description

用于在不高于1000℃的方法的二氧化钛催化剂结构及其制备
技术领域
本发明涉及适用于在不高于1000℃温度的催化方法的平面TiO2催化剂结构。
背景技术
鉴于增长的能源成本,用于多相催化的更有效的新型催化剂结构和催化剂载体结构越来越具有意义。该活性物质的组成对催化剂结构的效率是必不可少的,但是它的表面积和表面的可接近性是同样重要的。但是对于获得这两个性质来说是不容易的。除了例如通过造粒产生的最终的大形态之外,粒子的内部结构、它的多孔性和粒子的几何构型对表面可接近性产生影响。
适当的催化剂载体结构的选择往往具有决定性的作用,特别是在该载体与催化剂之间必需形成化学键的情况下。例如这种情形是SiO2或TiO2(载体结构)与MoO3(催化剂)的体系的情况。
该催化剂结构的合成问题和耐热性往往是限制其可用性的重要因素。催化剂的制备或施加往往要求比较高的温度,而在该温度下该结构可烧结、压实、损失比表面积,而且在该催化剂载体结构和该催化剂之间会出现不受欢迎的化学反应。
水合或锐钛矿型形态的TiO2纳米粒子对超过300℃的热循环尤其敏感。
尽管该TiO2锐钛矿型的催化剂结构是诱人的,但是使用硫酸盐法制备它们即TiOSO4的水解产生具有组成大致为Ti(OH)4的钛氢氧化物(其被连续地煅烧)具有严重的缺陷,如在受热期间伴随着比表面积的快速损失而产生的拙劣的耐热性和最终结晶相转换成金红石。由硫酸盐法制备的材料往往显示出高含量的残留氢氧化物和硫,甚至在超过450℃的温度下这些残留的氢氧化物和硫也不会消失。
发明内容
用于在不高于800℃温度下催化方法的TiO2催化剂结构消除了上述缺点。其包括锐钛矿型结晶形的TiO2纳米粒子,其掺杂有以TiO2为基准0.05-5重量%的磷。将该纳米粒子构成平面的环形聚集体,其比表面积从40至120m2/g变化。
该TiO2催化剂结构优选包括锐钛矿型结晶形的TiO2纳米粒子,其掺杂有以TiO2为基准0.55-5重量%的磷。
用于在不高于1000℃温度下催化方法的TiO2催化剂结构包括锐钛矿型结晶形的TiO2纳米粒子,其掺杂有以TiO2为基准0.05-5重量%的磷,该纳米粒子具有聚集的致密粒子的形态,其比表面积为20到40m2/g。
用于在不高于1000℃温度下催化方法的TiO2催化剂结构优选包括锐钛矿型结晶形的TiO2纳米粒子,其掺杂有以TiO2为基准0.55-5重量%的磷。
该TiO2催化剂结构的使用对许多催化过程来说是方便的,其中根据本发明,将活性物质沉积在该TiO2结构的表面上,该活性物质选自银、铜、金、铂类金属、镍、钼和除碱金属氧化物之外的金属氧化物。
根据本发明,用于在温度不高于800℃的方法的催化剂结构的制造方法基于向钛氢氧化物糊剂中加入以TiO2为基准磷含量为0.05-5重量%磷的含磷化合物,该钛氢氧化物糊剂是通过硫酸氧钛(titanum oxysulphate)的水解而制备的。将该中间产物干燥并且从而在350-900℃、优选在450-800℃的温度煅烧1到24小时的时间。获得的催化剂结构是粉末形态的。
根据本发明,在不高于1000℃温度下的方法的催化剂结构的制造方法基于向钛氢氧化物糊剂中加入以TiO2为基准磷含量为0.05-5重量%的含磷化合物,该钛氢氧化物糊剂是通过硫酸氧钛的水解而制备的。将该中间产物干燥并且从而在500-1000℃、优选在450-800℃的温度煅烧1到24小时的时间。获得的催化剂结构是粉末形态的。
该含磷化合物选自磷酸和水溶性的磷酸盐。
将该活性物质施加到该TiO2催化剂结构的粉末上是便利的。
能够通过挤压、造粒、制粒(pelletization)、刨片(flaking)、微粒化或其它常规的技术将获得的该催化剂结构的粉末(可能具有活性物质)加工成催化需要的形状。
包括比表面积为40-120m2/g的、锐钛矿型形态TiO2纳米颗粒的环形平面聚集体的该催化剂结构可用于在不高于800℃温度的长期应用。
包括比表面积为20-40m2/g的、锐钛矿型形态的致密TiO2纳米颗粒的聚集体的该催化剂结构可用于在不高于1000℃温度的短期应用。
该催化剂结构可方便地用于催化裂解来自柴油聚集体(dieselaggregate)和废气的氮氧化物NOx。还可将它们用于光催化应用或用作选自以下活性物质的催化剂载体结构:银、铜、金、铂类金属、镍、钼和除碱金属氧化物之外的金属氧化物。
该催化剂结构是锐钛矿型的结晶相。以大致环形平面的结构构成该锐钛矿型纳米颗粒。该环形平面的结构包括粒径一般从5至25纳米变化的各个纳米粒子。平面环形单元(在其上构成纳米粒子)的平均半径大小通常是30-50纳米,并且它的厚度从5到25纳米变化(相当于单个锐钛矿型纳米粒子的粒径)。一些单元互连形成具有粒径为直到100纳米的较大单元。由于所述的平面纳米锐钛矿型结构的形态,所述的平面纳米锐钛矿型结构具有很高的比表面积、高的孔隙度、优良的表面可接近性和比无掺杂TiO2显著更高的热稳定性。
当在随后被煅烧的钛氢氧化物糊剂中添加少量的磷作为掺杂剂时,令人惊讶地发现,聚集成平面环形结构的纳米颗粒结构。有掺杂的材料煅烧之后构成环形平面单元,而无掺杂的材料在相同温度煅烧之后只是熔融成大的聚集体,从而形成具有低比表面积、宽粒度分布的纳米粒子混合物且没有结构成为平面环形结构的任何征兆。
此外添加磷显著稳定了锐钛矿型的结晶相并且使其转变成金红石型的热转变转移到更高的温度。
实验证明,在350℃以上的温度热处理掺杂磷的钛氢氧化物Ti(OH)4的期间形成这个结构。该钛氢氧化物由硫酸氧钛TiOSO4前体制成。作为反应原料的钛氢氧化物糊剂的比表面积一般在200到350m2/g变化。
确切的理由还不了解;然而,使用不同于例如通过氯氧化钛的水解与掺杂磷结合而制备的钛氢氧化物不会产生以平面环形构成的聚集体的形态。
在图1中用示意图描绘了该聚集体环形平面形态的形成阶段、存在和转换。图2A显示了产生小平面环的所述聚集体的SEM照片。图2B记录了该环形平面聚集体转换成具有平均单个颗粒粒径大致相当于该环形平面结构半径初始大小的锐钛矿型的致密纳米粒子。由图2A和2B可以看出,随着该纳米锐钛矿型产物的比表面积的减少,改变了表面形态。对于一定含量的磷而言,该平面环形结构转变成致密粒子形态的温度是特定的。磷浓度使该环形表面形态在高温下稳定,而在高温下无掺杂的材料完全地烧结、损失了比表面积或甚至改变了结晶相。
为了产生该平面环形的纳米锐钛矿型结构,使用以TiO2为基准从0.05到5重量%范围的磷含量是方便的,最佳的磷含量是0.1到1重量%。
如果磷含量是零,粒子自然熔融在一起并且早在氢氧化物转化成氧化物时就形成了宽的粒度分布。没有磷就不会产生构成的平面环形表面形态。
以TiO2为基准,低磷含量在0.05-0.1重量%时,纳米锐钛矿型聚集体的平面环形结构在500到600℃的温度范围内是大致稳定的。
将以TiO2为基准的磷含量另外增加到1到5重量%,环形平面结构的转变温度变得更高,达到650到800℃。
如果我们将煅烧温度大致增加另外的100到250℃的更高温度,由于粒子集中熔融成大的、坚硬的熔融聚集体(类似于无掺杂产品),表面形态会发生另外的改变。我们将看到比表面积的破坏和宽粒度分布的产生。在图3中显示了这个熔融的典型产物。该锐钛矿型的坚硬烧结粒子大部分超过纳米范围。该熔融产物的比表面积一般在20m2/g以下、大多数情况下往往是5到15m2/g。尽管这类坚硬的-烧结制品具有缺点,但是其目前被用来用于工业上各种合成的催化剂结构。
具有平面环形纳米锐钛矿型结构的上述产物的制造过程是通过硫酸氧钛盐TiOSO4的水解制备钛氢氧化物Ti(OH)4、添加含磷化合物、干燥掺杂的糊剂和由此在350℃到900℃的温度范围内煅烧1到24小时的时间。
在从已包含磷的矿石例如钛铁矿制备该硫酸氧钛盐的情况下,使磷的含量正好达到合适量的含磷化合物所需的数值。
进一步将煅烧温度增加100℃到200℃会产生包括锐钛矿型的致密纳米粒子的多孔结构,其是通过熔融该平面环形聚集体而形成的。这些结构具有突出的热稳定性并且仍然具有比较高的比表面积。可溶于水的磷酸或磷酸盐可以方便地被用来掺杂钛氢氧化物糊剂。制造的流程图如图7所示。
即使具有显著更高的表面可接近性的平面环形聚集体的形态用作催化剂是最理想的,但是由该环形结构产生的锐钛矿型的致密纳米粒子的结构也是可用的。这尤其涉及催化剂遭受直到850℃长期高温并且需要具有抵抗短期高达1000℃的温度而不会显著损失比表面积的应用。
具有环形平面聚集体形态的材料的比表面积通常远远超过40m2/g。一般范围从50到120m2/g(由在77K下氮的吸附等温线来确定该比表面积,并且称为BET)。这个形态的重要特征是高的比表面积以及优良的表面可接近性。
由该环形聚集体产生的、具有致密粒子结构的材料通常具有高于20m2/g的比表面积、并且往往在25到35m2/g之间变化。这些材料显示出低的硫含量,这便于起催化剂结构的作用。从其用作催化剂结构的观点来看,这个形态具有足够高的和可接近的表面(图6)。与该平面环形结构相反,在烧结粒子之间的接合处中一般损失50%的TiO2表面,在该平面环形结构中TiO2多孔(open)(可接近的)表面比其高数十百分数。
对于熔融的第三相而言,很高的比表面积损失是典型的。其通常降低至15m2/g以下。烧结粒子的程度即多孔TiO2表面与粒子之间烧结接合处所用的表面之比也降低(图3)。高于这个极限的进一步热处理会导致TiO2的结晶相从锐钛矿型转换成金红石型。
这些产物多孔的形态便于活性物质如铂和铂类金属、镍、钴、银、铜、金和除了碱金属氧化物之外的金属氧化物沉积在该TiO2表面上。例如,这些活性物质的离子水溶液可用于制备具有TiO2催化剂结构的悬浮液,将该悬浮液进一步例如在喷雾干燥器中干燥并且最终煅烧。由于该表面多孔的表面形态和可接近性,环形平面催化剂结构的悬浮液便于通过各种方法如沉积、络合、气相蒸汽沉积、或热分解、以及类似的方法在该TiO2结构的表面上沉积活性物质。
由所述方法制造的产物显示出高的光催化活性。它们不仅可以方便被用作催化剂结构,而且还可以作为光催化剂。
所述的中间产物可以直接地以松散粉末来使用或可以通过微粉化、挤压、造粒、磨碎或其他典型用于制造催化剂的方法将其进一步加工成所需的形态。
附图说明
图1用示意图显示了自钛氢氧化物形成TiO2纳米锐钛矿型环形平面聚集体的方法、它们存在的间隙以及在提高煅烧温度期间它们成为致密粒子的形态的变化。圆圈记号的直径是30nm。
图2显示了相同比例的电子扫描显微镜(SEM)的显微照片:
A)以环形平面聚集体构成的锐钛矿型TiO2纳米粒子,粒径一般从20到50nm
B)通过在800℃以上加热该环形平面聚集体而产生的锐钛矿型TiO2致密纳米粒子。所产生的致密粒子的典型粒径一般在20-50nm变化并且其在熔融之前与原始的平面聚集体的直径大致相关联。
图3显示了在900℃以上的温度煅烧之后掺杂有磷的熔融锐钛矿型纳米的扫描电子显微镜(SEM)照片。
图4显示了描绘根据实施例1制备的锐钛矿型纳米的环形平面结构的SEM照片。
图5显示了描绘根据实施例2制备的锐钛矿型纳米的环形平面结构的SEM照片。
图6显示了描绘根据实施例3制备的锐钛矿型纳米致密粒子的结构的SEM照片。
图7显示了锐钛矿型纳米的环形平面构造的生产方法及其后加工成特定产物的流程图。
具体实施方式
实施例
以下实施例用来说明本发明,但不是对本发明的限制。
实施例1
通过添加热水以及使热的水蒸气通过该溶液起泡来对硫酸氧钛盐TiOSO4的浓缩溶液水解。获得大致成分为Ti(OH)4的钛氢氧化物,并且通过沉降和过滤从该硫酸溶液中将其分离。将以TiO2为基准相当于1重量%磷的1%的磷酸添加到过滤后的钛氢氧化物糊剂中。适当地混合该悬浮液,然后在温度150℃干燥。将干燥的中间产物进一步在600℃的温度煅烧10小时。所得的产物是比表面积(BET)为77m2/g的软白色粉末。自X射线衍射(XRD)测量并使用舍雷尔(Scherrer)方程式计算,其平均粒度为9纳米。自图4中容易看出这个产品的粒径和环形平面形态。样品显示了高的光催化活性。如果将1重量%的AgNO3溶液施加到该TiO2表面上,银会迅速地在其上显现,表明这是将用于催化的活性物质施加至该TiO2结构上的方法之一。在直到750℃的温度这个结构是稳定的。
实施例2
将以TiO2为基准相当于0.5重量%磷的0.5%量的磷酸添加到由TiOSO4的水解获得的钛氢氧化物糊剂中。适当地混合该悬浮液,然后在温度150℃干燥。将干燥的中间产物进一步在650℃的温度煅烧10小时。所得的产物是比表面积(BET)为50m2/g和粒径为22nm的软白色粉末,其中粒径是自X射线衍射测量并使用舍雷尔(Scherrer)方程式计算的。该产物包括相对大的纳米粒子并且具有环形的形态,这在图5中是容易看出的。
实施例3
将以TiO2为基准相当于0.1重量%磷的0.1%的磷酸添加到钛氢氧化物糊剂中。适当地混合该悬浮液,然后在温度150℃干燥。将干燥的中间产物进一步在700℃的温度煅烧10小时。所得的产物是比表面积(BET)为30m2/g软白色粉末。自X射线衍射测量并使用舍雷尔(Scherrer)方程式计算,其平均粒度为30nm。所产生的材料显示了致密粒子的形态,如在图6中所容易看出的。作为对比,同时煅烧掺杂有1到5重量%磷的材料。它们仍然显示聚集体的环形平面形态,并且与上面描述的材料相比具有两倍的比表面积。
工业实用性
在本发明中描述的催化剂结构具有明显比未掺杂TiO2的结构更大和更多的可接近的表面、高的耐热性、锐钛矿型的相纯度,并且显示更容易的粉末处理。这个纳米结构是工业当今作为催化剂结构使用的材料的优良代替物。这里我们可以预期方法改善的有效性。该锐钛矿型纳米的催化剂结构适合于需要高耐热性的应用。这些结构的耐热性扩大了TiO2在降解来自于柴油聚集体和废气的氮氧化物NOx的方法中的应用。将由这个方法产生的结构用于光催化也是方便的。

Claims (12)

1.一种在不高于800℃温度下用于催化方法的粉末形态的TiO2催化剂结构,其包括掺杂有磷的锐钛矿型结晶形的TiO2纳米粒子,其中磷的含量以TiO2为基准为0.05-5重量%,并且所述锐钛矿型结晶形的纳米粒子构成比表面积为40到120m2/g的环形平面聚集体,其中所述包括TiO2纳米粒子的催化剂结构是通过将中间产物干燥和在350到900℃的温度范围煅烧1到24小时来制备的,其中所述中间产物是通过将以TiO2为基准相当于0.05到5重量%磷的含磷化合物添加到由硫酸氧钛盐的水解制备的钛氢氧化物糊剂中来生产的。
2.根据权利要求1的在不高于800℃温度下用于催化方法的TiO2催化剂结构,其包括通过将所述中间产物干燥和在450到800℃的温度范围煅烧1到24小时而制备的TiO2纳米粒子。
3.一种在不高于1000℃温度下用于催化方法的粉末形态的TiO2催化剂结构,其包括掺杂有磷的锐钛矿型结晶形的TiO2纳米粒子,其中磷的含量以TiO2为基准为0.05-5重量%,所述锐钛矿型结晶形的纳米粒子具有比表面积为20到40m2/g的、聚集的致密粒子形态,其中所述包括TiO2纳米粒子的催化剂结构是通过将所述中间产物干燥和在500到1000℃的温度范围煅烧1到24小时来制备的,其中所述中间产物是通过将以TiO2为基准相当于0.05到5重量%磷的含磷化合物添加到由硫酸氧钛盐的水解制备的钛氢氧化物糊剂中来生产的。
4.根据权利要求1-3中任一项的TiO2催化剂结构,其包括锐钛矿型结晶形的TiO2纳米粒子,以TiO2为基准其掺杂有0.55-5重量%的磷。
5.根据权利要求1的用于催化方法的TiO2催化剂结构,其中所述含磷化合物选自磷酸和水溶性的磷酸盐。
6.根据权利要求1-3中任一项的用于催化方法的TiO2催化剂结构,其中将活性物质施加到所述TiO2催化剂结构的表面上。
7.根据权利要求6的用于催化方法的TiO2催化剂结构,其中所述活性物质选自银、铜、金、铂类金属、镍、钼和除碱金属氧化物之外的金属氧化物。
8.根据权利要求1-3中任一项的用于催化方法的TiO2催化剂结构的成型方法,其中将获得的催化剂结构粉末或根据权利要求6的具有活性物质的催化剂结构粉末通过挤压、造粒、制粒、刨片、微粒化或通过其他的常规技术进一步加工成所需的形状。
9.根据权利要求1、2和6中任一项的催化剂结构用于在温度不高于800℃的长期应用中的用途。
10.根据权利要求3或6的催化剂结构在不高于1000℃温度下的仅用于短期应用中的用途。
11.根据权利要求1、2、3和6中任一项的催化剂结构用于催化分解来自于柴油聚集体和废气的氮氧化物NOx的用途。
12.根据权利要求1-7中任一项的催化剂结构用于光催化应用的用途。
CN200980106037XA 2008-02-21 2009-02-19 用于在不高于1000℃的方法的二氧化钛催化剂结构及其制备 Active CN101952014B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CZPV2008-95 2008-02-21
CZ20080095A CZ301315B6 (cs) 2008-02-21 2008-02-21 Katalytická struktura TiO2 pro katalytické procesy do 1000 °C a zpusob její výroby
PCT/CZ2009/000020 WO2009103250A2 (en) 2008-02-21 2009-02-19 Titanium dioxide catalyst structure for processes up to 1000 °c and the manufacturing thereof

Publications (2)

Publication Number Publication Date
CN101952014A CN101952014A (zh) 2011-01-19
CN101952014B true CN101952014B (zh) 2013-11-27

Family

ID=40888108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980106037XA Active CN101952014B (zh) 2008-02-21 2009-02-19 用于在不高于1000℃的方法的二氧化钛催化剂结构及其制备

Country Status (9)

Country Link
US (1) US8435915B2 (zh)
EP (1) EP2247369B1 (zh)
CN (1) CN101952014B (zh)
CZ (1) CZ301315B6 (zh)
ES (1) ES2819023T3 (zh)
HK (1) HK1148979A1 (zh)
PL (1) PL2247369T3 (zh)
SI (1) SI2247369T1 (zh)
WO (1) WO2009103250A2 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ301315B6 (cs) 2008-02-21 2010-01-13 Advanced Materials - Jtj S. R. O. Katalytická struktura TiO2 pro katalytické procesy do 1000 °C a zpusob její výroby
JP5596992B2 (ja) * 2010-02-09 2014-10-01 バブコック日立株式会社 バイオマス燃焼排ガス用脱硝触媒及び脱硝方法
JP5604235B2 (ja) 2010-09-07 2014-10-08 バブコック日立株式会社 排ガス脱硝触媒およびその製造方法
EP2888042B1 (en) 2012-08-24 2020-05-20 Tronox LLC Catalyst support materials, catalysts, methods of making them and uses thereof
DE102016112682A1 (de) * 2016-07-11 2018-01-11 Huntsman P&A Germany Gmbh Verfahren zur Herstellung von Titandioxid und das so erhaltene Titandioxid
US11623205B2 (en) * 2018-03-08 2023-04-11 The Regents Of The University Of California Method and system for hybrid catalytic biorefining of biomass to methylated furans and depolymerized technical lignin
CN111530277B (zh) * 2020-04-07 2021-03-30 华南理工大学 解析中间产物对TiO2光催化降解气相苯影响机理的方法
CN112473685A (zh) * 2021-01-04 2021-03-12 天津工业大学 一种负载型非晶态水合肼催化制氢催化剂及其制备方法
CN116135303A (zh) * 2021-11-16 2023-05-19 国家能源投资集团有限责任公司 乙烯催化降解催化剂及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1169957A (zh) * 1996-01-05 1998-01-14 泰奥塞集团服务有限公司 锥型钛白粉的制备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1168136A (en) 1966-06-22 1969-10-22 Nat Lead Co Photoreactive Titanium Dioxide Material
US3709984A (en) 1967-06-26 1973-01-09 Nl Industries Inc Photoreactive titanium dioxide material
JPS4830614B1 (zh) 1969-06-02 1973-09-21
DE2235103C3 (de) 1972-07-18 1978-04-13 Chemische Werke Huels Ag, 4370 Marl Verfahren zur Herstellung von Essigsäure
DE2254425A1 (de) 1972-11-07 1974-05-16 Hasenclever Gmbh Maschf Elektrostauchmaschine mit ohm'scher widerstandserwaermung des werkstueckes
DE2354425C3 (de) 1973-10-31 1978-05-03 Chemische Werke Huels Ag, 4370 Marl Verfahren zur Herstellung von Essigsäure durch Gasphasenoxidation von Butenen
US4146734A (en) 1977-08-08 1979-03-27 Celanese Corporation Oxidation of butene to acetic acid and catalyst therefor
US4448897A (en) 1982-05-13 1984-05-15 Atlantic Richfield Company Method for producing a vanadium-titanium catalyst exhibiting improved intrinsic surface area
GB9018034D0 (en) 1990-08-16 1990-10-03 Tioxide Group Services Ltd Production process
JPH10137593A (ja) 1996-11-13 1998-05-26 Teika Corp 高光触媒活性アナタース形微粒子酸化チタンおよびその製造方法
DE19823052A1 (de) * 1998-05-22 1999-11-25 Consortium Elektrochem Ind Schalenkatalysator zur Herstellung von Essigsäure durch Gasphasenoxidation von gesättigten und/oder ungesättigten C4-Kohlenwasserstoffen
EP1205245A4 (en) * 1999-08-05 2005-01-19 Toyoda Chuo Kenkyusho Kk CATALYTIC MATERIAL AND PHOTOCATALYTIC ARTICLE
US7378371B2 (en) 2001-12-21 2008-05-27 Show A Denko K.K. Highly active photocatalyst particles, method of production therefor, and use thereof
JP5058991B2 (ja) 2005-06-29 2012-10-24 コンプメディクス リミテッド 導電ブリッジを備えるセンサ・アセンブリ
JP2009505824A (ja) * 2005-08-23 2009-02-12 アルテアナノ インコーポレイテッド 高度な光触媒のリンドープアナターゼTiO2組成物及びその製造方法
CZ301315B6 (cs) 2008-02-21 2010-01-13 Advanced Materials - Jtj S. R. O. Katalytická struktura TiO2 pro katalytické procesy do 1000 °C a zpusob její výroby

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1169957A (zh) * 1996-01-05 1998-01-14 泰奥塞集团服务有限公司 锥型钛白粉的制备

Also Published As

Publication number Publication date
WO2009103250A2 (en) 2009-08-27
CZ200895A3 (cs) 2010-01-13
US8435915B2 (en) 2013-05-07
WO2009103250A4 (en) 2010-09-23
PL2247369T3 (pl) 2021-07-05
EP2247369A2 (en) 2010-11-10
EP2247369B1 (en) 2020-06-24
US20100322832A1 (en) 2010-12-23
CN101952014A (zh) 2011-01-19
WO2009103250A3 (en) 2010-07-29
SI2247369T1 (sl) 2021-01-29
CZ301315B6 (cs) 2010-01-13
HK1148979A1 (en) 2011-09-23
ES2819023T3 (es) 2021-04-14

Similar Documents

Publication Publication Date Title
CN101952014B (zh) 用于在不高于1000℃的方法的二氧化钛催化剂结构及其制备
Pan et al. Nanophotocatalysts via microwave-assisted solution-phase synthesis for efficient photocatalysis
Iida et al. Titanium dioxide hollow microspheres with an extremely thin shell
Karthick et al. Formation of anatase TiO2 nanoparticles by simple polymer gel technique and their properties
Guild et al. Perspectives of spray pyrolysis for facile synthesis of catalysts and thin films: An introduction and summary of recent directions
Wu et al. Progress in the synthesis and applications of hierarchical flower-like TiO2 nanostructures
Karuppuchamy et al. Synthesis of nano-particles of TiO2 by simple aqueous route
Mi et al. Highly controlled crystallite size and crystallinity of pure and iron-doped anatase-TiO2 nanocrystals by continuous flow supercritical synthesis
Zhang et al. One-dimensional metal oxide nanostructures for heterogeneous catalysis
Shajudheen et al. A simple chemical precipitation method of titanium dioxide nanoparticles using polyvinyl pyrrolidone as a capping agent and their characterization
CN100588758C (zh) 一种钛酸钠晶须的制备方法
CN101049556A (zh) 高热稳定性锐钛型纳米二氧化钛的制备方法
JP2024515312A (ja) 埋め込まれたナノ粒子を含むナノチタン酸塩、ナノチタン酸、ナノTiO2の製造方法、及び金属ナノ粒子の製造方法
Lucky et al. Zr doping on one-dimensional titania nanomaterials synthesized in supercritical carbon dioxide
Dalvandi et al. Synthesis of titanium dioxide nano-powder via sol–gel method at ambient temperature
Sridharan et al. Deformation assisted fabrication of uniform spindle, tube and rod shaped nanoscale 3D TiO 2 architectures and their photocatalytic activity
Li et al. Chlorinated nanocrystalline TiO2 powders via one-step Ar/O2 radio frequency thermal plasma oxidizing mists of TiCl3 solution: Phase structure and photocatalytic performance
Singh et al. Semi-wet growth and characterization of multi-functional nano-engineered mixed metal oxides for industrial application
Shi et al. Eosin Y-sensitized nanosheet-stacked hollow-sphere TiO 2 for efficient photocatalytic H 2 production under visible-light irradiation
Mahdi et al. The effect of sintering on the physical and optical properties of nano-TiO 2 synthesized via A modified hydrothermal route
CN102838164A (zh) 一种金属离子改性的二氧化钒花状粉末材料的制备方法
Kaleji et al. Fabrication of Nb/V co-doped TiO2 thin films and study of structural, optical and photocatalytic properties
Liu et al. Engineering TiO 2 nanosheets with exposed (001) facets via the incorporation of Au clusters for boosted photocatalytic hydrogen production
Chen et al. Synthesis of doubly functional nanowhiskers from a colloid solution including a V–Ti complex precursor
Behzad et al. Alfa-Bismuth (III) oxide catalyzed Biginelli reactions using experimentally designed optimized condition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1148979

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1148979

Country of ref document: HK