CN101937685B - 利用加热对磁阻结构提供势垒的方法和系统 - Google Patents

利用加热对磁阻结构提供势垒的方法和系统 Download PDF

Info

Publication number
CN101937685B
CN101937685B CN201010216900.1A CN201010216900A CN101937685B CN 101937685 B CN101937685 B CN 101937685B CN 201010216900 A CN201010216900 A CN 201010216900A CN 101937685 B CN101937685 B CN 101937685B
Authority
CN
China
Prior art keywords
layer
barrier layer
tunnel barrier
transducer
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201010216900.1A
Other languages
English (en)
Other versions
CN101937685A (zh
Inventor
C·帕克
Q·伦
M·帕卡拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Western Digital Technologies Inc
Original Assignee
Western Digital Fremont LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Western Digital Fremont LLC filed Critical Western Digital Fremont LLC
Publication of CN101937685A publication Critical patent/CN101937685A/zh
Application granted granted Critical
Publication of CN101937685B publication Critical patent/CN101937685B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/303Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices with exchange coupling adjustment of magnetic film pairs, e.g. interface modifications by reduction, oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/305Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
    • H01F41/307Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling insulating or semiconductive spacer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49039Fabricating head structure or component thereof including measuring or testing with dual gap materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49041Fabricating head structure or component thereof including measuring or testing with significant slider/housing shaping or treating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49043Depositing magnetic layer or coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49043Depositing magnetic layer or coating
    • Y10T29/49044Plural magnetic deposition layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49043Depositing magnetic layer or coating
    • Y10T29/49046Depositing magnetic layer or coating with etching or machining of magnetic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49048Machining magnetic material [e.g., grinding, etching, polishing]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49048Machining magnetic material [e.g., grinding, etching, polishing]
    • Y10T29/49052Machining magnetic material [e.g., grinding, etching, polishing] by etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)

Abstract

本发明描述了一种提供磁记录换能器的方法和系统。该方法和系统包括为磁性元件提供被钉扎层。一方面,提供了磁性元件的隧道势垒层的一部分。在提供该部分隧道势垒层后退火磁记录换能器。退火温度高于室温。在退火后提供隧道势垒层的剩余部分。另一方面,在退火磁换能器之前,磁换能器被转移至高真空退火装置。在该方面,可以在提供隧道势垒的任意部分之前或在提供隧道势垒的至少一部分之后退火磁换能器。退火在高真空退火装置中执行。还提供了磁性元件的自由层。

Description

利用加热对磁阻结构提供势垒的方法和系统
背景技术
图1示出在读取换能器中形成隧道磁阻元件的传统方法10。读取换能器包括使用方法10形成的磁性隧道结。通过步骤12沉积常规隧道势垒层(tunneling barrier layer)以下的磁阻传感器中的层或堆叠。磁阻堆叠通常形成于其它结构之上,例如屏蔽层和/或写换能器。磁阻堆叠层通常是均厚沉积(blanket deposited)的。隧道势垒层以下的层通常包括(多个)种晶(seed)层、常规反铁磁(AFM)层以及常规被钉扎层(或固定层)。可选地通过步骤14沉积金属Mg(镁)层。Mg层可能是常规MgO势垒层所需要的。常规MgO势垒层通过步骤16被沉积。常规的MgO势垒层是结晶绝缘体。在常规MgO势垒层被沉积后,换能器可通过步骤18原位高温加热。因此,常规换能器可以在形成MgO势垒层的沉积室中加热。一般使用大约三百或四百摄氏度或更高的高温。通过步骤20提供自由层。之后,通过步骤22完成常规隧道磁阻元件以及换能器的剩余部分的制造。步骤22可包括限定常规隧道磁阻元件,该元件是磁道宽度方向和磁片(strip)高度方向的读取传感器。也可以形成其它结构,例如硬偏置结构、触点、屏蔽层以及写入换能器。磁道宽度方向与气垫面(ABS)平行并且通常垂直于磁阻堆叠的各层。
尽管方法10可以用来制造隧道磁阻元件,但这种方法存在缺点。对于在高密度磁记录设备中的使用,例如在大约每平方英寸五百吉比特的磁记录设备中的使用,要求隧道磁阻元件具有某些特性。快速记录和高信噪比(SNR)要求低电阻面面积(resistance times area,RA)(例如低于1Ω-μm2)和高隧道磁阻(TMR)。然而,使用常规方法10制造的常规结晶隧道势垒层产生的RA和TMR可能不足以用于高密度记录应用。使用步骤14中提供的Mg层可改善常规MgO势垒层的结晶度,并因此也改善RA和TMR。然而,RA和TMR的改善可能是不充分的。进一步地,在步骤18中执行的加热可能无法显著改善常规MgO势垒层,并可能导致钉扎层的部分和SAF的扩散,这会对常规磁性元件的性能造成有害影响。因此,仍旧期望得到一种用于高密度记录的改善的隧道势垒层和由此而改善的磁阻元件。
发明内容
本发明描述了一种提供磁记录换能器的方法和系统。该方法和系统包括提供磁性元件的被钉扎层。一方面,磁性元件的隧道势垒层的一部分被提供。在提供隧道势垒层的该部分后,退火磁记录换能器。退火温度高于室温。隧道势垒层的剩余部分在退火后提供。另一方面,磁换能器在退火前转移至高真空退火装置。在这方面,磁换能器可以在隧道势垒层的任意部分被提供前退火,或者在隧道势垒层的至少一部分被提供后退火。退火在高真空退火装置中执行。还提供了磁性元件的自由层。
附图说明
图1是示出制造读取换能器的常规方法的流程图。
图2是制造读取换能器的方法的示例性实施例的流程图。
图3是示出制造读取换能器的方法的另一示例性实施例的流程图。
图4示出磁阻结构的示例性实施例。
图5示出包括磁阻结构的换能器的示例性实施例。
图6是制造磁换能器的方法的另一示例性实施例的流程图。
图7示出磁性元件的另一示例性实施例。
图8示出包含磁记录换能器的磁记录头的示例性实施例。
具体实施方式
图2是用于制造磁阻元件,具体是用于制造在读取换能器中用作读取传感器的隧道磁阻元件的方法100的示例性实施例的流程图。为简单起见,一些步骤可以省略或与其它步骤结合。方法100也可以在形成读取换能器的其它结构如屏蔽层后开始。方法100也在提供单个磁阻结构的背景下描述。然而,方法100可用来基本上同时制造多个结构。方法100也在特定层的情况下描述。然而,在一些实施例中,这种层可以包括子层(一个或多个)。
通过步骤102提供磁性元件的被钉扎层(pinned layer)。在一个实施例中,被钉扎层在钉扎层或其它层上提供,所述钉扎层或其它层经配置在特定方向上固定或钉扎钉扎层的磁化。特定方向可包括但不限于垂直于ABS。在另一实施例中,可在下面描述的MgO(氧化镁)势垒层之后提供被钉扎层。在这样的实施例中,可在被钉扎层上提供钉扎层。在一个实施例中,要求被钉扎层为合成反铁磁体(SAF)。在这样的实施例中,步骤102包括沉积至少两层由无磁性分隔层隔离的铁磁层。在一些实施例中,铁磁层是反铁磁性耦合的。
通过步骤104为磁性元件提供一部分隧道势垒层。要求所提供的隧道势垒层为结晶体。因此,步骤104可包括沉积MgO,以形成部分势垒层。在一个实施例中,在步骤104中沉积隧道势垒层总厚度的至少百分之二十。例如,在一个实施例中,厚度为十埃的势垒层的两埃在步骤104中沉积。在另一实施例中,隧道势垒层总厚度的不少于百分之四十在步骤104中提供。因此,厚度为十埃的势垒层的四埃可以在步骤104中提供。在另一实施例中,不少于百分之八十的隧道势垒层在步骤104中提供。对于在步骤104中沉积的隧道势垒层的部分,其它厚度和其它百分比也是可能的。然而,在步骤104中提供的隧道势垒层少于整个隧道势垒。另外,薄Mg(镁)层也可以在步骤104中提供。例如,可以形成厚度低于四埃的Mg层。
在提供部分隧道势垒层后,通过步骤106退火磁记录换能器。步骤106中的退火温度高于室温。然而,该温度是相对低的。在一些实施例中,使用的温度不高于四百摄氏度。在一些实施例中,退火温度不高于三百摄氏度。在一些实施例中,退火温度不高于二百摄氏度。在一些这样的实施例中,温度至少为一百摄氏度。在一些实施例中,该退火可以在隔离的、高真空的退火室中进行。高真空退火室可提供与系统剩余部分例如在换能器的各层沉积的原地中可用的真空相比更高的真空。在一些实施例中,高真空退火室能够实现不超过9×10-8托的压力。在一些这样的实施例中,实现的压力不高于5×10-8托。在各实施例中,高真空退火室能够实现不高于2×10-8托的压力。在一些实施例中,高真空退火室实现的高真空可以是8×10-9托或更低。因此,磁记录换能器可以在非常高的真空中退火。步骤106中的退火可以持续相对短的时间,例如至少五分钟且不超过二十分钟。
通过步骤108提供隧道势垒层的剩余部分。要求隧道势垒层是结晶绝缘体。因此,可以在步骤108中继续沉积MgO。步骤108在步骤106完成后发生。在步骤106中的磁记录换能器退火后提供隧道势垒层的剩余部分。隧道势垒层的总厚度可以在六埃到二十埃的范围内变化。
通过步骤110提供磁性元件的自由层。步骤110可包括提供形成自由层的一个或更多层。自由层也可以是SAF,可包括磁性层或其它介入层和/或具有另一结构。另外,也可以在磁性元件中提供覆盖层或其它层。在其它实施例中,可以提供额外的势垒层、分隔层、被钉扎层和/或其它层。
使用方法100,可以实现特性改善的磁性元件。特别地,可以制造高TMR和低RA的磁性元件。在一些实施例中,可获得低于1Ω-μm2的RA。在一些实施例中,也可以实现改善的热稳定性、高交换偏置以及高衰减场(roll offfield)。可以确信由于隧道势垒层的结晶度和/或化学计量比(stoichiometry)的改善,可得到改善的RA和TMR。相对的低温退火可以去除OH(氢氧)离子,否则该离子成为MgO隧道势垒层的一部分。特别地,Mg∶O的原子比与常规MgO势垒层的原子比相比可以更接近1∶1。在一些实施例中,Mg∶O的原子比可以小于1.2∶1并至少为1∶1。进一步地,也可以改善隧道势垒层的结晶度,导致改善的RA和/或TMR。因此,使用方法100制造的读取换能器的性能可以得到改善。
图3是示出制造读取换能器的方法120的另一示例性实施例的流程图。为简单起见,一些步骤可以省略或与其它步骤结合。方法120也可在形成读取换能器的其它结构如屏蔽层后开始。方法120也在提供单个磁阻结构的情况下描述。然而,方法120可用来基本上同时制造多个结构。方法120也在特定层的情况下描述。然而,在一些实施例中,这样的层可包括子层(一个或多个)。
通过步骤122提供磁性元件的钉扎层。在一些实施例中,步骤122包括沉积AFM层。例如,可以使用IrMn和/或另一AFM。AFM的取向可以在较晚的时候设置,例如通过加热以所需方向取向的场中的磁记录换能器来设置。在一个实施例中,该取向可以垂直于ABS。然而,在另一实施例中可以选择另一方向。
通过步骤124提供与钉扎层邻接的磁性元件的被钉扎层。步骤124与上述方法100的步骤102相似。在一个实施例中,被钉扎层在钉扎层上提供。在另一实施例中,被钉扎层可以在下面描述的MgO势垒层之后提供。在这样的实施例中,钉扎层可以在被钉扎层上提供。在一个实施例中,要求被钉扎层是SAF。在这样的实施例中,步骤124包括沉积由无磁性分隔层隔离的反铁磁性耦合的至少两个铁磁层。
通过步骤126为磁性元件提供隧道势垒层的一部分。要求提供的隧道势垒层是结晶体,并因此可包括MgO。在一个实施例中,隧道势垒层的总厚度的至少百分之二十在步骤126中沉积。在另一实施例中,隧道势垒层总厚度的不少于百分之四十被提供。在另一实施例中,隧道势垒层总厚度的不少于百分之八十在步骤126中提供。其它厚度和其它百分比也是可能的。然而,在步骤126中提供的隧道势垒层少于隧道势垒层厚度的百分之百。另外,厚度低于大约四埃的薄Mg层也可选地作为隧道势垒的一部分在步骤126中提供。
通过步骤128将磁换能器转移到高真空退火装置。在这样的实施例中,换能器可以在避免换能器暴露于周围环境的同时被转移到高真空退火室。换句话说,换能器可以在不破坏真空的情况下转移。另外,高真空退火室可以提供与系统剩余部分例如在沉积换能器的各层的原地中可用的真空相比更高的真空。例如,在一些实施例中,高真空退火室能够实现不超过9×10-8托的压力。在一些这样的实施例中,实现的压力不高于5×10-8托。在各实施例中,高真空退火室能够实现不高于2×10-8托的压力。在一些实施例中,高真空退火室中实现的高真空可以是8×10-9托或更低。
提供部分隧道势垒层和换能器转移到高真空退火室之后,磁记录换能器通过步骤130退火。步骤130中的退火温度高于室温。然而,该温度是相对低的,低于四百摄氏度。在一些实施例中,使用的温度不高于三百摄氏度。在一些实施例中,退火温度不高于二百摄氏度。在一些这样的实施例中,该温度至少为一百摄氏度。退火时间也可以很短。例如,在一些实施例中,退火持续五分钟到二十分钟或更短。因此,磁记录换能器可以在非常高的真空中退火。
隧道势垒层的剩余部分通过步骤132来提供。因此,可以在步骤132中继续MgO的沉积。步骤132在步骤130完成后进行。隧道势垒层的剩余部分在步骤130中的磁记录换能器退火后提供。隧道势垒层的总厚度的范围可以在六埃到二十埃之间。步骤132可包括在沉积隧道势垒的剩余部分之前,将换能器从高真空退火室转移到沉积室。可执行该转移而不将换能器暴露于周围环境。
通过步骤134提供磁性元件的自由层。因此在步骤134中沉积形成自由层的一个或更多层。自由层也可以是SAF,可包括磁性层或其它介入层和/或具有另一结构。另外,也可以在磁性元件中提供覆盖层或其它层。在其它实施例中,可以提供额外的势垒层、分隔层、被钉扎层和/或其它层。
方法130具有与方法100类似的益处。因此,具有改善的特性的磁性元件可以使用方法130获得。特别地,可以制造高TMR和低RA的磁性元件。在一些实施例中,可获得低于1Ω-μm2的RA。在一些实施例中,也可以实现改善的热稳定性、高交换偏置以及高衰减场。可以确信由于隧道势垒层的结晶度和/或化学计量比的改善,可得到改善的RA和TMR。相对的低温退火,特别是在高真空退火室中实现的高真空的退火可以去除OH离子,否则离子成为MgO隧道势垒层的部分。特别地,Mg∶O的原子比与常规MgO势垒层的原子比相比可以更接近1∶1。在一些实施例中,Mg∶O的原子比可以小于1.2∶1且至少为1∶1。而且,还可以改善隧道势垒层的结晶度。从而,可以改善RA和/或TMR。因此,使用方法100制造的读取换能器的性能可以得到改善。
图4示出可以使用方法100和/或120制造的磁阻元件200的示例性实施例。磁阻元件200可以在读取换能器中使用。为清晰起见,图4没有按比例绘制。另外,部分磁性元件可以省略。
磁性元件200包括被钉扎层202、隧道势垒层204以及自由层206。隧道势垒层204位于自由层206和被钉扎层202之间。被钉扎层202可在步骤102或124中形成,并可与钉扎层邻接(图4中未示出)。自由层可分别使用方法100或120的步骤110或134形成。隧道势垒层204可分别使用方法100或120的步骤104-108或步骤126-132形成。在示出的实施例中,隧道势垒层204包括两部分,204A和204B。第一部分204A可以在退火前形成,例如在步骤104或126中形成。而第二部分204B在退火后形成,例如在步骤108或132中形成。隧道势垒层204的化学计量比可以更接近所要求的化学计量比。例如,对于结晶的MgO势垒层204,化学计量比包括低于1.2∶1且至少为1∶1的Mg对O的原子比。进一步地,结晶的MgO势垒层204的晶体结构可以更接近所要求的晶体结构。
磁性元件200可以具有改善的特性,例如高TMR和低RA。在一些实施例中,可获得低于1Ω-μm2的RA。在一些实施例中,对于磁性元件200,也可以实现改善的热稳定性、高交换偏置,以及高衰减场。可以确信由于隧道势垒层的结晶度和/或化学计量比的改善,可得到改善的RA和TMR。因此,包括磁性元件200的读取换能器的性能可以得到改善。
图5示出包括磁阻结构的读取换能器210的示例性实施例。为清晰起见,图5没有按比例绘制。另外,磁换能器的多个部分可以省略。磁换能器210包括屏蔽层212、磁性元件200’、绝缘体216以及硬偏置结构220。在示出的实施例中,读取传感器200’用于电流垂直于平面(CPP)的模式中。因此,包括绝缘体216。然而,在另一实施例中,读取传感器200’也可以用于电流在平面内(CIP)的模式中。在这样的实施例中,绝缘体216可以省略。
磁性元件200’与磁性元件200类似,并因此包括被钉扎层202’、具有部分204A’和部分204B’的隧道势垒204’以及自由层206’。由于磁性元件200’使用方法100或120制造,所以磁性元件200’可具有改善的特性,例如高TMR和低RA。因此,读取换能器210可具有改善的性能,特别是在约每平方英寸五百吉比特或更高的高密度情形中。
图6是制造磁换能器的方法150的另一示例性实施例的流程图。为简单起见,一些步骤可以省略或与其它步骤结合。方法150也可以在形成读取换能器的其它结构如屏蔽后开始。方法150也在提供单个磁阻结构的情况下描述。然而,方法150可用于基本上同时制造多个结构。方法150也在特定层的情况下描述。然而,在一些实施例中,这样的层可包括子层(一个或多个)。
通过步骤152提供磁性元件的被钉扎层。步骤152与上述方法100和120的步骤102和124类似。可以选择性地通过步骤154为磁性元件提供隧道势垒层的一部分。然而,在另一实施例中,可以省略步骤154。
磁换能器通过步骤156转移到高真空退火装置。因此步骤156类似于步骤128。可以在避免将换能器暴露于周围环境的情况下将换能器转移到高真空退火室中。换句话说,换能器可以被转移而不破坏真空。另外,高真空退火室可以提供与在系统剩余部分例如在沉积换能器的各层的原地中可用的真空相比更高的真空。例如,在一些实施例中,高真空退火室能够实现不超过9×10-8托的压力。在一些这样的实施例中,实现的压力不高于5×10-8托。在各实施例中,高真空退火室能够实现不高于2×10-8托的压力。在一些实施例中,高真空退火室中实现的高真空可以是8×10-9托或更低。
磁记录换能器在换能器转移至高真空退火室之后通过步骤158进行退火。步骤158中的退火温度高于室温。然而,所述温度是相对低的,低于四百摄氏度。在一些实施例中,使用的温度不高于三百摄氏度。在一些实施例中,退火温度不高于二百摄氏度。在一些这样的实施例中,该温度至少为一百摄氏度。退火占用的时间也可能很短。例如,在一些实施例中,退火持续五分钟到二十分钟或更短。因此,磁记录换能器可以在很高的真空中退火。
隧道势垒层的剩余部分通过步骤160来提供。在一些实施例中,其中步骤154被省略,整个隧道势垒层在步骤160中提供。在一些实施例中,隧道势垒层是结晶的MgO。因此,MgO可在步骤154中沉积。因此,厚度不超过四埃的薄Mg层也可以作为隧道势垒层的部分在步骤154或步骤160中提供。隧道势垒层的剩余部分在通过步骤158退火磁记录换能器之后提供。隧道势垒层的总厚度的范围可以是从六埃到二十埃。步骤156包括在沉积隧道势垒的剩余部分前将换能器从高真空退火室转移至沉积室。该转移也可以在换能器不暴露于周围环境的情况下进行。
磁性元件的自由层通过步骤162提供。因此形成自由层的一个或更多层在步骤162中沉积。自由层也可以是SAF,可包括磁性层或其它介入层和/或具有另一结构。另外,也可以在磁性元件中提供覆盖层或其它层。在其它实施例中,可以提供额外的势垒层、分隔层、被钉扎层和/或其它层。
方法150可以具有类似于方法100和120的益处。因此,具有改善的特性的磁性元件可以使用方法150获得。尽管退火可以在形成隧道势垒层的任意部分之前发生,但退火仍然可以改善磁性元件的化学计量比和/或结晶度。可以确信在步骤158中对换能器的加热可以提供后续加热,其功能类似于对隧道势垒层已沉积部分的退火。因此,方法100和120的益处也可以使用方法150实现。因此,使用方法150制造的读取换能器的性能可以得到改善。
图7示出可使用方法150制造的磁阻元件300的另一示例性实施例。磁性元件300可以在读取换能器中使用。为清晰起见,图7没有按比例绘制。另外,磁性元件的多个部分可以省略。
磁性元件300包括被钉扎层302、隧道势垒层304以及自由层306。隧道势垒层304位于自由层306和被钉扎层304之间。被钉扎层302可以在步骤152中形成,并可与钉扎层(图7中未示出)邻接。自由层可使用步骤162形成。隧道势垒层304可使用方法150的步骤154-160形成。在示出的实施例中,隧道势垒层304包括两部分,304A和304B。第一部分304A是可选的,并可以在退火前形成。第二部分304B在退火后形成,例如在步骤160中形成。隧道势垒层304的化学计量比可以更接近要求。例如,对于结晶的MgO势垒层304,化学计量比包括Mg对O的原子比,该原子比低于1.2∶1且至少为1∶1。而且,结晶的MgO势垒层204的晶体结构可以更接近要求。
磁性元件300可具有改善的特性,例如高TMR和低RA。在一些实施例中,可获得低于1Ω-μm2的RA。在一些实施例中,对于磁性元件300,也可实现改善的热稳定性、高交换偏置以及高衰减场。可以确信由于隧道势垒层的结晶度和/或化学计量比的改善,可得到改善的RA和TMR。因此,包括磁性元件200的读取换能器的性能可以得到改善。
图8示出包括磁阻结构的读取换能器310的示例性实施例。为清晰起见,图8没有按比例绘制。另外,可以省略磁换能器的多个部分。磁换能器310包括屏蔽层312、磁性元件300’、绝缘体316以及硬偏置结构320。在示出的实施例中,读取传感器300’用于CPP模式。因此,包括绝缘体316。然而,在另一实施例中,读取传感器300’也可以用于CIP模式。在这样的实施例中,可以省略绝缘体316。
磁性元件300’与磁性元件300相似,并因此包括被钉扎层302’、具有部分304A’和部分304B’的隧道势垒层304’以及自由层306’。由于磁性元件300’使用方法150制造,所以磁性元件300’可具有改善的特性,例如高TMR和低RA。因此,读取换能器310可具有改善的性能,特别是在约每平方英寸五百吉比特或更高的高密度的情形。因此,换能器310的性能可以得到改善。

Claims (17)

1.一种制造磁记录换能器的方法,包含:
提供磁性元件的被钉扎层;
为所述磁性元件提供隧道势垒层的一部分;
在提供所述隧道势垒层的所述部分后,以高于室温的温度退火所述磁记录换能器;
提供所述隧道势垒层的剩余部分,所述剩余部分在退火所述磁记录换能器后提供;以及
为所述磁性元件提供自由层。
2.根据权利要求1所述的方法,其中所述温度不高于四百摄氏度。
3.根据权利要求2所述的方法,其中所述温度不高于二百摄氏度。
4.根据权利要求1所述的方法,其中所述温度至少为一百摄氏度。
5.根据权利要求1所述的方法,进一步包含:
在退火磁换能器前且在形成无磁分隔层的部分后,将所述磁换能器转移至高真空退火装置。
6.根据权利要求5所述的方法,其中在避免将所述磁换能器暴露于周围环境的同时,执行转移所述磁换能器的步骤。
7.根据权利要求5所述的方法,其中所述高真空不高于9×10-8托。
8.根据权利要求5所述的方法,其中所述高真空不高于5×10-8托。
9.根据权利要求5所述的方法,其中所述高真空不高于2×10-8托。
10.根据权利要求5所述的方法,其中所述高真空不高于8×10-9托。
11.根据权利要求1所述的方法,其中所述被钉扎层是合成的反铁磁体SAF,所述反铁磁体包括具有第一磁化的第一铁磁层、具有第二磁化的第二铁磁层以及在所述第一铁磁层和所述第二铁磁层之间的无磁性层。
12.根据权利要求1所述的方法,其中所述隧道势垒层具有总厚度,并且所述隧道势垒层的所述部分的厚度不低于所述总厚度的百分之二十。
13.根据权利要求1所述的方法,其中所述隧道势垒层具有总厚度,并且所述隧道势垒层的所述部分的厚度不低于所述总厚度的百分之四十。
14.根据权利要求1所述的方法,其中所述隧道势垒层具有总厚度,并且所述隧道势垒层的所述部分的厚度不低于所述总厚度的百分之八十。
15.一种制造具有气垫面ABS的磁记录换能器的方法,包含:
提供磁性元件的被钉扎层;
提供所述磁性元件的隧道势垒层的一部分,所述隧道势垒层在完成后具有总厚度,所述隧道势垒层的所述部分的厚度至少为总厚度的百分之二十,并低于所述总厚度的百分之百;
将磁记录换能器转移至高真空退火装置;
在提供所述隧道势垒层的所述部分后,以至少一百摄氏度且不高于二百摄氏度的温度在所述高真空退火装置中退火所述磁记录换能器,所述高真空退火装置在退火期间具有不高于5×10-8托的压力;
在退火所述磁记录换能器后提供所述隧道势垒层的剩余部分;以及
提供所述磁性元件的自由层。
16.一种由权利要求15所述的方法制造的具有气垫面ABS的磁记录换能器,包含:
磁性元件,所述磁性元件包括被钉扎层、包括MgO的隧道势垒层以及自由层,所述隧道势垒层具有晶体结构和取向,所述隧道势垒层具有期望的化学计量比;以及
与所述磁性元件邻接的硬偏置结构。
17.根据权利要求16所述的磁记录换能器,其中所述期望的化学计量比包括低于1.2∶1且至少为1∶1的Mg与O的原子比。
CN201010216900.1A 2009-06-26 2010-06-24 利用加热对磁阻结构提供势垒的方法和系统 Expired - Fee Related CN101937685B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/493,102 US8381391B2 (en) 2009-06-26 2009-06-26 Method for providing a magnetic recording transducer
US12/493,102 2009-06-26

Publications (2)

Publication Number Publication Date
CN101937685A CN101937685A (zh) 2011-01-05
CN101937685B true CN101937685B (zh) 2014-12-10

Family

ID=43380448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010216900.1A Expired - Fee Related CN101937685B (zh) 2009-06-26 2010-06-24 利用加热对磁阻结构提供势垒的方法和系统

Country Status (3)

Country Link
US (2) US8381391B2 (zh)
CN (1) CN101937685B (zh)
HK (1) HK1147344A1 (zh)

Families Citing this family (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8689430B1 (en) 2006-11-29 2014-04-08 Western Digital (Fremont), Llc Method for providing a perpendicular magnetic recording (PMR)head
US8404128B1 (en) 2009-02-23 2013-03-26 Western Digital (Fremont), Llc Method and system for providing a perpendicular magnetic recording head
US8400731B1 (en) 2009-04-19 2013-03-19 Western Digital (Fremont), Llc Write head with variable side shield gaps
US8381391B2 (en) 2009-06-26 2013-02-26 Western Digital (Fremont), Llc Method for providing a magnetic recording transducer
US8611055B1 (en) 2009-07-31 2013-12-17 Western Digital (Fremont), Llc Magnetic etch-stop layer for magnetoresistive read heads
US9202480B2 (en) 2009-10-14 2015-12-01 Western Digital (Fremont), LLC. Double patterning hard mask for damascene perpendicular magnetic recording (PMR) writer
US8441896B2 (en) 2010-06-25 2013-05-14 Western Digital (Fremont), Llc Energy assisted magnetic recording head having laser integrated mounted to slider
US8997832B1 (en) 2010-11-23 2015-04-07 Western Digital (Fremont), Llc Method of fabricating micrometer scale components
US8441756B1 (en) 2010-12-16 2013-05-14 Western Digital (Fremont), Llc Method and system for providing an antiferromagnetically coupled writer
US9123359B1 (en) 2010-12-22 2015-09-01 Western Digital (Fremont), Llc Magnetic recording transducer with sputtered antiferromagnetic coupling trilayer between plated ferromagnetic shields and method of fabrication
US8456961B1 (en) 2011-03-22 2013-06-04 Western Digital (Fremont), Llc Systems and methods for mounting and aligning a laser in an electrically assisted magnetic recording assembly
US8419954B1 (en) 2011-10-31 2013-04-16 Western Digital (Fremont), Llc Method for providing a side shield for a magnetic recording transducer
US8451563B1 (en) 2011-12-20 2013-05-28 Western Digital (Fremont), Llc Method for providing a side shield for a magnetic recording transducer using an air bridge
US8760823B1 (en) 2011-12-20 2014-06-24 Western Digital (Fremont), Llc Method and system for providing a read transducer having soft and hard magnetic bias structures
US9093639B2 (en) 2012-02-21 2015-07-28 Western Digital (Fremont), Llc Methods for manufacturing a magnetoresistive structure utilizing heating and cooling
US9349392B1 (en) 2012-05-24 2016-05-24 Western Digital (Fremont), Llc Methods for improving adhesion on dielectric substrates
US8724259B1 (en) 2012-06-11 2014-05-13 Western Digital (Fremont), Llc Conformal high moment side shield seed layer for perpendicular magnetic recording writer
US8565049B1 (en) * 2012-06-26 2013-10-22 Western Digital (Fremont), Llc Method and system for reducing thermal protrusion of an NFT
US9269382B1 (en) 2012-06-29 2016-02-23 Western Digital (Fremont), Llc Method and system for providing a read transducer having improved pinning of the pinned layer at higher recording densities
US8711528B1 (en) 2012-06-29 2014-04-29 Western Digital (Fremont), Llc Tunnel magnetoresistance read head with narrow shield-to-shield spacing
US9213322B1 (en) 2012-08-16 2015-12-15 Western Digital (Fremont), Llc Methods for providing run to run process control using a dynamic tuner
US9053719B2 (en) 2012-11-30 2015-06-09 Western Digital (Fremont), Llc Magnetoresistive sensor for a magnetic storage system read head, and fabrication method thereof
US8984740B1 (en) 2012-11-30 2015-03-24 Western Digital (Fremont), Llc Process for providing a magnetic recording transducer having a smooth magnetic seed layer
US8980109B1 (en) 2012-12-11 2015-03-17 Western Digital (Fremont), Llc Method for providing a magnetic recording transducer using a combined main pole and side shield CMP for a wraparound shield scheme
US8760818B1 (en) 2013-01-09 2014-06-24 Western Digital (Fremont), Llc Systems and methods for providing magnetic storage elements with high magneto-resistance using heusler alloys
US9042208B1 (en) 2013-03-11 2015-05-26 Western Digital Technologies, Inc. Disk drive measuring fly height by applying a bias voltage to an electrically insulated write component of a head
US9336814B1 (en) 2013-03-12 2016-05-10 Western Digital (Fremont), Llc Inverse tapered waveguide for use in a heat assisted magnetic recording head
US8883017B1 (en) 2013-03-12 2014-11-11 Western Digital (Fremont), Llc Method and system for providing a read transducer having seamless interfaces
US9111564B1 (en) 2013-04-02 2015-08-18 Western Digital (Fremont), Llc Magnetic recording writer having a main pole with multiple flare angles
US9013836B1 (en) 2013-04-02 2015-04-21 Western Digital (Fremont), Llc Method and system for providing an antiferromagnetically coupled return pole
US9104107B1 (en) 2013-04-03 2015-08-11 Western Digital (Fremont), Llc DUV photoresist process
US8993217B1 (en) 2013-04-04 2015-03-31 Western Digital (Fremont), Llc Double exposure technique for high resolution disk imaging
US9070381B1 (en) 2013-04-12 2015-06-30 Western Digital (Fremont), Llc Magnetic recording read transducer having a laminated free layer
US9064527B1 (en) 2013-04-12 2015-06-23 Western Digital (Fremont), Llc High order tapered waveguide for use in a heat assisted magnetic recording head
US9245545B1 (en) 2013-04-12 2016-01-26 Wester Digital (Fremont), Llc Short yoke length coils for magnetic heads in disk drives
US9431047B1 (en) 2013-05-01 2016-08-30 Western Digital (Fremont), Llc Method for providing an improved AFM reader shield
US9064528B1 (en) 2013-05-17 2015-06-23 Western Digital Technologies, Inc. Interferometric waveguide usable in shingled heat assisted magnetic recording in the absence of a near-field transducer
US9431039B1 (en) 2013-05-21 2016-08-30 Western Digital (Fremont), Llc Multiple sensor array usable in two-dimensional magnetic recording
US9263067B1 (en) 2013-05-29 2016-02-16 Western Digital (Fremont), Llc Process for making PMR writer with constant side wall angle
US9361913B1 (en) 2013-06-03 2016-06-07 Western Digital (Fremont), Llc Recording read heads with a multi-layer AFM layer methods and apparatuses
US9406331B1 (en) 2013-06-17 2016-08-02 Western Digital (Fremont), Llc Method for making ultra-narrow read sensor and read transducer device resulting therefrom
US9287494B1 (en) 2013-06-28 2016-03-15 Western Digital (Fremont), Llc Magnetic tunnel junction (MTJ) with a magnesium oxide tunnel barrier
US9318130B1 (en) 2013-07-02 2016-04-19 Western Digital (Fremont), Llc Method to fabricate tunneling magnetic recording heads with extended pinned layer
US8947985B1 (en) 2013-07-16 2015-02-03 Western Digital (Fremont), Llc Heat assisted magnetic recording transducers having a recessed pole
US8923102B1 (en) 2013-07-16 2014-12-30 Western Digital (Fremont), Llc Optical grating coupling for interferometric waveguides in heat assisted magnetic recording heads
US9431032B1 (en) 2013-08-14 2016-08-30 Western Digital (Fremont), Llc Electrical connection arrangement for a multiple sensor array usable in two-dimensional magnetic recording
US9275657B1 (en) 2013-08-14 2016-03-01 Western Digital (Fremont), Llc Process for making PMR writer with non-conformal side gaps
US9042051B2 (en) 2013-08-15 2015-05-26 Western Digital (Fremont), Llc Gradient write gap for perpendicular magnetic recording writer
US9343098B1 (en) 2013-08-23 2016-05-17 Western Digital (Fremont), Llc Method for providing a heat assisted magnetic recording transducer having protective pads
US9343086B1 (en) 2013-09-11 2016-05-17 Western Digital (Fremont), Llc Magnetic recording write transducer having an improved sidewall angle profile
US9461242B2 (en) 2013-09-13 2016-10-04 Micron Technology, Inc. Magnetic memory cells, methods of fabrication, semiconductor devices, memory systems, and electronic systems
US9608197B2 (en) 2013-09-18 2017-03-28 Micron Technology, Inc. Memory cells, methods of fabrication, and semiconductor devices
US9441938B1 (en) 2013-10-08 2016-09-13 Western Digital (Fremont), Llc Test structures for measuring near field transducer disc length
US9042058B1 (en) 2013-10-17 2015-05-26 Western Digital Technologies, Inc. Shield designed for middle shields in a multiple sensor array
US9349394B1 (en) 2013-10-18 2016-05-24 Western Digital (Fremont), Llc Method for fabricating a magnetic writer having a gradient side gap
US9214172B2 (en) 2013-10-23 2015-12-15 Western Digital (Fremont), Llc Method of manufacturing a magnetic read head
US9007719B1 (en) 2013-10-23 2015-04-14 Western Digital (Fremont), Llc Systems and methods for using double mask techniques to achieve very small features
US8988812B1 (en) 2013-11-27 2015-03-24 Western Digital (Fremont), Llc Multi-sensor array configuration for a two-dimensional magnetic recording (TDMR) operation
US9194692B1 (en) 2013-12-06 2015-11-24 Western Digital (Fremont), Llc Systems and methods for using white light interferometry to measure undercut of a bi-layer structure
US9280990B1 (en) 2013-12-11 2016-03-08 Western Digital (Fremont), Llc Method for fabricating a magnetic writer using multiple etches
US9001628B1 (en) 2013-12-16 2015-04-07 Western Digital (Fremont), Llc Assistant waveguides for evaluating main waveguide coupling efficiency and diode laser alignment tolerances for hard disk
US8917581B1 (en) 2013-12-18 2014-12-23 Western Digital Technologies, Inc. Self-anneal process for a near field transducer and chimney in a hard disk drive assembly
US9082423B1 (en) 2013-12-18 2015-07-14 Western Digital (Fremont), Llc Magnetic recording write transducer having an improved trailing surface profile
US9147408B1 (en) 2013-12-19 2015-09-29 Western Digital (Fremont), Llc Heated AFM layer deposition and cooling process for TMR magnetic recording sensor with high pinning field
US8971160B1 (en) 2013-12-19 2015-03-03 Western Digital (Fremont), Llc Near field transducer with high refractive index pin for heat assisted magnetic recording
US8970988B1 (en) 2013-12-31 2015-03-03 Western Digital (Fremont), Llc Electric gaps and method for making electric gaps for multiple sensor arrays
US9305583B1 (en) 2014-02-18 2016-04-05 Western Digital (Fremont), Llc Method for fabricating a magnetic writer using multiple etches of damascene materials
US9183854B2 (en) 2014-02-24 2015-11-10 Western Digital (Fremont), Llc Method to make interferometric taper waveguide for HAMR light delivery
US8988825B1 (en) 2014-02-28 2015-03-24 Western Digital (Fremont, LLC Method for fabricating a magnetic writer having half-side shields
US9396743B1 (en) 2014-02-28 2016-07-19 Western Digital (Fremont), Llc Systems and methods for controlling soft bias thickness for tunnel magnetoresistance readers
US9202493B1 (en) 2014-02-28 2015-12-01 Western Digital (Fremont), Llc Method of making an ultra-sharp tip mode converter for a HAMR head
US9142233B1 (en) 2014-02-28 2015-09-22 Western Digital (Fremont), Llc Heat assisted magnetic recording writer having a recessed pole
US10454024B2 (en) 2014-02-28 2019-10-22 Micron Technology, Inc. Memory cells, methods of fabrication, and memory devices
US9001467B1 (en) 2014-03-05 2015-04-07 Western Digital (Fremont), Llc Method for fabricating side shields in a magnetic writer
US9153255B1 (en) 2014-03-05 2015-10-06 Western Digital (Fremont), Llc Method for fabricating a magnetic writer having an asymmetric gap and shields
US9135930B1 (en) 2014-03-06 2015-09-15 Western Digital (Fremont), Llc Method for fabricating a magnetic write pole using vacuum deposition
US9934811B1 (en) 2014-03-07 2018-04-03 Western Digital (Fremont), Llc Methods for controlling stray fields of magnetic features using magneto-elastic anisotropy
US9190085B1 (en) 2014-03-12 2015-11-17 Western Digital (Fremont), Llc Waveguide with reflective grating for localized energy intensity
US9111558B1 (en) 2014-03-14 2015-08-18 Western Digital (Fremont), Llc System and method of diffractive focusing of light in a waveguide
US9281466B2 (en) 2014-04-09 2016-03-08 Micron Technology, Inc. Memory cells, semiconductor structures, semiconductor devices, and methods of fabrication
US9135937B1 (en) 2014-05-09 2015-09-15 Western Digital (Fremont), Llc Current modulation on laser diode for energy assisted magnetic recording transducer
US8958272B1 (en) 2014-06-10 2015-02-17 Western Digital (Fremont), Llc Interfering near field transducer for energy assisted magnetic recording
US9007879B1 (en) 2014-06-10 2015-04-14 Western Digital (Fremont), Llc Interfering near field transducer having a wide metal bar feature for energy assisted magnetic recording
US8953422B1 (en) 2014-06-10 2015-02-10 Western Digital (Fremont), Llc Near field transducer using dielectric waveguide core with fine ridge feature
US8976635B1 (en) 2014-06-10 2015-03-10 Western Digital (Fremont), Llc Near field transducer driven by a transverse electric waveguide for energy assisted magnetic recording
US9508363B1 (en) 2014-06-17 2016-11-29 Western Digital (Fremont), Llc Method for fabricating a magnetic write pole having a leading edge bevel
US9361914B1 (en) 2014-06-18 2016-06-07 Western Digital (Fremont), Llc Magnetic sensor with thin capping layer
US9214169B1 (en) 2014-06-20 2015-12-15 Western Digital (Fremont), Llc Magnetic recording read transducer having a laminated free layer
US9053735B1 (en) 2014-06-20 2015-06-09 Western Digital (Fremont), Llc Method for fabricating a magnetic writer using a full-film metal planarization
US9042052B1 (en) 2014-06-23 2015-05-26 Western Digital (Fremont), Llc Magnetic writer having a partially shunted coil
US9230565B1 (en) 2014-06-24 2016-01-05 Western Digital (Fremont), Llc Magnetic shield for magnetic recording head
US9190079B1 (en) 2014-09-22 2015-11-17 Western Digital (Fremont), Llc Magnetic write pole having engineered radius of curvature and chisel angle profiles
US9007725B1 (en) 2014-10-07 2015-04-14 Western Digital (Fremont), Llc Sensor with positive coupling between dual ferromagnetic free layer laminates
US9349945B2 (en) 2014-10-16 2016-05-24 Micron Technology, Inc. Memory cells, semiconductor devices, and methods of fabrication
US9087527B1 (en) 2014-10-28 2015-07-21 Western Digital (Fremont), Llc Apparatus and method for middle shield connection in magnetic recording transducers
US9786301B1 (en) 2014-12-02 2017-10-10 Western Digital (Fremont), Llc Apparatuses and methods for providing thin shields in a multiple sensor array
US9768377B2 (en) 2014-12-02 2017-09-19 Micron Technology, Inc. Magnetic cell structures, and methods of fabrication
US9721595B1 (en) 2014-12-04 2017-08-01 Western Digital (Fremont), Llc Method for providing a storage device
US9111550B1 (en) 2014-12-04 2015-08-18 Western Digital (Fremont), Llc Write transducer having a magnetic buffer layer spaced between a side shield and a write pole by non-magnetic layers
US9236560B1 (en) 2014-12-08 2016-01-12 Western Digital (Fremont), Llc Spin transfer torque tunneling magnetoresistive device having a laminated free layer with perpendicular magnetic anisotropy
US9286919B1 (en) 2014-12-17 2016-03-15 Western Digital (Fremont), Llc Magnetic writer having a dual side gap
US9881638B1 (en) 2014-12-17 2018-01-30 Western Digital (Fremont), Llc Method for providing a near-field transducer (NFT) for a heat assisted magnetic recording (HAMR) device
US9214165B1 (en) 2014-12-18 2015-12-15 Western Digital (Fremont), Llc Magnetic writer having a gradient in saturation magnetization of the shields
US9741366B1 (en) 2014-12-18 2017-08-22 Western Digital (Fremont), Llc Method for fabricating a magnetic writer having a gradient in saturation magnetization of the shields
US10074387B1 (en) 2014-12-21 2018-09-11 Western Digital (Fremont), Llc Method and system for providing a read transducer having symmetric antiferromagnetically coupled shields
US9343087B1 (en) 2014-12-21 2016-05-17 Western Digital (Fremont), Llc Method for fabricating a magnetic writer having half shields
US9437251B1 (en) 2014-12-22 2016-09-06 Western Digital (Fremont), Llc Apparatus and method having TDMR reader to reader shunts
US9449625B1 (en) 2014-12-24 2016-09-20 Western Digital (Fremont), Llc Heat assisted magnetic recording head having a plurality of diffusion barrier layers
US10439131B2 (en) 2015-01-15 2019-10-08 Micron Technology, Inc. Methods of forming semiconductor devices including tunnel barrier materials
US9123374B1 (en) 2015-02-12 2015-09-01 Western Digital (Fremont), Llc Heat assisted magnetic recording writer having an integrated polarization rotation plate
US9312064B1 (en) 2015-03-02 2016-04-12 Western Digital (Fremont), Llc Method to fabricate a magnetic head including ion milling of read gap using dual layer hard mask
US9431031B1 (en) 2015-03-24 2016-08-30 Western Digital (Fremont), Llc System and method for magnetic transducers having multiple sensors and AFC shields
US9443541B1 (en) 2015-03-24 2016-09-13 Western Digital (Fremont), Llc Magnetic writer having a gradient in saturation magnetization of the shields and return pole
US9384763B1 (en) 2015-03-26 2016-07-05 Western Digital (Fremont), Llc Dual free layer magnetic reader having a rear bias structure including a soft bias layer
US9449621B1 (en) 2015-03-26 2016-09-20 Western Digital (Fremont), Llc Dual free layer magnetic reader having a rear bias structure having a high aspect ratio
US9245562B1 (en) 2015-03-30 2016-01-26 Western Digital (Fremont), Llc Magnetic recording writer with a composite main pole
US9263071B1 (en) 2015-03-31 2016-02-16 Western Digital (Fremont), Llc Flat NFT for heat assisted magnetic recording
US9147404B1 (en) 2015-03-31 2015-09-29 Western Digital (Fremont), Llc Method and system for providing a read transducer having a dual free layer
US9508372B1 (en) 2015-06-03 2016-11-29 Western Digital (Fremont), Llc Shingle magnetic writer having a low sidewall angle pole
US9508365B1 (en) 2015-06-24 2016-11-29 Western Digital (Fremont), LLC. Magnetic reader having a crystal decoupling structure
US9530443B1 (en) 2015-06-25 2016-12-27 Western Digital (Fremont), Llc Method for fabricating a magnetic recording device having a high aspect ratio structure
US9842615B1 (en) 2015-06-26 2017-12-12 Western Digital (Fremont), Llc Magnetic reader having a nonmagnetic insertion layer for the pinning layer
US9646639B2 (en) 2015-06-26 2017-05-09 Western Digital (Fremont), Llc Heat assisted magnetic recording writer having integrated polarization rotation waveguides
US9431038B1 (en) 2015-06-29 2016-08-30 Western Digital (Fremont), Llc Method for fabricating a magnetic write pole having an improved sidewall angle profile
US9472216B1 (en) 2015-09-23 2016-10-18 Western Digital (Fremont), Llc Differential dual free layer magnetic reader
US9666214B1 (en) 2015-09-23 2017-05-30 Western Digital (Fremont), Llc Free layer magnetic reader that may have a reduced shield-to-shield spacing
US9424866B1 (en) 2015-09-24 2016-08-23 Western Digital (Fremont), Llc Heat assisted magnetic recording write apparatus having a dielectric gap
US9384765B1 (en) 2015-09-24 2016-07-05 Western Digital (Fremont), Llc Method and system for providing a HAMR writer having improved optical efficiency
US9595273B1 (en) 2015-09-30 2017-03-14 Western Digital (Fremont), Llc Shingle magnetic writer having nonconformal shields
US9484051B1 (en) 2015-11-09 2016-11-01 The Provost, Fellows, Foundation Scholars and the other members of Board, of the College of the Holy and Undivided Trinity of Queen Elizabeth near Dublin Method and system for reducing undesirable reflections in a HAMR write apparatus
US9953670B1 (en) 2015-11-10 2018-04-24 Western Digital (Fremont), Llc Method and system for providing a HAMR writer including a multi-mode interference device
US10037770B1 (en) 2015-11-12 2018-07-31 Western Digital (Fremont), Llc Method for providing a magnetic recording write apparatus having a seamless pole
US9812155B1 (en) 2015-11-23 2017-11-07 Western Digital (Fremont), Llc Method and system for fabricating high junction angle read sensors
US9564150B1 (en) 2015-11-24 2017-02-07 Western Digital (Fremont), Llc Magnetic read apparatus having an improved read sensor isolation circuit
US9799351B1 (en) 2015-11-30 2017-10-24 Western Digital (Fremont), Llc Short yoke length writer having assist coils
US9754611B1 (en) 2015-11-30 2017-09-05 Western Digital (Fremont), Llc Magnetic recording write apparatus having a stepped conformal trailing shield
US9767831B1 (en) 2015-12-01 2017-09-19 Western Digital (Fremont), Llc Magnetic writer having convex trailing surface pole and conformal write gap
US9740805B1 (en) 2015-12-01 2017-08-22 Western Digital (Fremont), Llc Method and system for detecting hotspots for photolithographically-defined devices
US9858951B1 (en) 2015-12-01 2018-01-02 Western Digital (Fremont), Llc Method for providing a multilayer AFM layer in a read sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7479394B2 (en) * 2005-12-22 2009-01-20 Magic Technologies, Inc. MgO/NiFe MTJ for high performance MRAM application
CN101414657A (zh) * 2007-10-16 2009-04-22 富士通株式会社 铁磁隧道结元件、磁记录装置以及磁存储器装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529814A (en) * 1995-10-19 1996-06-25 Read-Rite Corporation Method of producing exchange coupled magnetic thin films with post-deposition annealing
JP2002298312A (ja) * 2001-03-28 2002-10-11 Hitachi Ltd 磁気ヘッドおよびその製造方法
KR100407907B1 (ko) * 2001-05-15 2003-12-03 한국과학기술연구원 자기 터널 접합 소자의 열처리 방법과 그 방법으로 제조된자기 터널 접합 소자
US6347049B1 (en) * 2001-07-25 2002-02-12 International Business Machines Corporation Low resistance magnetic tunnel junction device with bilayer or multilayer tunnel barrier
JP2003086866A (ja) * 2001-09-13 2003-03-20 Anelva Corp スピンバルブ型巨大磁気抵抗薄膜の製造方法
US6884328B2 (en) * 2001-11-29 2005-04-26 Seagate Technology Llc Selective annealing of magnetic recording films
US6937448B2 (en) * 2002-11-13 2005-08-30 Hitachi Global Storage Technologies Netherlands, B.V. Spin valve having copper oxide spacer layer with specified coupling field strength between multi-layer free and pinned layer structures
US6841395B2 (en) * 2002-11-25 2005-01-11 International Business Machines Corporation Method of forming a barrier layer of a tunneling magnetoresistive sensor
KR20040083934A (ko) * 2003-03-25 2004-10-06 주식회사 하이닉스반도체 마그네틱 램의 형성방법
US7252852B1 (en) * 2003-12-12 2007-08-07 International Business Machines Corporation Mg-Zn oxide tunnel barriers and method of formation
JP2005209301A (ja) * 2004-01-23 2005-08-04 Hitachi Global Storage Technologies Netherlands Bv 磁気ヘッド及びその製造方法
US7270896B2 (en) * 2004-07-02 2007-09-18 International Business Machines Corporation High performance magnetic tunnel barriers with amorphous materials
US7377025B2 (en) * 2004-10-29 2008-05-27 Headway Technologies, Inc. Method of forming an improved AP1 layer for a TMR device
US7351483B2 (en) * 2004-11-10 2008-04-01 International Business Machines Corporation Magnetic tunnel junctions using amorphous materials as reference and free layers
US7241631B2 (en) * 2004-12-29 2007-07-10 Grandis, Inc. MTJ elements with high spin polarization layers configured for spin-transfer switching and spintronics devices using the magnetic elements
US7369376B2 (en) * 2005-03-15 2008-05-06 Headway Technologies, Inc. Amorphous layers in a magnetic tunnel junction device
JP4693450B2 (ja) * 2005-03-22 2011-06-01 株式会社東芝 磁気抵抗効果素子および磁気メモリ
US7443639B2 (en) * 2005-04-04 2008-10-28 International Business Machines Corporation Magnetic tunnel junctions including crystalline and amorphous tunnel barrier materials
JP2007048972A (ja) * 2005-08-10 2007-02-22 Tdk Corp 磁気抵抗効果素子、基体、ウエハ、ヘッドジンバルアセンブリ、ハードディスク装置、磁気メモリ素子、磁気センサアセンブリ、および磁気抵抗効果素子の製造方法
US7780820B2 (en) * 2005-11-16 2010-08-24 Headway Technologies, Inc. Low resistance tunneling magnetoresistive sensor with natural oxidized double MgO barrier
US7523550B2 (en) * 2006-04-25 2009-04-28 Hitachi Global Storage Technologies Netherlands B.V. Process to open connection vias on a planarized surface
US7598579B2 (en) * 2007-01-30 2009-10-06 Magic Technologies, Inc. Magnetic tunnel junction (MTJ) to reduce spin transfer magnetization switching current
US7750421B2 (en) * 2007-07-23 2010-07-06 Magic Technologies, Inc. High performance MTJ element for STT-RAM and method for making the same
US7488609B1 (en) * 2007-11-16 2009-02-10 Hitachi Global Storage Technologies Netherlands B.V. Method for forming an MgO barrier layer in a tunneling magnetoresistive (TMR) device
US8381391B2 (en) 2009-06-26 2013-02-26 Western Digital (Fremont), Llc Method for providing a magnetic recording transducer
US8248728B2 (en) * 2010-02-01 2012-08-21 Tdk Corporation Thin-film magnetic head having a magnetic pole formed of a plating film
US8289649B2 (en) * 2010-09-20 2012-10-16 Headway Technologies, Inc. Magnetic head for perpendicular magnetic recording with shield around main magnetic pole

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7479394B2 (en) * 2005-12-22 2009-01-20 Magic Technologies, Inc. MgO/NiFe MTJ for high performance MRAM application
CN101414657A (zh) * 2007-10-16 2009-04-22 富士通株式会社 铁磁隧道结元件、磁记录装置以及磁存储器装置

Also Published As

Publication number Publication date
US20100328822A1 (en) 2010-12-30
HK1147344A1 (zh) 2011-08-05
US8381391B2 (en) 2013-02-26
CN101937685A (zh) 2011-01-05
US9003640B1 (en) 2015-04-14

Similar Documents

Publication Publication Date Title
CN101937685B (zh) 利用加热对磁阻结构提供势垒的方法和系统
US7695761B1 (en) Method and system for providing a spin tunneling magnetic element having a crystalline barrier layer
JP5069034B2 (ja) 磁気トンネル接合素子およびその形成方法
EP3467891B1 (en) Reduction of barrier resistance x area (ra) product and protection of perpendicular magnetic anisotropy (pma) for magnetic device applications
US8159866B2 (en) Method and system for providing dual magnetic tunneling junctions usable in spin transfer torque magnetic memories
US8139325B2 (en) Tunnel magnetoresistive thin film
CN101271958B (zh) 磁阻效应器件、磁层叠结构体及磁层叠结构体的制造方法
CN100533763C (zh) 磁隧道结元件结构和用于制造该结构的方法
EP1968130B1 (en) A novel SyAF structure to fabricate Mbit MTJ MRAM
US9437225B2 (en) Reader designs of shield to shield spacing improvement
CN102483931B (zh) 具有复合磁屏蔽的磁性传感器
JP2006319259A (ja) 強磁性トンネル接合素子、これを用いた磁気ヘッド、磁気記録装置、および磁気メモリ装置
CN103579497A (zh) 磁性结、磁存储器、用于提供磁性结的方法和系统
KR20090038809A (ko) 강자성 터널 접합 소자, 강자성 터널 접합 소자의 제조 방법, 자기 헤드, 자기 기억 장치, 및 자기 메모리 장치
KR100890323B1 (ko) 자기 저항 효과 소자, 자기 헤드, 자기 기억 장치, 및 자기메모리 장치
JP2016071925A (ja) MgOトンネル型バリア層およびホウ素の拡散を最少化する窒素含有層を含むトンネル型磁気抵抗(TMR)素子
JPWO2008155995A1 (ja) トンネル磁気抵抗薄膜及び磁性多層膜作製装置
US20130001717A1 (en) Perpendicular mram with mtj including laminated magnetic layers
KR20080023619A (ko) 터널 자기 저항 효과 소자 및 그 제조 방법
CN1319083C (zh) 具有改进的磁场范围的磁多层结构
KR20160004969A (ko) 스핀 전달 토크 자기 랜덤 액세스 메모리 장치에 사용 가능한 수직 자기 접합 내에 얇은 피고정층을 제공하는 시스템 및 방법
JP3473016B2 (ja) 強磁性トンネル接合素子と磁気ヘッドと磁気メモリ
JP2008091551A (ja) 磁気抵抗効果素子、磁気記憶装置、および磁気メモリ装置
CN101937968A (zh) 具有高gmr值的ccp-cpp磁阻读取器
JP2008041716A (ja) 磁気抵抗素子、磁気抵抗素子の製造方法及び磁気抵抗素子の製造装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1147344

Country of ref document: HK

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1147344

Country of ref document: HK

TR01 Transfer of patent right

Effective date of registration: 20200316

Address after: California, USA

Patentee after: Western Digital Technologies, Inc.

Address before: California, USA

Patentee before: Western Digital (Fremont), LLC

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141210

Termination date: 20210624

CF01 Termination of patent right due to non-payment of annual fee