CN101948569B - 含卟啉的聚酰亚胺及其制备方法和应用 - Google Patents

含卟啉的聚酰亚胺及其制备方法和应用 Download PDF

Info

Publication number
CN101948569B
CN101948569B CN2010102650523A CN201010265052A CN101948569B CN 101948569 B CN101948569 B CN 101948569B CN 2010102650523 A CN2010102650523 A CN 2010102650523A CN 201010265052 A CN201010265052 A CN 201010265052A CN 101948569 B CN101948569 B CN 101948569B
Authority
CN
China
Prior art keywords
porphyrin
polyimide
preparation
aromatic series
nanofiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010102650523A
Other languages
English (en)
Other versions
CN101948569A (zh
Inventor
吴健
吕媛媛
徐志康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN2010102650523A priority Critical patent/CN101948569B/zh
Publication of CN101948569A publication Critical patent/CN101948569A/zh
Application granted granted Critical
Publication of CN101948569B publication Critical patent/CN101948569B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本发明公开了一种含卟啉的聚酰亚胺及其制备方法和应用。将二氨基四苯基卟啉、芳香族有机二胺与芳香族四酸二酐单体进行缩合反应合成含卟啉的可溶性聚酰亚胺,并进一步应用静电纺丝技术制备成含卟啉聚酰亚胺纳米纤维膜。本发明方法具有操作简单、可调控性强、可重复性高、产物可回收使用的特点。本发明含卟啉聚酰亚胺纳米纤维膜应用于水溶液中重金属汞离子的检测,具有灵敏度高、选择性好、响应快的优点。

Description

含卟啉的聚酰亚胺及其制备方法和应用
技术领域
本发明涉及卟啉功能化高分子化合物,具体涉及一种含卟啉的聚酰亚胺及其制备方法,以及含卟啉的聚酰亚胺纳米纤维膜的制备方法及其在汞离子的微量检测中的应用。
背景技术
众所周知,汞是一种危害人体健康的重金属,可通过多种途径进入人体并在体内蓄积。水体中的无机汞离子可转变为毒性更大的有机汞,由食物链进入人体,沉积在脑、肝和其它器官中,产生慢性中毒,损害肾、脑、胃和肠道,甚至引起死亡。基于上述原因,环境中汞的检测引起了人们的极大关注。大量工作研究了汞的检测方法,其中使用最广泛的检测技术是原子吸收光谱和原子发射光谱法,但成本比较高,需要复杂的仪器和熟练的操作人员,不能或不方便在户外使用。在很多重要的应用场合,人们迫切需要快速、准确、低成本并能选择性地分析检测汞离子的方法。因此,现场环境检测方法、移动实验室和便携式检测仪器等概念近年来被许多研究人员提出。其中,通过比色法或以荧光为输出信号的化学传感方法尤为引入注目。
卟啉类化合物是一种具有大环共轭结构的富电子化合物,由于其可与汞离子配位造成自身荧光的猝灭,因此可被用做识别汞离子的荧光基团。目前以卟啉作为探针分子检测汞离子的荧光传感器多为水溶性卟啉化合物,存在着操作不便且不能重复使用的缺点。因此,发展一种非均相汞离子检测传感材料十分必要。但是小分子卟啉及其衍生物普遍存在机械强度差、加工成型比较困难的缺点,因而近年来含卟啉聚合物的研究日益引起人们的重视。
在众多的聚合物体系中,聚酰亚胺因具有良好的耐热、耐腐蚀及加工性能被广泛认为是一种优异的载体材料。结合卟啉化合物可功能化的特点,可以将其引入聚酰亚胺主链,从而保持或增强卟啉化合物的机械强度、加工性能。此类方法还可以克服卟啉小分子聚集造成的荧光猝灭现象,同时为卟啉类分子提供特殊的微环境,保持甚至提高其光学性能,是一类新型的光学传感器材料。
目前,含卟啉的聚酰亚胺的相关文献和专利较少,主要集中于1995年前申请的日本专利,如JP01242623A、JP02228331A、JP01242630A和JP01294791A,其中聚酰亚胺的结构比较简单,此后再未见相关报道。国内有关含卟啉的聚酰亚胺的专利鲜有报道。尽管含卟啉的聚酰亚胺的合成与相关材料制备的研究已经有所进展,但是其应用还远远落后于材料的开发,尤其是卟啉作为中心分子的优异光电性能未得到有效利用。改进材料的形态、有效控制卟啉在材料内部的含量及分布是扩大含卟啉的聚合物应用的重要途径。
静电纺丝法是指聚合物溶液或熔体在高压静电作用下进行射流鞭动拉伸细化而获得纳米级纤维的纺丝方法。由于静电纺丝是在高压静电场下进行的,纤维表面带有大量电荷,在高压静电场中,具有纳米尺寸的纤维之间具有较大的抱合力,因此在静电纺丝过程中,自然累积即能成无纺布形式的纳米纤维复合膜。由静电纺丝制得的超细纤维具有孔隙率高、比表面积大、纤维精细程度与均一性高、长径比大等优点,由其制备而成的传感器材料,将具有灵敏性高、准确性好、对目标物检测迅速等优势。因此,如能应用静电纺丝技术制备对汞离子敏感的含卟啉的聚酰亚胺纳米纤维膜,将会在对汞离子的微量检测上具有很好的工业化前景。
发明内容
本发明提供了一种含卟啉的聚酰亚胺及其制备方法,以及一种含卟啉的聚酰亚胺纳米纤维膜的制备方法,制得的含卟啉的聚酰亚胺纳米纤维膜在汞离子的微量检测上具有突出的优势。
一种含卟啉的聚酰亚胺(PI),具有如下结构通式:
Figure BSA00000246707300021
其中,Por为:
Figure BSA00000246707300031
Ar为:
Figure BSA00000246707300032
Figure BSA00000246707300033
m与n的比值大于0且小于0.50,50≤n≤160。
所述的含卟啉的聚酰亚胺的制备方法,包括如下步骤:
(1)在氮气保护下、冰水浴中将二氨基四苯基卟啉和芳香族有机二胺溶解于N,N-二甲基乙酰胺(DMAc)中,加入芳香族四酸二酐进行缩合反应,生成含卟啉的聚酰胺酸(PAA);
其中,芳香族四酸二酐与N,N-二甲基乙酰胺(DMAc)的加入量之比优选为50mg/mL,优选这个比例可使得各种固体二胺或二酐单体在溶剂用量最少的情况下能最充分溶解,更利于反应充分进行。
(2)将上述含卟啉的聚酰胺酸中加入等体积比(即三乙胺的体积与乙酸酐的体积相等,体积比为1∶1)的三乙胺-乙酸酐的混合溶剂,继续缩合得到含卟啉的聚酰亚胺。
所述的三乙胺-乙酸酐的混合溶剂中三乙胺作为催化剂,乙酸酐作为脱水剂,选用此等体积比配比的混合溶剂体系可以抑制聚酰胺酸异构化为异酰亚胺,利于目标产物聚酰亚胺的生成。该混合溶剂的用量并没有特别的限定,可按三乙胺加入量为N,N-二甲基乙酰胺体积的5%添加到含卟啉的聚酰胺酸中。
作为优选:
所述的含卟啉的聚酰亚胺的制备方法,包括如下步骤:
(1)在氮气保护下,冰水浴中将二氨基四苯基卟啉和芳香族有机二胺溶解于N,N-二甲基乙酰胺中得到反应溶液,再将芳香族四酸二酐单体分两次加入到反应溶液中,中间间隔半小时,继续在冰水浴中反应4h~6h后,于室温下反应20h~24h生成含卟啉的聚酰胺酸;
(2)将上述含卟啉的聚酰胺酸中加入等体积比的三乙胺-乙酸酐的混合溶剂,继续反应24h~26h,反应产物倒入无水甲醇中沉析,得到絮状沉淀,将此沉淀用甲醇反复抽滤洗涤,再于60℃真空烘干,得到含卟啉的聚酰亚胺。其中,三乙胺加入量一般为N,N-二甲基乙酰胺(DMAc)体积的5%。
所述的二氨基四苯基卟啉为5,10-二(4-氨基苯基)-15,20-二苯基卟啉(cis-DATPP)或5,15-二(4-氨基苯基)-10,20-二苯基卟啉(trans-DATPP),其结构式分别如下:
这两种二氨基四苯基卟啉的原料易得,易于合成,且荧光量子产率较高,具有优异的光敏特性。
上述选用的二氨基四苯基卟啉的制备方法是采用市售四苯基卟啉(TPP)为起始原料,参照文献:硝基苯基卟啉的合成及反应(R.Luguya,L.Jaquinod,F.R.Fronczek,A.G.H.Vicente,K.M.Smith,Synthesis and reactions ofmeso-(p-nitrophenyl)porphyrins,Tetrahedron 60(2004)2757-2763)中记载的制备方法合成二氨基四苯基卟啉;TPP的结构式为:
Figure BSA00000246707300042
为了提高所得聚酰亚胺分子链的柔顺性和流动性,所述的芳香族有机二胺优选含有柔性结构单元的4,4′-二氨基二苯醚(ODA)、全间位三苯二醚二胺(BAPB)、4,4′-(六氟异亚丙基)二苯胺(6FDAM)或4,4′-二氨基二苯甲酮(DABP);其结构式分别如下:
Figure BSA00000246707300051
所述的芳香族四酸二酐选用含三氟甲基的1,4-双(三氟甲基)-2,3,5,6-苯四甲酸二酐(P6FDA)、4,4′-六氟亚异丙基-邻苯二甲酸酐(6FDA)、4,4′-(2,2,2-三氟-1-苯基亚乙基)二苯酐(3FDA)或2,2′-双(三氟甲氧基)-4,4′,5,5′-联苯四酸二酐(2,2′-TEFODA)。由于这些二酐单体均含有三氟甲基基团,这种特殊基团的引入可以在不牺牲聚酰亚胺耐热性的前提下显著改善材料的溶解性,同时赋予其更优异的物理化学性质。P6FDA、6FDA、3FDA或2,2′-TEFODA的结构式分别如下:
Figure BSA00000246707300052
所述的二氨基四苯基卟啉与芳香族有机二胺的摩尔比为0.05~0.5∶1。由于卟啉分子体积较大,随着卟啉摩尔含量的增加,所得聚合物(含卟啉的聚酰亚胺)的粘度减小,在此摩尔比范围内所得到聚合物(含卟啉的聚酰亚胺)分子量更高。
所述的二氨基四苯基卟啉和芳香族有机二胺的摩尔总量与芳香族四酸二酐摩尔比为1∶1。实验表明,二氨基四苯基卟啉和芳香族有机二胺作为二胺单体,与二酐单体的量为等摩尔时,所制备的聚酰亚胺分子量更高。
所述的含卟啉的聚酰亚胺可配成一定浓度的溶液,利用静电纺丝装置通过静电纺丝技术得到含卟啉的聚酰亚胺纳米纤维膜,其制备方法包括如下步骤:
将含卟啉的聚酰亚胺溶于N,N-二甲基乙酰胺,制成含卟啉的聚酰亚胺溶液,采用静电纺丝装置,在电源电压16kV~23kV、针头与接收基板之间的距离为10cm~15cm、供料速度为0.6mL/h~1.2mL/h的纺丝条件下,得到含卟啉的聚酰亚胺纳米纤维膜。
所述的含卟啉的聚酰亚胺溶液的质量百分浓度优选为16%~25%,利于得到直径分布均匀、表面光滑的聚酰亚胺电纺纳米纤维膜。
所述的静电纺丝装置可采用本领域现有的通用装置。
本发明均采用N,N-二甲基乙酰胺作为溶剂,是由于反应原料二氨基四苯基卟啉、芳香族有机二胺、芳香族四酸二酐单体以及所得到的聚酰亚胺在其中均具有较好的溶解性,利于聚合反应及静电纺丝的进行。
所述的含卟啉的聚酰亚胺纳米纤维膜可以利用卟啉特有的大环π电子共轭结构与金属离子配位的特点实现对某些重金属离子如汞离子的检测。另外,由于引入了特定结构的聚酰亚胺链段,避免了其自身聚集造成荧光猝灭,且加工性能及化学稳定性均较好。
本发明具有如下优点:
(1)本发明采用了芳香族的四酸二酐和芳香族的有机二胺。由于芳香族的四酸二酐和芳香族的有机二胺热稳定性较好,最终可以得到具有较好热稳定性的芳香族聚酰亚胺;
(2)控制二氨基四苯基卟啉与芳香族有机二胺的摩尔比例、投料方式等,可以对含卟啉的聚酰亚胺及其纳米纤维膜中卟啉的含量加以调控;
(2)调节静电纺丝过程中的电源电压、针头与接收基板的距离、供料速度及纺丝液的浓度、环境参数等,可以得到不同形貌及纤维直径的纳米纤维膜,从而实现纤维膜的可控性制备;
(3)本发明以含卟啉的聚酰亚胺及其纳米纤维膜制备成相应的传感器,能够对汞离子显示出比色/荧光的双重敏感性质,可实现水溶液中微量汞离子的快速检测,且能够对汞离子的检测显示出高选择性;
(4)本发明制得的含卟啉的聚酰亚胺纳米纤维膜应用于汞离子检测,相对于均相传感器,具有不污染待测体系、易于回收利用的优势;
(6)本发明制得的含卟啉的聚酰亚胺纳米纤维膜应用于传感器,具有方便快捷、取样容易、试剂用量少、灵敏度高的优点;
(7)本发明制备方法简单、操作便捷、重复性高,制得的含卟啉聚酰亚胺纳米纤维膜对汞离子有较大的吸附容量,有望实现工业废水中汞离子的脱除。
附图说明
图1为实施例1制备的含卟啉的聚酰亚胺纳米纤维膜的扫描电镜图;
图2为不同浓度汞离子对实施例1制备的含卟啉的聚酰亚胺纳米纤维膜表面荧光强度的猝灭效率图;
图3为不同浓度汞离子对实施例2制备的含卟啉的聚酰亚胺纳米纤维膜表面荧光强度的猝灭效率图;
图4为不同浓度汞离子对实施例3制备的含卟啉的聚酰亚胺纳米纤维膜表面荧光强度的猝灭效率图;
图5为不同浓度汞离子对实施例4制备的含卟啉的聚酰亚胺纳米纤维膜表面荧光强度的猝灭效率图;
图6为实施例1制备的含卟啉的聚酰亚胺的红外光谱图;
图7为实施例2制备的含卟啉的聚酰亚胺的红外光谱图;
图8为实施例3制备的含卟啉的聚酰亚胺的红外光谱图;
图9为实施例4制备的含卟啉的聚酰亚胺的红外光谱图。
具体实施方式
实施例1
(1)含卟啉的聚酰亚胺的合成
5,15-二(4-氨基苯基)-10,20-二苯基卟啉(trans-DATPP)或5,10-二(4-氨基苯基)-15,20-二苯基卟啉(cis-DATPP)单体的制备:在0.326mmol四苯基卟啉(TPP)中加入10mL三氟乙酸(TFA)和2.65mmol亚硝酸钠,室温下磁力搅拌反应90s后加入100mL水,用二氯甲烷萃取(6次),每次用量25mL,将萃取后的二氯甲烷有机层用饱和的碳酸氢钠水溶液(100mL)洗涤后,用无水硫酸钠干燥24h后蒸干溶剂得到固体。然后加入3.55mmol氯化亚锡和50mL盐酸,在磁力搅拌下加热到65℃反应1h后停止反应。待体系冷却后加入100mL水,用氨水中和至溶液pH=8,用二氯甲烷萃取(6次),每次用量25mL,将萃取后的二氯甲烷有机层蒸干溶剂后得到固体粗产物。将此粗产物用二氯甲烷作为洗脱液进行柱层析分离,收集第一和第二色带,蒸干洗脱剂后分别得到5,15-二(4-氨基苯基)-10,20-二苯基卟啉(trans-DATPP)或5,10-二(4-氨基苯基)-15,20-二苯基卟啉(cis-DATPP)两种异构体的二氨基卟啉单体。
氮气保护下、冰水浴中将5,15-二(4-氨基苯基)-10,20-二苯基卟啉(trans-DATPP)和全间位三苯二醚二胺(BAPB)作为二胺单体,溶于N,N-二甲基乙酰胺(DMAc)中,trans-DATPP与BAPB的摩尔比为0.05∶1,电磁搅拌使其溶解得到均相体系,再将与两种二胺单体摩尔总量等摩尔量的1,4-双(三氟甲基)-2,3,5,6-苯四甲酸二酐(P6FDA)单体分两次加入到反应体系中,其中两次加入中间间隔半小时,1,4-双(三氟甲基)-2,3,5,6-苯四甲酸二酐(P6FDA)与N,N-二甲基乙酰胺(DMAc)的加入量之比为50mg/mL。继续在冰水浴中反应4h后,于室温下接着反应21h,生成含卟啉的聚酰胺酸。
在含卟啉的聚酰胺酸中加入等体积比的三乙胺-乙酸酐的混合溶剂,三乙胺加入量为N,N-二甲基乙酰胺(DMAc)体积的5%,继续反应24h,将反应物倒入无水甲醇中沉析,得到红褐色沉淀,将红褐色沉淀用甲醇反复抽滤洗涤,再于60℃真空烘干,得到含卟啉的聚酰亚胺。将所得聚合物加入KBr粉末研磨均匀后压制成片,采用傅立叶变换红外分光光度仪验证其化学结构。
(2)含卟啉的聚酰亚胺纳米纤维膜的制备
将上述制得的含卟啉的聚酰亚胺用N,N-二甲基乙酰胺(DMAc)配制成质量百分浓度为17%的含卟啉的聚酰亚胺溶液,放入静电纺丝装置的针筒中,调整静电纺丝装置如下:电源电压17kV,针头与接收基板之间的距离10cm,供料速度0.8mL/h,得到含卟啉的聚酰亚胺纳米纤维膜。
其中,含卟啉的聚酰亚胺为分子单元无规排列的共聚物,经检测其红外光谱如图6,图6中1776cm-1和1728cm-1分别是聚酰亚胺分子中酰亚胺环羰基的不对称伸缩振动和对称伸缩振动吸收峰;1500cm-1是苯环的骨架伸缩振动吸收峰;1375cm-1是酰亚胺环碳氮键的伸展,715cm-1是酰亚胺环羰基弯曲。可见,该含卟啉的聚酰亚胺的结构式如下:
Figure BSA00000246707300091
其中m与n的比值为0.04,且n=110~140。
实施例2
(1)含卟啉的聚酰亚胺的合成
5,10-二(4-氨基苯基)-15,20-二苯基卟啉(cis-DATPP)的制备同实施例1。
氮气保护下、冰水浴中将5,10-二(4-氨基苯基)-15,20-二苯基卟啉(cis-DATPP)和4,4′-二氨基二苯醚(ODA)作为二胺单体,溶于N,N-二甲基乙酰胺(DMAc)中,cis-DATPP与ODA的摩尔比为0.1∶1,电磁搅拌使其溶解得到均相体系,再将与两种二胺单体摩尔总量等摩尔量的4,4′-六氟亚异丙基-邻苯二甲酸酐(6FDA)单体分两次加入到反应体系中,其中两次加入中间间隔半小时;4,4′-六氟亚异丙基-邻苯二甲酸酐(6FDA)与N,N-二甲基乙酰胺(DMAc)的加入量之比为50mg/mL。继续在冰水浴中反应5h后,于室温下接着反应24h,生成含卟啉的聚酰胺酸。
在含卟啉的聚酰胺酸中加入等体积比的三乙胺-乙酸酐的混合溶剂,三乙胺加入量为N,N-二甲基乙酰胺(DMAc)体积的5%,继续反应25h,将反应物倒入无水甲醇中沉析,得到暗红色沉淀,将暗红色沉淀用甲醇反复抽滤洗涤,再于60℃真空烘干,得到含卟啉的聚酰亚胺。将所得聚合物加入KBr粉末研磨均匀后压制成片,采用傅立叶变换红外分光光度仪验证其化学结构。
(2)含卟啉的聚酰亚胺纳米纤维膜的制备
将上述制得的含卟啉的聚酰亚胺用N,N-二甲基乙酰胺(DMAc)配制成质量百分浓度为19%的含卟啉的聚酰亚胺溶液,放入静电纺丝装置的针筒中,调整静电纺丝装置如下:电源电压19kV,针头与接收基板之间的距离12cm,供料速度1.0mL/h,得到含卟啉的聚酰亚胺纳米纤维膜。
其中,含卟啉的聚酰亚胺为分子单元无规排列的共聚物,经检测其红外光谱如图7,图7中1785cm-1和1730cm-1分别是聚酰亚胺分子中酰亚胺环羰基的不对称伸缩振动和对称伸缩振动吸收峰;1500cm-1是苯环的骨架伸缩振动吸收峰;1385cm-1是酰亚胺环碳氮键的伸展,716cm-1是酰亚胺环羰基弯曲。可见,该含卟啉的聚酰亚胺的结构式如下:
Figure BSA00000246707300101
其中m与n的比值为0.092,且n=80~130。
实施例3
5,15-二(4-氨基苯基)-10,20-二苯基卟啉(trans-DATPP)的制备同实施例1。
氮气保护下、冰水浴中将5,15-二(4-氨基苯基)-10,20-二苯基卟啉(trans-DATPP)和4,4′-(六氟异亚丙基)二苯胺(6FDAM)作为二胺单体,溶于N,N-二甲基乙酰胺(DMAc)中,trans-DATPP与ODA的摩尔比为0.25∶1,电磁搅拌使其溶解得到均相体系,再将与两种二胺单体摩尔总量等摩尔量的4,4′-(2,2,2-三氟-1-苯基亚乙基)二苯酐(3FDA)单体分两次加入到反应体系中,其中两次加入中间间隔半小时;4,4′-(2,2,2-三氟-1-苯基亚乙基)二苯酐(3FDA)与N,N-二甲基乙酰胺(DMAc)的加入量之比为50mg/mL。继续在冰水浴中反应6h后,于室温下接着反应22h,生成含卟啉的聚酰胺酸。
在含卟啉的聚酰胺酸中加入等体积比的三乙胺-乙酸酐的混合溶剂,三乙胺加入量为N,N-二甲基乙酰胺(DMAc)体积的5%,继续反应24h,将反应物倒入无水甲醇中沉析,得到暗红色沉淀,将暗红色沉淀用甲醇反复抽滤洗涤,再于60℃真空烘干,得到含卟啉的聚酰亚胺。将所得聚合物加入KBr粉末研磨均匀后压制成片,采用傅立叶变换红外分光光度仪验证其化学结构。
(2)含卟啉的聚酰亚胺纳米纤维膜的制备
将上述制得的含卟啉的聚酰亚胺用N,N-二甲基乙酰胺(DMAc)配制成质量百分浓度为24%的溶液,放入静电纺丝装置的针筒中,调整静电纺丝装置如下:电源电压21kV,针头与接收基板之间的距离14cm,供料速度0.7mL/h,得到含卟啉的聚酰亚胺纳米纤维膜。
其中,含卟啉的聚酰亚胺为分子单元无规排列的共聚物,经检测其红外光谱如图8,图8中1780cm-1和1731cm-1分别是聚酰亚胺分子中酰亚胺环羰基的不对称伸缩振动和对称伸缩振动吸收峰;1500cm-1是苯环的骨架伸缩振动吸收峰;1380cm-1是酰亚胺环碳氮键的伸展,720cm-1是酰亚胺环羰基弯曲。可见,该含卟啉的聚酰亚胺的结构式如下:
Figure BSA00000246707300111
其中m与n的比值为0.226,且n=70~110。
实施例4
(1)含卟啉的聚酰亚胺的合成
5,10-二(4-氨基苯基)-15,20-二苯基卟啉(cis-DATPP)的制备同实施例1。
氮气保护下、冰水浴中将5,10-二(4-氨基苯基)-15,20-二苯基卟啉(cis-DATPP)和4,4′-二氨基二苯甲酮(DABP)作为二胺单体,溶于N,N-二甲基乙酰胺(DMAc)中,cis-DATPP与DABP的摩尔比为0.5∶1,电磁搅拌使其溶解得到均相体系,再将与两种二胺单体摩尔总量等摩尔量的2,2′-双(三氟甲氧基)-4,4′,5,5′-联苯四酸二酐(2,2′-TEFODA)单体分两次加入到反应体系中,其中两次加入中间间隔半小时;2,2′-双(三氟甲氧基)-4,4′,5,5′-联苯四酸二酐(2,2′-TEFODA)与N,N-二甲基乙酰胺(DMAc)的加入量之比为50mg/mL。继续在冰水浴中反应6h后,于室温下接着反应20h,生成含卟啉的聚酰胺酸。
在含卟啉的聚酰胺酸中加入等体积比的三乙胺-乙酸酐的混合溶剂,三乙胺加入量为N,N-二甲基乙酰胺(DMAc)体积的5%,继续反应26h,将反应物倒入无水甲醇中沉析,得到红褐色沉淀,将红褐色沉淀用甲醇反复抽滤洗涤,再于60℃真空烘干,得到含卟啉的聚酰亚胺。将所得聚合物加入KBr粉末研磨均匀后压制成片,采用傅立叶变换红外分光光度仪验证其化学结构。
(2)含卟啉的聚酰亚胺纳米纤维膜的制备
将上述制得的含卟啉的聚酰亚胺用N,N-二甲基乙酰胺(DMAc)配制成质量百分浓度为25%的含卟啉的聚酰亚胺溶液,放入静电纺丝装置的针筒中,调整静电纺丝装置如下:电源电压20kV,针头与接收基板之间的距离15cm,供料速度1.2mL/h,得到含卟啉的聚酰亚胺纳米纤维膜。
其中,含卟啉的聚酰亚胺为分子单元无规排列的共聚物,经检测其红外光谱如图9,图9中1783cm-1和1727cm-1分别是聚酰亚胺分子中酰亚胺环羰基的不对称伸缩振动和对称伸缩振动吸收峰;1500cm-1是苯环的骨架伸缩振动吸收峰;1378cm-1是酰亚胺环碳氮键的伸展,718cm-1是酰亚胺环羰基弯曲。可见,该含卟啉的聚酰亚胺的结构式如下:
Figure BSA00000246707300121
应用例1
含卟啉的聚酰亚胺纳米纤维膜对汞离子的检测:由于卟啉基团的存在,所制得的含卟啉聚酰亚胺纳米纤维膜在特定的激发波长下可发射出荧光。当卟啉与汞离子配位时可导致其荧光发生猝灭,因此可利用荧光光谱仪检测浸入汞离子溶液前后纤维膜在特定发射波长下荧光强度的变化达到检测汞离子的目的。
取实施例1中制备的2cm2的含卟啉的聚酰亚胺纳米纤维膜,将纤维膜在不同浓度的硝酸汞水溶液中浸泡5min后取出烘干。当膜烘干后,可以看到纤维膜由原来的红褐色变为草绿色;用荧光光谱仪记录纤维膜与不同浓度汞离子相互作用前后最大发射波长处的荧光强度,并计算不同浓度汞离子溶液对纤维膜表面荧光强度的猝灭效率(即(1-F/F0)×100%),结果如图2所示。其中,F0代表未与汞离子溶液作用前纤维膜表面在最大发射波长(655nm)处的荧光强度,F代表与不同浓度汞离子溶液作用后纤维膜表面在655nm处的荧光强度,M是浓度单位mol/L。
荧光光谱仪的参数如下:激发波波长为420nm;接收波波段为625nm~700nm。
应用例2
取实施例2中制备的2cm2的含卟啉的聚酰亚胺纳米纤维膜,将纤维膜在不同浓度的硝酸汞水溶液中浸泡5min后取出烘干。当膜烘干后,可以看到纤维膜由原来的暗红色变为绿色;用荧光光谱仪记录纤维膜与不同浓度汞离子相互作用前后最大发射波长处的荧光强度,并计算不同浓度汞离子溶液对纤维膜表面荧光强度的猝灭效率((1-F/F0)×100%),结果如图3所示。其中,F0代表未与汞离子溶液作用前纤维膜表面在最大发射波长(658nm)处的荧光强度,F代表与不同浓度汞离子溶液作用后纤维膜表面在658nm处的荧光强度,M是浓度单位mol/L。荧光光谱仪的参数同应用例1。
应用例3
取实施例3中制备的2cm2的含卟啉的聚酰亚胺纳米纤维膜,将纤维膜在不同浓度的硝酸汞水溶液中浸泡5min后取出烘干。当膜烘干后,可以看到纤维膜由原来的暗红色变为草绿色;用荧光光谱仪记录纤维膜与不同浓度汞离子相互作用前后最大发射波长处的荧光强度,并计算不同浓度汞离子溶液对纤维膜表面荧光强度的猝灭效率((1-F/F0)×100%),结果如图4所示。其中,F0代表未与汞离子溶液作用前纤维膜表面在最大发射波长(653nm)处的荧光强度,F代表与不同浓度汞离子溶液作用后纤维膜表面在653nm处的荧光强度,M是浓度单位mol/L。荧光光谱仪的参数同应用例1。
应用例4
取实施例4中制备的2cm2的含卟啉的聚酰亚胺纳米纤维膜,将纤维膜在不同浓度的硝酸汞水溶液中浸泡5min后取出烘干。当膜烘干后,可以看到纤维膜由原来的红褐色变为浅绿色;用荧光光谱仪记录纤维膜与不同浓度汞离子相互作用前后最大发射波长处的荧光强度,并计算不同浓度汞离子溶液对纤维膜表面荧光强度的猝灭效率((1-F/F0)×100%),结果如图5所示。其中,F0代表未与汞离子溶液作用前纤维膜表面在最大发射波长(650nm)处的荧光强度,F代表与不同浓度汞离子溶液作用后纤维膜表面在650nm处的荧光强度,M是浓度单位mol/L。荧光光谱仪的参数同应用例1。

Claims (9)

1.一种含卟啉的聚酰亚胺,具有如下结构通式:
其中,Por为:
Ar为:
Figure FSB00000657081400013
m与n的比值大于0且小于0.50,50≤n≤160。
2.如权利要求1所述的含卟啉的聚酰亚胺的制备方法,包括如下步骤:
(1)在氮气保护下,冰水浴中将二氨基四苯基卟啉和芳香族有机二胺溶解于N,N-二甲基乙酰胺中得到反应溶液,再将芳香族四酸二酐单体分两次加入到反应体系中,中间间隔半小时,继续在冰水浴中反应4h~6h后,于室温下反应20h~24h生成含卟啉的聚酰胺酸;
(2)将上述含卟啉的聚酰胺酸中加入三乙胺-乙酸酐的混合溶剂,继续反应24h~26h,反应产物倒入无水甲醇中沉析,得到絮状沉淀,将此沉淀用甲醇反复抽滤洗涤,再于60℃真空烘干,得到含卟啉的聚酰亚胺;其中,三乙胺-乙酸酐的混合溶剂中三乙胺与乙酸酐的体积比为1∶1。
3.如权利要求2所述的含卟啉的聚酰亚胺的制备方法,其特征在于,所述的二氨基四苯基卟啉为5,10-二(4-氨基苯基)-15,20-二苯基卟啉或5,15-二(4-氨基苯基)-10,20-二苯基卟啉。
4.如权利要求2所述的含卟啉的聚酰亚胺的制备方法,其特征在于,所述的芳香族有机二胺为全间位三苯二醚二胺或4,4′-二氨基二苯甲酮。
5.如权利要求2所述的含卟啉的聚酰亚胺的制备方法,其特征在于,所述的芳香族四酸二酐选用含三氟甲基的1,4-双(三氟甲基)-2,3,5,6-均苯四甲酸二酐、4,4′-六氟亚异丙基-邻苯二甲酸酐、4,4′-(2,2,2-三氟-1-苯基亚乙基)二苯酐或2,2′-双(三氟甲氧基)-4,4′,5,5′-联苯四酸二酐。
6.如权利要求2所述的含卟啉的聚酰亚胺的制备方法,其特征在于,所述的二氨基四苯基卟啉与芳香族有机二胺的摩尔比为0.05~0.5∶1。
7.如权利要求2所述的含卟啉的聚酰亚胺的制备方法,其特征在于,所述的二氨基四苯基卟啉和芳香族有机二胺的摩尔总量与芳香族四酸二酐摩尔比为1∶1。
8.如权利要求1所述的含卟啉的聚酰亚胺纳米纤维膜的制备方法,其特征在于,包括如下步骤:
将含卟啉的聚酰亚胺溶于N,N-二甲基乙酰胺,制成含卟啉的聚酰亚胺溶液,采用静电纺丝装置,在电源电压16kV~23kV、针头与接收基板之间的距离为10cm~15cm、供料速度为0.6mL/h~1.2mL/h的纺丝条件下,得到含卟啉的聚酰亚胺纳米纤维膜。
9.如权利要求8所述的含卟啉的聚酰亚胺纳米纤维膜的制备方法制备的含卟啉的聚酰亚胺纳米纤维膜在检测水溶液中汞离子中的应用。
CN2010102650523A 2010-08-24 2010-08-24 含卟啉的聚酰亚胺及其制备方法和应用 Expired - Fee Related CN101948569B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102650523A CN101948569B (zh) 2010-08-24 2010-08-24 含卟啉的聚酰亚胺及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102650523A CN101948569B (zh) 2010-08-24 2010-08-24 含卟啉的聚酰亚胺及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN101948569A CN101948569A (zh) 2011-01-19
CN101948569B true CN101948569B (zh) 2012-04-25

Family

ID=43452207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102650523A Expired - Fee Related CN101948569B (zh) 2010-08-24 2010-08-24 含卟啉的聚酰亚胺及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN101948569B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103015033B (zh) * 2012-11-21 2016-06-29 华南理工大学 一种新型含氟聚酰亚胺纳米纤维膜及其制备方法与应用
CN103993430B (zh) * 2014-03-25 2016-08-17 西北农林科技大学 一种比色纳米纤维薄膜的制备方法及其用于镉离子检测的应用
JP7084683B2 (ja) * 2015-02-23 2022-06-15 東京応化工業株式会社 液体の精製方法、薬液又は洗浄液の製造方法、フィルターメディア、及び、フィルターデバイス
CN106450445B (zh) * 2016-10-14 2019-05-14 华南理工大学 基于含氟聚酰亚胺聚合物电解质及其制备方法和应用
CN107509743A (zh) * 2017-09-06 2017-12-26 袁树东 一种高效消毒灭菌组合物及其应用
CN107484774A (zh) * 2017-09-06 2017-12-19 袁树东 一种环保灭菌消毒组合物及其制备方法
CN110384990B (zh) * 2018-04-19 2021-01-12 北京化工大学 一种功能化纳米纤维三维网状柔性传感薄膜及其制备方法和应用
CN109796613B (zh) * 2019-01-11 2020-05-22 华南理工大学 氟离子显色传感聚酰亚胺薄膜及其制备方法与应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100566998C (zh) * 2007-03-07 2009-12-09 东华大学 一种柔性聚酰亚胺覆铜箔板(fccl)的制备方法
CN101619133B (zh) * 2009-04-30 2011-03-16 浙江大学 含卟啉的聚酰亚胺纳米纤维膜的制备方法及应用
CN101787130B (zh) * 2010-03-04 2012-04-25 浙江大学 含卟啉的聚酰亚胺及其制备方法和应用

Also Published As

Publication number Publication date
CN101948569A (zh) 2011-01-19

Similar Documents

Publication Publication Date Title
CN101948569B (zh) 含卟啉的聚酰亚胺及其制备方法和应用
CN101787130B (zh) 含卟啉的聚酰亚胺及其制备方法和应用
CN108246271B (zh) 一种用于2,4,6-三硝基苯酚检测的分子印迹聚合物微球的制备方法
Wang et al. Preparation of fluorescent nanofibrous film as a sensing material and adsorbent for Cu2+ in aqueous solution via copolymerization and electrospinning
Li et al. New lanthanide ternary complex system in electrospun nanofibers: Assembly, physico-chemical property and sensor application
Long et al. Electrospun nanofibrous film doped with a conjugated polymer for DNT fluorescence sensor
CN101619133B (zh) 含卟啉的聚酰亚胺纳米纤维膜的制备方法及应用
CN103424381B (zh) 基于磁性分子印迹聚合物放大效应构建的spr传感器在农药检测中的应用
CN105153420B (zh) 一种可检测重金属离子的水溶性卟啉基聚合物
CN105713184B (zh) 用于检测硝基类爆炸物的荧光传感聚合物材料及制备方法
CN107132207B (zh) 一种用于快速检测爆炸物的荧光传感器及其制备方法,快速检测爆炸物的方法
CN108689963B (zh) 苯并噻二唑丙二腈及其合成方法以及检测cn-的方法
Tan et al. Apigenin/furfurylamine-based bio-polyamide derivative: Benzoxazine-isocyanide mechanochemistry preparation and application in Pb (II) electrochemical probing
Peng et al. Two cyanoethylene-based fluorescence probes for highly efficient cyanide detection and practical applications in drinking water and living cells
CN109438700A (zh) 一种聚甲基三唑甲酸酯及其制备方法与应用
Zhao et al. Synthesis, processability and photoluminescence of pyrene-containing polyimides
CN103755928B (zh) 一种水溶性卟啉共轭聚合物及其制备方法与应用
Wei et al. Recent advances research and application of lignin-based fluorescent probes
Yan et al. Specific “light-up” sensor made easy: An aggregation induced emission monomer for molecular imprinting
Jiao et al. Fluorescent cellulose/testing paper for the sensitive and selective recognition of explosives 2, 4, 6-trinitrophenol and 2, 4-dinitrophenylhydrazine
Gupta et al. Characteristic response of tetra (methylbenzyloxy)-substituted zinc-phthalocyanine toward picric acid
Wang et al. Renewable supramolecular assembly-induced emission enhancement system for efficient detection and removal of silver (I)
CN108997258B (zh) 用于合成苯并噻二唑丙二腈的中间体及其合成方法以及检测cn-的方法
Zhu et al. Fluorescence detection of D-aspartic acid based on thiol-ene cross-linked molecularly imprinted optical fiber probe
Qin et al. A chiral fluorescent COF prepared by post-synthesis modification for optosensing of imazamox enantiomers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120425

Termination date: 20130824