CN101947145A - 计算复曲面植入体的必需屈光力的方法 - Google Patents

计算复曲面植入体的必需屈光力的方法 Download PDF

Info

Publication number
CN101947145A
CN101947145A CN2010100046596A CN201010004659A CN101947145A CN 101947145 A CN101947145 A CN 101947145A CN 2010100046596 A CN2010100046596 A CN 2010100046596A CN 201010004659 A CN201010004659 A CN 201010004659A CN 101947145 A CN101947145 A CN 101947145A
Authority
CN
China
Prior art keywords
implant
cornea
refractive power
plane
corneal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010100046596A
Other languages
English (en)
Other versions
CN101947145B (zh
Inventor
布莱克·哈瑞斯
詹姆斯·豪夫曼
洪昕
张晓啸
沃伦·E·希尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Alcon Inc
Original Assignee
Alcon Universal Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35060186&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101947145(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alcon Universal Ltd filed Critical Alcon Universal Ltd
Publication of CN101947145A publication Critical patent/CN101947145A/zh
Application granted granted Critical
Publication of CN101947145B publication Critical patent/CN101947145B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1637Correcting aberrations caused by inhomogeneities; correcting intrinsic aberrations, e.g. of the cornea, of the surface of the natural lens, aspheric, cylindrical, toric lenses
    • A61F2/1645Toric lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/028Special mathematical design techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/142Cornea, e.g. artificial corneae, keratoprostheses or corneal implants for repair of defective corneal tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Prostheses (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本发明涉及一种使用测出的术前角膜/眼散光和预测的外科诱发散光来计算复曲面植入体的必需柱面屈光力的方法。使用外科医生采用的外科技术的屈光力向量分析来预测术后角膜/眼散光。这样的方法提供了计算植入体的必需球柱面屈光力的更准确方法。该方法可以手动实现,但是优选地通过适当的软件在计算机上来实现自动化。

Description

计算复曲面植入体的必需屈光力的方法 
本申请是申请日为2005年3月23日、申请号为200580010245.1、发明名称为“计算复曲面植入体的必需屈光力的方法”的发明专利申请的分案申请。 
技术领域
本发明总体涉及眼科晶体(lens)的领域,更具体地涉及复曲面人工晶体(toric intraocular lenses)(例如,人工晶状体IOL、AC有晶体眼IOL(AC phakic IOL)、PC有晶体眼IOL、虹膜固定式IOL等)。 
背景技术
最简单地说,人类的眼睛通过使光透射穿过被称为角膜的透明外部,并利用晶状体将图像聚焦到视网膜上而产生视觉。聚焦图像的质量取决于很多因素,包括眼睛的大小和形状、以及角膜和晶体的透明度。 
眼睛的屈光力(optical power)是由角膜和晶状体的屈光力决定的。在正常的、健康的眼睛中,在视网膜上形成清晰的图像(正常眼)。在很多眼睛中,因为眼睛不正常地长(轴向近视)而在视网膜前面形成图像,或者因为眼睛不正常地短(轴向远视)而在视网膜的后面形成图像。角膜和晶状体也可能不是球面的、规则的,而是不对称的或者复曲面的,导致未补偿的柱面屈光误差(refractive error),这被称为角膜散光和眼球散光,它们合在一起形成了眼散光。最后,如果对眼睛进行外科治疗,该治疗过程本身可能诱发角膜散光。 
这些屈光误差都可以矫正,当保留自然晶体时,利用屈光植入体来矫正,或者通过用于取代自然晶体的人工晶体(IOL)来矫正。关 于复曲面植入体,为了矫正角膜/眼睛的规则散光,植入体的柱面屈光力的大小以及植入体与自然发生或者诱发的角膜/眼睛的不对称之间的精确对准是必需的。植入体的轴与角膜/眼睛的轴对准是非常重要的,因为即使柱面的大小匹配,只要轴未对准,就会导致在球面和柱面两种情况下出现不希望的残余屈光误差。因此,植入体的柱面的轴与角膜/眼睛的轴之间的不对准将对最佳视网膜成像的最终目标造成损害。所需对准的临界程度取决于角膜/眼柱面的大小,特别是对于较大的角膜/眼柱面来说。 
在美国专利No.5,709,218(Holladay等人)中公开了一种现有技术的方法,该方法基于外科技术来预测必需的球面IOL屈光力。但是,该方法不使用屈光力向量分析来确定复曲面植入体的矫正能力或者取向。存在多种数学模型可用于估计外科诱发的散光。关于使用屈光力向量分析来估计由Lasik外科技术导致的屈光误差,Thibos、Holladay、Horner、Cravy和Koch等作者已出版了很多论文。以上方法为矫正效果提供了评估手段。但是,它们没有在如何正确地做外科手术以实现最佳屈光结果方面为外科医生提供直接的指导。此外,这些模型没有考虑晶体在眼睛内的位置。 
因此,一直需要一种考虑到自然发生的和外科诱发的散光误差两方面,计算所预测的术后眼内屈光误差的方法。 
发明内容
本发明对现有技术的改进在于提供了一种使用测出的术前角膜/眼散光和预测的外科诱发散光来计算复曲面植入体的必需屈光力的方法。使用对外科医生所采用的外科技术的屈光力向量分析来预测外科诱发的散光。这样的方法提供了计算植入体的必需术后屈光力的更准确的方法。该方法可以手动实施,但是优选地通过适当的软件在计算机上实现来自动化。 
由此,本发明的一个目的是提供一种使用测出的术前角膜/眼散光和预测的外科诱发散光来计算复曲面植入体的必需屈光力的方法。 
本发明的另一个目的是提供一种使用外科医生所采用的外科技术的屈光力向量分析来计算复曲面植入体的必需屈光力的方法。 
本发明还有一个目的是提供一种计算植入体的必需术后屈光力的更准确的方法。 
从以下具体实施方式部分和权利要求书中将会清楚本发明的这些及其他优点和目的。 
附图说明
图1是指示本发明的方法的步骤的流程图。 
图2是具有物理放置在植入体平面以及虚拟放置在角膜平面的人工晶体的眼睛的示意图。 
图3和图4是因失误引入的,与本发明不相关。 
具体实施方式
本发明的方法10一般包括基于患者因素和外科医生因素来确定患者的散光误差的大小。患者因素(12)包括:(i)植入体的平均球体等效值(MSE),(ii)最陡子午线(K1)和轴(A1)的K读数以及最平子午线(K2)和轴(A2)的K读数,(iii)前室深度(ACD)或者有效晶体位置(ELP)和(iv)整只眼睛的屈光度验光结果(manifest refraction)(在计算眼散光的情况下)。外科医生因素(14)包括每个外科医生特有的切口尺寸和位置(incision)以及外科诱发屈光变化(SIRC)。在步骤16使用屈光力向量分析法来分析患者因素12和外科医生因素14。步骤16可以使用本领域公知的多项数学等式中的任何一项,这里将讨论一个适合的等式。可以如下用M、J0和J45来描述验光常规(-cyl格式)或者眼科常规(+cyl格式)的球柱面处方(S、C和α): 
M = S + C 2 ;
J 0 = - C 2 cos ( 2 α ) ;
J 45 = - C 2 sin ( 2 α ) ;
B = M 2 + J 0 2 + J 45 2 - - - ( 1 )
其中B被称为模糊强度。它是在最低混淆的平面上的等效屈光散焦。 
屈光力向量格式的屈光误差可以被转换回球柱面格式。由于验光(-cyl格式)和眼科(+cyl格式)常规很容易互换,所以在等式(2)中给出了从M、J0和J45到验光(-cyl格式)常规的转换: 
C = - 2 J 0 2 + J 45 2 ;
S = M - C 2 ;
Figure G2010100046596D00043
临床处方中的柱轴通常落在0°和180°之间。为了使轴在合理的范围内,可能遇到四种不同的条件,如等式(2)中所示。 
当前的白内障外科手术的角膜切割过程会引起与切割位置相关联的子午线处的角膜平面的平坦化和陡峭化。这在术后屈光度(refraction)中产生了可测的柱面屈光力改变和柱轴偏移。在预测术后散光时应当考虑外科诱发的散光变化,这样才有可能使用复曲面植入体来中和整只眼睛的散光。使用等式(1),角膜屈光误差SCornea、CCornea和αCornea以及外科诱发屈光变化(SIRC)SSIRC’、CSIRC’和αSIRC’可以被转换为屈光力向量。为了简化,角膜屈光误差的屈光力向量被表示为(M,J0,J45),SIRC的屈光力向量被表示为(M’,J0’,J45’)。用于预测的术后角膜屈光误差的屈光力向量是角膜和SIRC屈光力向量的和。 
RxCornea=(M,J0,J45);RxSIRC′=(M′,J0′,J45′) 
RxXcyl=RxCornea+RxSIRC ′=(M+M′,J0+J0′,J45+J45′)     (3) 
在整只眼睛的情况下,整只眼睛的屈光误差是SEye、SEye和αEye, 因此以上等式可以被改写为: 
RxEye=(M,J0,J45);RxSIRC′=(M′,J0′,J45′) 
RxXcyl=RxEye+RxSIRC′=(M+M′,J0+J0′,J45+J45′) 
预测的术后角膜/眼向量可以使用等式(2)被转换为常规的球柱面格式。转换结果被标注为SXcyl、CXcyl和αXcyl,因为它们是横截柱面计算的结果。 
为了复曲面植入体的选择,关注点将是柱面分量CXcyl和αXcyl。在角膜平面,需要利用CXcyl和αXcyl来进行复曲面矫正。然而,由于从角膜平面到植入体平面的屈光力转移特性,因此植入体平面上所需的复曲面矫正与角膜平面的不同。复曲面植入体具有如等式(4)所描述的柱面屈光力和柱轴。 
CImplant=CF*CXcyl
αImplant=αXcyl                    (4) 
其中,CF是角膜平面和植入体平面之间的转换因子。由计算出的CImplant和αImplant值,可以选择适当的复曲面植入体模型,并且选定的植入体将被放在αImplant所指示的子午线处。在步骤16中构想的向量分析导致计算出的术后角膜/眼散光18,它考虑了患者因素12和外科医生因素14两方面。如果植入体是人工晶体(IOL),则在步骤18处计算出的在角膜平面上的预测柱面误差在步骤20处被转换为在植入体平面上的必需柱面误差。 
在以下讨论中,总的原则是光学元件的屈光力用“P”表示,聚散度(vergence)用“L”表示。我们将Pcornea定义为在某个子午线处的角膜屈光力,将PImplant定义为植入体的屈光力,将PImplant’定义为植入体在角膜平面上的等效屈光力,将Lcornea定义为紧临在角膜平面后的聚散度,将LImplant定义为在植入体的第一主平面上的聚散度,将LImplant’定义为在植入体的第二主平面上的聚散度,将n定义为水状体的折射率,将d定义为在角膜和植入体的第一主平面之间的距离。 
通常,Lcornea等于在角膜平面上的眼镜矫正的聚散度和角膜的屈光力之和。 
Lcornea=LRx+Pcornea             (5) 
其中,LRx是在角膜平面上的眼镜校正的聚散度。对于白内障外科手术后的正视眼,LRx等于0。在以下讨论中,如果没有特别指出,我们认为Lcornea与Pcornea相同 
如图2所示,在上部的图示中,植入体被物理放置在植入体平面上。在下部的图示中,植入体被虚拟放置在角膜平面上。在植入体平面上的植入体的第一主平面被表示为FP,在植入体平面上的植入体的第二主平面被表示为SP。在两种情景中,聚散度在玻璃室前(即,在SP平面)应当相同。通过使在两种不同情景下计算出的聚散度相同,可以发现关系来决定在植入体平面上的所需植入体屈光力。更具体地说,在植入体平面上的所需植入体屈光力将是紧临在角膜后的聚散度(LCornea)、在角膜平面的所需植入体屈光力(PImplant’)、角膜的第二主平面(靠近前角膜平面)和植入体的第一主平面之间的距离(d)以及水状体的折射率(n)的函数。在有关复曲面值计算的讨论中,d和n可以被固定为常数。 
PIOL=f(Lcornea,PImplant′,d,n)=fd,n(Lcornea,PImplant′)      (6) 
根据第一光学系统,在SP平面的聚散度是: 
L Implant ′ = L cornea 1 - d n L cornea + P Implant - - - ( 7 )
根据第二虚拟光学设置,考虑植入体的位置偏移,在SP平面的聚散度是: 
L Implant ′ = P Implant ′ + L cornea 1 - d n ( P Implant ′ + L cornea ) - - - ( 8 )
通过使等式(7)和(8)的右侧相等, 
L cornea 1 - d n L cornea + P Implant = P Implant ′ + L cornea 1 - d n ( P Implant ′ + L cornea ) - - - ( 9 )
获得下式: 
P Implant ′ = P Implant ( 1 - d n L cornea ) 2 1 + d n P Implant ( 1 - d n L cornea ) - - - ( 10 )
P Implant = P Implant ′ ( 1 - d n L cornea ) ( 1 - d n ( P Implant ′ + L cornea ) ) - - - ( 11 )
等式(10)针对在植入体平面上的给定植入体,计算在角膜平面上的等效植入体。等式(11)根据在角膜平面上的必需屈光力来计算在植入体平面上的所需植入体屈光力。采用最大和最小屈光力之差可以获得所需的复曲面值。 
假定光轴长度是ALO,则在角膜平面上的必需植入体屈光力可以被计算为: 
P Implant ′ = n AL O - L cornea - - - ( 12 )
例如,患者的k读数K1=42.75D×120°,K2=44.75D×30°。假定没有外科医生导致的散光,则正视眼具有轴长23.65mm,d=5.20mm,n=1.336。在角膜平面上的必需植入体屈光力是13.74D×120°和11.74D×30°。将这些值放入等式(11)中,在植入体平面上的植入体屈光力是21.13D×120°和18.22D×30°。比较角膜的复曲面值2.00D,植入体应当具有-2.91 D的复曲面值,转换因子为1.46。 
等式(11)包括Lcornea和PImeplant’,因此,通过对等式(11)求微分,必须确定哪个变量对球面屈光力和柱面屈光力的计算影响最大,确定这两个因素对复曲面值的影响是不变的。 
dP Implant = ∂ P Implant ∂ P Implant ′ dP Implant ′ + ∂ P Implant ∂ L cornea dL cornea - - - ( 13 )
Cyl Implant = ∂ P Implant ∂ P Implant ′ Cyl Implant ′ + ∂ P Implant ∂ L cornea Cyl cornea - - - ( 14 )
C 1 = ∂ P Implant ∂ P Implant ′ , C 2 = ∂ P Implant ∂ L cornea - - - ( 15 )
其中,dPImplant可以被认为是球面屈光力因选择不同的子午线而产生的变化,因此可以被视为植入体的柱面屈光力,类似地,dPImplant’可以被视为植入体在角膜平面上的柱面屈光力,dLcornea可以被视为角膜的柱面屈光力。直观上,等式(14)意味着植入体的柱面屈光力是它在角膜平面上的屈光力和角膜的柱面屈光力的函数,如等式(15)所示。如果dPImplant’(CylImplant’)和dLcornea(Cylcornea)之前的系数 
∂ P Implant ∂ P Implant ′ - - - ( 16 )
和 
∂ P Implant ∂ L cornea - - - ( 17 )
是常数,那么等式(14)将是线性等式。然而,这两个系数通常不是常数,而是PImplant’和Lcornea的函数。 
利用进一步的计算,可以确定 
C 1 = ∂ P Implant ∂ P Implant ′ = 1 ( 1 - d n ( P Implant ′ + L cornea ) ) 2 - - - ( 18 )
C 2 = ∂ P Implant ∂ L cornea = 1 ( 1 - d n ( P Implant ′ + L cornea ) ) 2 - 1 ( 1 - d n L cornea ) 2 - - - ( 19 )
在等式(25)中,在角膜平面的所需IOL柱面值(CylIOL’)等于CXcyl,角膜柱面(Cylcornea,包括外科诱发的散光)等于所要矫正的屈光误差-CXcyl。因此,等式(15)可以被改写为: 
CylImplant=(C1-C2)*CXcyl=CF*CXcyl    (20) 
CF=C1-C2高度依赖于d和角膜K值。对于35D-55D的正常范围内的角膜屈光力,通过将d固定为感兴趣的每个区域的平均值,利用等式(18)和(19)来计算转换因子(CF)。 
对于0mm≤d<0.25mm,CF=1.00; 
对于0.25mm≤d<0.75mm,CF=1.02-1.04; 
对于0.75mm≤d<1.25mm,CF=1.05-1.09; 
对于1.25mm≤d<1.75mm,CF=1.08-1.14; 
对于1.75mm≤d<2.25mm,CF=1.11-1.19; 
对于2.25mm≤d<2.75mm,CF=1.15-1.24; 
对于2.75mm≤d<3.25mm,CF=1.18-1.30; 
对于3.25mm≤d<3.75mm,CF=1.21-1.37; 
对于3.75mm≤d<4.25mm,CF=1.25-1.43; 
对于4.25mm≤d<4.75mm,CF=1.29-1.51; 
对于4.75mm≤d≤5.25mm,CF=1.32-1.59; 
对于5.25mm<d≤5.75mm,CF=1.37-1.67; 
对于5.75mm<d≤6.25mm,CF=1.41-1.76; 
对于6.25mm<d≤6.75mm,CF=1.45-1.86; 
对于6.75mm<d≤7.25mm,CF=1.50-1.97。 
对于将被放在角膜附近或者角膜中的植入体,例如屈光植入体,屈光力转移步骤20不是必要的。一旦在步骤18和/或步骤20确定了植入体的必需屈光力,则该计算出的屈光力可以被用来选择适当的晶体模型,并且分别在步骤22和24中向手术者报告晶体模型。也可以分别在步骤26和28中向手术者报告晶体屈光力计算结果和轴向放置。本发明因而提供了一种使用测出的术前角膜/眼散光和预测的外科诱发散光来计算复曲面植入体的必需屈光力的准确方法。 
本说明书只是为了说明和解释的目的。本领域的技术人员将会清楚可以对上述发明作出改变和修改,而不会偏离其精神和范围。 

Claims (1)

1.一种计算眼科植入体在角膜平面上以及在植入体平面上的必需复曲面屈光力的方法,包括以下步骤:
a)使用与某个子午线处的角膜屈光力Pcornea相等的紧临在角膜平面后的聚散度Lcornea来描述人眼的光学系统;
b)使所述植入体位于角膜平面上时以及位于植入体平面上时的两个等效光学系统相同;
c)用以下等式来计算所述植入体的屈光力PImplant以及所述植入体在角膜平面上的等效屈光力PImplant′:
P Implant ′ = P Implant ( 1 - d n L cornea ) 2 1 + d n P Implant ( 1 - d n L cornea )
P Implant = P Implant ′ ( 1 - d n L cornea ) ( 1 - d n ( P Implant ′ + L cornea ) ) ,
其中,d=在角膜和植入体的主平面之间的距离,n=水状体的折射率;以及
d)使用在陡子午线和平坦子午线之间的球面屈光力的屈光差来计算植入体在角膜平面上以及在植入体平面上的复曲面值。
CN201010004659.6A 2004-04-06 2005-03-23 计算复曲面植入体的必需屈光力的方法 Active CN101947145B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/819,020 2004-04-06
US10/819,020 US7476248B2 (en) 2004-04-06 2004-04-06 Method of calculating the required lens power for an opthalmic implant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2005800102451A Division CN1937969B (zh) 2004-04-06 2005-03-23 计算复曲面植入体的必需屈光力的方法

Publications (2)

Publication Number Publication Date
CN101947145A true CN101947145A (zh) 2011-01-19
CN101947145B CN101947145B (zh) 2014-08-13

Family

ID=35060186

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2005800102451A Active CN1937969B (zh) 2004-04-06 2005-03-23 计算复曲面植入体的必需屈光力的方法
CN201010004659.6A Active CN101947145B (zh) 2004-04-06 2005-03-23 计算复曲面植入体的必需屈光力的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2005800102451A Active CN1937969B (zh) 2004-04-06 2005-03-23 计算复曲面植入体的必需屈光力的方法

Country Status (16)

Country Link
US (2) US7476248B2 (zh)
EP (1) EP1732471B2 (zh)
JP (1) JP4648384B2 (zh)
CN (2) CN1937969B (zh)
AT (1) ATE398426T1 (zh)
AU (1) AU2005232551B2 (zh)
BR (1) BRPI0509637B8 (zh)
CA (1) CA2561415C (zh)
CY (1) CY1108338T1 (zh)
DE (1) DE602005007586D1 (zh)
DK (1) DK1732471T4 (zh)
ES (1) ES2308472T5 (zh)
PL (1) PL1732471T5 (zh)
PT (1) PT1732471E (zh)
SI (1) SI1732471T2 (zh)
WO (1) WO2005099561A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111653364A (zh) * 2020-07-09 2020-09-11 王世明 一种人工晶状体屈光力计算方法及装置
CN111796418A (zh) * 2020-07-30 2020-10-20 杭州明视康眼科医院有限公司 一种散光型人工晶体(Toric IOL)的屈光度计算方法

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7044604B1 (en) * 2001-07-11 2006-05-16 Arrowsmith Peter N Method for determining the power of an intraocular lens used for the treatment of myopia
US7556378B1 (en) 2003-04-10 2009-07-07 Tsontcho Ianchulev Intraoperative estimation of intraocular lens power
DE10344781A1 (de) * 2003-09-23 2005-04-14 Carl Zeiss Meditec Ag Verfahren zur Bestimmung einer Intraokularlinse
US7476248B2 (en) * 2004-04-06 2009-01-13 Alcon, Inc. Method of calculating the required lens power for an opthalmic implant
AU2005234778B2 (en) 2004-04-20 2011-04-21 Alcon Inc. Integrated surgical microscope and wavefront sensor
US8318459B2 (en) 2011-02-17 2012-11-27 Purecircle Usa Glucosyl stevia composition
US8257948B1 (en) 2011-02-17 2012-09-04 Purecircle Usa Method of preparing alpha-glucosyl Stevia composition
US8790730B2 (en) 2005-10-11 2014-07-29 Purecircle Usa Process for manufacturing a sweetener and use thereof
US9392799B2 (en) 2011-02-17 2016-07-19 Purecircle Sdn Bhd Glucosyl stevia composition
US9386797B2 (en) 2011-02-17 2016-07-12 Purecircle Sdn Bhd Glucosyl stevia composition
US9107436B2 (en) 2011-02-17 2015-08-18 Purecircle Sdn Bhd Glucosylated steviol glycoside as a flavor modifier
US20070282438A1 (en) * 2006-05-31 2007-12-06 Xin Hong Intraocular lenses with enhanced off-axis visual performance
US20080004698A1 (en) 2006-06-30 2008-01-03 Alcon, Inc. Correction of surgically-induced astigmatism during intraocular lens implants
DE102007032564A1 (de) * 2007-07-12 2009-01-15 Rodenstock Gmbh Verfahren zum Überprüfen und/oder Bestimmen von Benutzerdaten, Computerprogrammprodukt und Vorrichtung
JP5042740B2 (ja) * 2007-08-03 2012-10-03 株式会社ニデック 眼内レンズ選択装置及びプログラム
US8414123B2 (en) * 2007-08-13 2013-04-09 Novartis Ag Toric lenses alignment using pre-operative images
US9655775B2 (en) 2007-08-13 2017-05-23 Novartis Ag Toric lenses alignment using pre-operative images
US7594729B2 (en) 2007-10-31 2009-09-29 Wf Systems, Llc Wavefront sensor
US9168173B2 (en) 2008-04-04 2015-10-27 Truevision Systems, Inc. Apparatus and methods for performing enhanced visually directed procedures under low ambient light conditions
US20100079723A1 (en) * 2008-10-01 2010-04-01 Kingston Amanda C Toric Ophthalimc Lenses Having Selected Spherical Aberration Characteristics
US9226798B2 (en) * 2008-10-10 2016-01-05 Truevision Systems, Inc. Real-time surgical reference indicium apparatus and methods for surgical applications
US10117721B2 (en) 2008-10-10 2018-11-06 Truevision Systems, Inc. Real-time surgical reference guides and methods for surgical applications
US8550624B2 (en) 2008-11-06 2013-10-08 Wavetec Vision Systems, Inc. Optical angular measurement system for ophthalmic applications and method for positioning of a toric intraocular lens with increased accuracy
US8529060B2 (en) 2009-02-19 2013-09-10 Alcon Research, Ltd. Intraocular lens alignment using corneal center
US9173717B2 (en) * 2009-02-20 2015-11-03 Truevision Systems, Inc. Real-time surgical reference indicium apparatus and methods for intraocular lens implantation
US8876290B2 (en) 2009-07-06 2014-11-04 Wavetec Vision Systems, Inc. Objective quality metric for ocular wavefront measurements
ES2653970T3 (es) 2009-07-14 2018-02-09 Wavetec Vision Systems, Inc. Determinación de la posición efectiva de la lente de una lente intraocular utilizando potencia refractiva afáquica
ES2542903T3 (es) 2009-07-14 2015-08-12 Wavetec Vision Systems, Inc. Sistema de medición para cirugía oftálmica
MX353094B (es) 2009-11-12 2017-12-19 Purecircle Usa Inc Granulacion de un edulcorante de stevia.
US10696706B2 (en) 2010-03-12 2020-06-30 Purecircle Usa Inc. Methods of preparing steviol glycosides and uses of the same
EP2544538B1 (en) 2010-03-12 2022-06-15 PureCircle USA Inc. High-purity steviol glycosides
DE102011009473B4 (de) * 2010-04-28 2022-03-17 Rodenstock Gmbh Computerimplementiertes Verfahren zur Berechnung eines Brillenglases mit blickwinkelabhängigen Verordnungsdaten, Vorrichtung zum Berechnen oder Optimieren eines Brillenglases, Computerprogrammerzeugnis, Speichermedium, Verfahren zum Herstellen eines Brillenglases sowie Verwendung eines Brillenglases
US9510611B2 (en) 2010-12-13 2016-12-06 Purecircle Sdn Bhd Stevia composition to improve sweetness and flavor profile
BR112013014589B1 (pt) 2010-12-13 2019-04-02 Purecircle Usa Inc. Método para preparar uma composição de rebaudiosídeo d altamente solúvel
US10582846B2 (en) * 2010-12-30 2020-03-10 Amo Wavefront Sciences, Llc Method and system for eye measurements and cataract surgery planning using vector function derived from prior surgeries
US10583039B2 (en) * 2010-12-30 2020-03-10 Amo Wavefront Sciences, Llc Method and system for eye measurements and cataract surgery planning using vector function derived from prior surgeries
US10582847B2 (en) * 2010-12-30 2020-03-10 Amo Wavefront Sciences, Llc Method and system for eye measurements and cataract surgery planning using vector function derived from prior surgeries
MX362676B (es) 2011-02-10 2019-01-31 Purecircle Usa Composición de estevia.
US9603373B2 (en) 2011-02-17 2017-03-28 Purecircle Sdn Bhd Glucosyl stevia composition
US9474296B2 (en) 2011-02-17 2016-10-25 Purecircle Sdn Bhd Glucosyl stevia composition
US11690391B2 (en) 2011-02-17 2023-07-04 Purecircle Sdn Bhd Glucosylated steviol glycoside as a flavor modifier
US9894922B2 (en) 2011-05-18 2018-02-20 Purecircle Sdn Bhd Glucosyl rebaudioside C
DE102011103360B3 (de) * 2011-05-27 2012-09-13 Carl Zeiss Meditec Ag Verfahren zum Bestimmen wenigstens einer optischen Eigenschaften eines Patientenauges mit einer Intraokularlinse
MX364311B (es) 2011-05-31 2019-04-22 Purecircle Usa Composición de estevia.
BR112013030885B1 (pt) 2011-06-03 2019-01-02 Purecircle Usa Inc processo para produzir uma composição de ingrediente alimentício de stevia compreendendo rebaudiosídeo b
US9771434B2 (en) 2011-06-23 2017-09-26 Purecircle Sdn Bhd Products from stevia rebaudiana
US10480019B2 (en) 2011-08-10 2019-11-19 Purecircle Sdn Bhd Process for producing high-purity rubusoside
EP2744394A1 (en) * 2011-08-18 2014-06-25 Dave, Jagrat Natavar Toric lens calculator
BR112014004581B1 (pt) 2011-09-07 2020-03-17 Purecircle Usa Inc. Adoçante de stevia alta solubilidade, método de produção, pó, composições de adoçante e de sabor, ingrediente alimentar, alimento, bebida e produto cosmético ou farmacêutico do referido adoçante
CN110358795A (zh) 2012-05-22 2019-10-22 谱赛科有限责任公司 高纯度的甜菊醇糖苷
US9752174B2 (en) 2013-05-28 2017-09-05 Purecircle Sdn Bhd High-purity steviol glycosides
US9552660B2 (en) 2012-08-30 2017-01-24 Truevision Systems, Inc. Imaging system and methods displaying a fused multidimensional reconstructed image
US9072462B2 (en) 2012-09-27 2015-07-07 Wavetec Vision Systems, Inc. Geometric optical power measurement device
WO2014197898A1 (en) 2013-06-07 2014-12-11 Purecircle Usa Inc. Stevia extract containing selected steviol glycosides as flavor, salty and sweetness profile modifier
US10952458B2 (en) 2013-06-07 2021-03-23 Purecircle Usa Inc Stevia extract containing selected steviol glycosides as flavor, salty and sweetness profile modifier
US9968295B2 (en) 2013-08-07 2018-05-15 Novartis Ag Surgical guidance and planning software for astigmatism treatment
AU2014331833B2 (en) * 2013-10-10 2018-10-04 Alcon Inc. Correction values for IOL power estimates
EP3936513B1 (en) 2014-09-02 2024-05-22 PureCircle USA Inc. Stevia extracts enriched in rebaudioside d, e, n and/or o and process for the preparation thereof
US10398544B2 (en) 2015-04-18 2019-09-03 Samir I Sayegh Methods for selecting intraocular lenses and relaxing incisions for correcting refractive error
ES2970118T3 (es) 2015-10-26 2024-05-27 Purecircle Usa Inc Composiciones de glicósido de esteviol
RU2764635C2 (ru) 2015-12-15 2022-01-19 ПЬЮРСЁРКЛ ЮЭсЭй ИНК. Композиция стевиол гликозида
WO2017165679A1 (en) 2016-03-23 2017-09-28 Abbott Medical Optics Inc. Ophthalmic apparatus with corrective meridians having extended tolerance band with freeform refractive surfaces
EP3932368A1 (en) 2016-03-23 2022-01-05 Johnson & Johnson Surgical Vision, Inc. Ophthalmic apparatus with corrective meridians having extended tolerance band
JP6247722B1 (ja) * 2016-06-29 2017-12-13 株式会社東海メガネコンタクト ジオプター値予測システム、ジオプター値予測方法及びプログラム
AU2017352030B2 (en) 2016-10-25 2023-03-23 Amo Groningen B.V. Realistic eye models to design and evaluate intraocular lenses for a large field of view
US10739227B2 (en) 2017-03-23 2020-08-11 Johnson & Johnson Surgical Vision, Inc. Methods and systems for measuring image quality
US11083537B2 (en) 2017-04-24 2021-08-10 Alcon Inc. Stereoscopic camera with fluorescence visualization
US10299880B2 (en) 2017-04-24 2019-05-28 Truevision Systems, Inc. Stereoscopic visualization camera and platform
US10917543B2 (en) 2017-04-24 2021-02-09 Alcon Inc. Stereoscopic visualization camera and integrated robotics platform
EP3427705B1 (de) * 2017-07-13 2020-04-01 Ziemer Ophthalmic Systems AG Vorrichtung zum bearbeiten von augengewebe mittels eines gepulsten laserstrahls
AU2018376564A1 (en) 2017-11-30 2020-06-04 Amo Groningen B.V. Intraocular lenses that improve post-surgical spectacle independent and methods of manufacturing thereof
JP2023554169A (ja) * 2020-12-07 2023-12-26 セントロ デ オフタルモロヒア バリャケレール,エス.エー. 術後惹起乱視を算出するためのコンピュータ実装型方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5092880A (en) * 1988-10-21 1992-03-03 Genjiro Ohmi Method of determining the astigmatic power and the power for an intraocular lens, for a toric intraocular lens
WO2001089424A1 (en) * 2000-05-23 2001-11-29 Pharmacia Groningen Bv Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
WO2003022137A2 (en) * 2001-09-10 2003-03-20 Bausch & Lomb Incorporated Intraocular lens derviation system
US20030214628A1 (en) * 2002-05-15 2003-11-20 Patel Anilbhai S. Method of manufacturing customized intraocular lenses

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880502A (en) * 1972-06-15 1975-04-29 Humphrey Instruments Inc Ophthalmological apparatus and process having independent astigmatic and spherical inputs
US4277852A (en) * 1980-01-21 1981-07-14 Stanley Poler Intraocular lens with astigmatism correction
US4512039A (en) * 1983-05-24 1985-04-23 Lieberman David M Method of offsetting postoperative astigmatism with an intraocular lens
US4964717A (en) * 1984-03-16 1990-10-23 The Trustees Of Columbia University In The City Of New York Ophthalmic image stabilization system
US4859261A (en) * 1988-05-11 1989-08-22 Ace Ronald S Method of making multi-focus ophthalmic lens
JPH02189146A (ja) * 1988-10-21 1990-07-25 Genjiro Omi 眼内レンズ
JPH02211119A (ja) * 1988-10-21 1990-08-22 Genjiro Omi トーリック型眼内レンズの乱視度数及び眼内レンズ度数決定方法
US6467906B1 (en) * 1992-08-10 2002-10-22 Noel Ami Alpins System for evaluating and correcting irregular astigmatism in the eye of a patient
WO1994003133A1 (en) * 1992-08-10 1994-02-17 Noel Ami Alpins Method of analysing astigmatism and apparatus for performing corneal surgery
US5740815A (en) * 1995-06-07 1998-04-21 Alpins; Noel A. Method for surgically achieving minimum astigmatism measured refractively and topographically
US5282852A (en) * 1992-09-02 1994-02-01 Alcon Surgical, Inc. Method of calculating the required power of an intraocular lens
AU716040B2 (en) * 1993-06-24 2000-02-17 Bausch & Lomb Incorporated Ophthalmic pachymeter and method of making ophthalmic determinations
SE9501714D0 (sv) * 1995-05-09 1995-05-09 Pharmacia Ab A method of selecting an intraocular lens to be implanted into an eye
US5728155A (en) * 1996-01-22 1998-03-17 Quantum Solutions, Inc. Adjustable intraocular lens
US5709218A (en) 1996-04-15 1998-01-20 Allergan Method of predicting visual acuity with change of spherocylindrical refractive error
US6120148A (en) * 1998-10-05 2000-09-19 Bifocon Optics Gmbh Diffractive lens
AU7993700A (en) 1999-10-05 2001-05-10 Lasersight Technologies, Inc. Ellipsoidal corneal modeling for estimation and reshaping
US6609793B2 (en) * 2000-05-23 2003-08-26 Pharmacia Groningen Bv Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
JP4620853B2 (ja) * 2000-10-17 2011-01-26 興和株式会社 眼用レンズ選択装置
US7044604B1 (en) * 2001-07-11 2006-05-16 Arrowsmith Peter N Method for determining the power of an intraocular lens used for the treatment of myopia
US7476248B2 (en) * 2004-04-06 2009-01-13 Alcon, Inc. Method of calculating the required lens power for an opthalmic implant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5092880A (en) * 1988-10-21 1992-03-03 Genjiro Ohmi Method of determining the astigmatic power and the power for an intraocular lens, for a toric intraocular lens
WO2001089424A1 (en) * 2000-05-23 2001-11-29 Pharmacia Groningen Bv Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
WO2003022137A2 (en) * 2001-09-10 2003-03-20 Bausch & Lomb Incorporated Intraocular lens derviation system
US20030214628A1 (en) * 2002-05-15 2003-11-20 Patel Anilbhai S. Method of manufacturing customized intraocular lenses

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LARRY N.THIBOS等: "Power Vectors: An Application of Fourier Analysis to the Description and Statistical Analysis of Refractive Error", 《OPTOMETRY AND VISION SCIENCE》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111653364A (zh) * 2020-07-09 2020-09-11 王世明 一种人工晶状体屈光力计算方法及装置
CN111653364B (zh) * 2020-07-09 2023-08-29 王世明 一种人工晶状体屈光力计算方法及装置
CN111796418A (zh) * 2020-07-30 2020-10-20 杭州明视康眼科医院有限公司 一种散光型人工晶体(Toric IOL)的屈光度计算方法
CN111796418B (zh) * 2020-07-30 2022-04-26 杭州明视康眼科医院有限公司 一种散光型人工晶体(Toric IOL)的屈光度计算方法

Also Published As

Publication number Publication date
ES2308472T3 (es) 2008-12-01
WO2005099561A3 (en) 2006-09-28
PL1732471T5 (pl) 2011-12-30
EP1732471A4 (en) 2007-05-30
CN101947145B (zh) 2014-08-13
CA2561415C (en) 2010-06-01
CA2561415A1 (en) 2005-10-27
ATE398426T1 (de) 2008-07-15
AU2005232551A1 (en) 2005-10-27
ES2308472T5 (es) 2011-11-04
BRPI0509637B8 (pt) 2021-06-22
CN1937969B (zh) 2010-08-11
US20050225721A1 (en) 2005-10-13
DE602005007586D1 (de) 2008-07-31
DK1732471T4 (da) 2011-10-24
DK1732471T3 (da) 2008-09-01
PL1732471T3 (pl) 2008-11-28
BRPI0509637A (pt) 2007-09-18
CN1937969A (zh) 2007-03-28
SI1732471T2 (sl) 2011-11-30
EP1732471B1 (en) 2008-06-18
EP1732471B2 (en) 2011-07-27
US8764822B2 (en) 2014-07-01
US20090079935A1 (en) 2009-03-26
BRPI0509637B1 (pt) 2018-05-22
SI1732471T1 (sl) 2008-12-31
WO2005099561A2 (en) 2005-10-27
US7476248B2 (en) 2009-01-13
CY1108338T1 (el) 2014-02-12
JP2007532180A (ja) 2007-11-15
AU2005232551B2 (en) 2009-10-22
EP1732471A2 (en) 2006-12-20
PT1732471E (pt) 2008-09-29
JP4648384B2 (ja) 2011-03-09

Similar Documents

Publication Publication Date Title
CN1937969B (zh) 计算复曲面植入体的必需屈光力的方法
US6634751B2 (en) Intraocular lens derivation system
US7883208B2 (en) Systems and methods for determining intraocular lens power
AU2012326466B2 (en) Calculating an intraocular lens (IOL) power according to a directly determined IOL location
JP2018083126A (ja) 移植される眼内レンズの計算を自動的に最適化するための方法
US9271829B2 (en) Method for the pre-operative selection of an intraocular lens to be implanted in an eye
CA2850360C (en) Determining physical lengths in an eye using multiple refractive indices
EP2605696B1 (en) Customized intraocular lens power calculation system
WO2013159076A2 (en) Vision enhancement systems and methods
NZ623030B2 (en) Determining physical lengths in an eye using multiple refractive indices
NZ622887B2 (en) Calculating an intraocular lens (iol) power according to a directly determined iol location

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200415

Address after: Fribourg

Patentee after: ALCON, Inc.

Address before: Basel, Switzerland

Patentee before: NOVARTIS AG

Effective date of registration: 20200415

Address after: Basel, Switzerland

Patentee after: NOVARTIS AG

Address before: Humboldt, Switzerland

Patentee before: ALCON, Inc.

TR01 Transfer of patent right