CN101929860B - 旋转激光出射装置 - Google Patents

旋转激光出射装置 Download PDF

Info

Publication number
CN101929860B
CN101929860B CN201010201768.7A CN201010201768A CN101929860B CN 101929860 B CN101929860 B CN 101929860B CN 201010201768 A CN201010201768 A CN 201010201768A CN 101929860 B CN101929860 B CN 101929860B
Authority
CN
China
Prior art keywords
light
signal
laser emitting
emitting apparatus
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010201768.7A
Other languages
English (en)
Other versions
CN101929860A (zh
Inventor
林邦广
上园史彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Publication of CN101929860A publication Critical patent/CN101929860A/zh
Application granted granted Critical
Publication of CN101929860B publication Critical patent/CN101929860B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • G01C15/008Active optical surveying means combined with inclination sensor

Abstract

本发明提供一种旋转激光出射装置,即使在从设置于包围旋转轴的环状的旋转体的激光出射部出射的激光的出射方向相对于旋转轴发生晃动的情况下,也可以确保高测量精度。旋转激光出射装置(10)具备:以可绕旋转轴(Ra)旋转的方式被支撑的旋转体(12);为了向与旋转体(12)的旋转中心正交的方向出射激光而被容纳在旋转体(12)中的激光出射部(41);为了对旋转体(12)的旋转中心相对于旋转轴(Ra)的旋转晃动量进行检测而设置在旋转体(12)与基台(11)之间的相对倾斜检测机构(48);以及能够发送信号以将由相对倾斜检测机构(48)检测的相对倾斜信号传送到外部的发送部(41及53)。

Description

旋转激光出射装置
技术领域
本发明涉及一种旋转照射激光的旋转激光出射装置。
背景技术
例如,在与土木工程等相关的测量中,已知如下技术:使用旋转照射激光的旋转激光出射装置,从所述旋转激光出射装置旋转出射的激光由受光器接收,根据受光信号来测量受光位置处的相对于与旋转轴正交的平面的倾角和高度。这种旋转激光出射装置的基本结构为,在基台上以可旋转的方式设置有激光出射部,向与旋转轴正交的方向出射激光。在旋转激光出射装置中,为了提高倾角和高度的测量精度,要求尽可能地抑制所出射的激光相对于旋转轴的晃动。
作为这种旋转激光出射装置,考虑了如下结构:以能够相对于基台绕旋转轴旋转的方式设置有旋转体,在旋转体内容纳有堆叠在旋转轴上的多个五棱镜,在基台上固定设置有可以朝向上述五棱镜出射沿着旋转轴的激光的激光源(例如,参照日本特开2006-71545号公报)。在上述旋转激光出射装置中,通过使旋转体相对于基台旋转而使各个五棱镜旋转,使从激光源出射的激光经旋转的各五棱镜出射,从而可以旋转照射激光。在上述旋转激光出射装置中,利用各个五棱镜的无论姿态如何变化、入射的光线都向与其入射方向正交的方向偏转而出射的作用,可以抑制由于旋转振动等而产生的晃动。
但是,在所述旋转激光出射装置中,如果在五棱镜的上方、即在旋转体的上方设置其他测量装置(例如,GPS用的接收装置等),则上述测量装置会与旋转体一起旋转。因此,考虑如下结构:在旋转体的外部设置固定筒,使旋转体在固定筒的内部旋转,并且在固定筒的上部设置其他测量装置的设置部位;但是,需要在旋转体的外部,在固定筒中设置使所述固定筒在上下方向上续接的部位。此处,在旋转激光出射装置中,从提高测量的便利性并且提高测量精度的观点出发,希望可以在旋转体的旋转方向上360度不间断地出射激光。
因此,考虑如下结构来代替上述设置固定筒的结构:在基台上设置沿着激光出射部的旋转轴延伸的支撑轴部,并在旋转体中设置容许支撑轴部穿过的贯通孔,并且在支撑轴部的上方设置其他测量装置的设置部。
但是,在上述结构中,由于在绕旋转轴旋转的旋转体的内部容纳了激光出射部,所以如果旋转体的旋转姿态相对于旋转轴发生晃动(旋转中心相对于旋转轴发生晃动),则从激光出射部出射的激光的出射方向相对于旋转轴发生晃动,而使测量精度降低。
发明内容
本发明是鉴于上述情况而提出的,其目的在于提供一种旋转激光出射装置,即使在从设置在包围旋转轴的环状的旋转体上的激光出射部中出射的激光的出射方向相对于旋转轴发生晃动的情况下,也可以确保高测量精度。
第一方面的发明提供一种旋转激光出射装置,其特征在于具备:以可绕旋转轴旋转的方式被支撑的旋转体;用于向与旋转体的旋转中心正交的方向出射激光并被容纳在旋转体中的激光出射部;设置在旋转体与基台之间用于对旋转体的旋转中心相对于旋转轴的旋转晃动量进行检测的相对倾斜检测机构;以及用于将由相对倾斜检测机构检测的相对倾斜信号传送到外部的可以进行信号发送的发送部。
根据本发明的旋转激光出射装置,即使在旋转体的旋转姿态相对于旋转轴发生晃动的情况下,由于从发送部将这种旋转晃动量作为相对倾斜信号而送出,所以通过根据相对倾斜信号对从激光出射部出射的激光得到的测量结果进行修正,可以得到高精度的测量结果。换言之,利用旋转激光出射装置,不论旋转体的旋转姿态是否相对于旋转轴发生晃动,都可以始终以规定的高精度进行测量。
除了上述结构以外,发送部具有:所述激光出射部的激光源;以及对所述激光源进行驱动控制的驱动控制部,如果所述驱动控制部为了将所述相对倾斜信号叠加在利用所述旋转体的旋转而从所述激光出射部旋转出射的激光上而与所述相对倾斜信号相对应地对激光源进行驱动控制,则可以通过仅更新对激光出射部的光源进行驱动控制的驱动控制部的控制内容来形成发送部,从而可以抑制装置的大型化以及复杂化。另外,对于接收旋转出射的激光的受光器,也可以仅更新用于处理受光信号的运算机构的处理内容,从而可以抑制装置的大型化以及复杂化。
除了上述结构以外,如果将所述相对倾斜信号以相位偏移调制方式叠加在激光上,则在接收旋转出射的激光的受光器中,不仅可以恰当地检测受光信号的重心位置,还可以获得相对倾斜信号。
除了上述结构以外,在所述基台上设置可以检测所述基台相对于水平面的倾斜度的绝对倾斜检测机构,如果所述发送部与所述相对倾斜信号相对应地发送由所述绝对倾斜检测机构检测的绝对倾斜信号,则在接收旋转出射的激光的受光器中,除了旋转体相对于旋转轴的旋转姿态的旋转晃动量(相对倾斜信号)以外,还可以获得设置于已知点的旋转激光出射装置的基台相对于水平面的倾斜度(绝对倾斜信号),所以可以根据所接收的激光来获得高精度的测量结果。
本发明提供一种测量系统,具备:所述旋转激光出射装置;接收从所述旋转激光出射装置旋转出射的激光的受光器;以及根据来自所述受光器的受光信号来求出所述受光器的设置部位相对于所述旋转激光出射装置的设置位置的高低角的运算机构,其中,如果所述运算机构在对通过叠加相对倾斜信号而成为交流信号的受光信号进行全波整流后求出受光信号的重心位置,则运算机构可以获得相对倾斜信号和绝对倾斜信号并可以更准确地求出重心位置。
除了上述结构以外,测量系统还具备无线通信装置,如果所述发送部利用所述无线通信装置将所述相对倾斜信号传送到外部,则可以利用简易的结构来形成发送部。另外,对于接收旋转出射的激光的受光器,也可以仅设置无线通信装置,从而可以采用简易的结构。
附图说明
图1是表示本发明的旋转激光出射装置的概略结构的说明图。
图2是在旋转轴方向上从上方观察激光出射部的说明图。
图3是用于说明以PSK(Phase Shift Keying,相位偏移调制)方式在测量用激光线Lm上叠加数据的说明图,(a)示出“0”信号,(b)示出“1”信号。
图4是用于说明使用旋转激光出射装置进行测量的概要的说明图,(a)表示旋转激光出射装置与受光器设为相等的高度位置的情形,(b)表示由(a)的状态下的受光器进行受光的情形,(c)表示将受光器相对于旋转激光出射装置设为更高的高度位置的情形,(d)表示由(c)的状态下的受光器进行受光的情形。
图5是表示受光信号的一个例子的说明图。
图6是表示求受光信号的重心位置的情况的说明图。
图7是为了说明叠加数据时的问题而以相互相等的时间示出了上下方的图的横轴的说明图,在上方的图中示意地表示来自受光部的受光信号(受光部中的受光量)随时间的变化,在下方的图中示意地表示作为测量用激光线而出射的激光的光量随时间的变化。
图8是为了说明旋转激光出射装置的作用而以相互相等的时间示出了上下方的图的横轴的与图7同样的说明图,在上方的图中示意地表示来自受光部的受光信号(受光部中的受光量)随时间的变化,在下方的图中示意地表示作为测量用激光线而出射的激光的光量随时间的变化。
图9是用于说明被偏置了的测量用激光线的示意的说明图,(a)表示受光信号中表示“0”的信号以及表示“1”的信号,(b)表示全波整流后的值。
具体实施方式
以下参照附图对本发明的旋转激光出射装置的发明实施方式进行说明。(实施例)
图1是表示本发明的旋转激光出射装置10的概略结构的说明图。图2是在旋转轴Ra方向上从上方观察激光出射部41的说明图。图3是用于说明以PSK方式在测量用激光线Lm上叠加数据的说明图,(a)表示“0”信号,(b)表示“1”信号。图4是用于说明使用旋转激光出射装置10进行测量的概要的说明图,(a)表示旋转激光出射装置10与受光器60设为相等的高度位置的情形,(b)表示由(a)的状态下的受光器60进行受光的情形,(c)表示将受光器60相对于旋转激光出射装置10设为更高的高度位置的情形,(d)表示由(c)的状态下的受光器60进行受光的情形。图5是表示受光信号的一个例子的说明图,图6是表示求受光信号的重心位置的情形的说明图。在以下的说明以及各个附图中,为了容易理解,以旋转轴Ra为Z轴方向,以与其正交的平面为X-Y平面。
旋转激光出射装置10的结构如图1所示,以相对于基台11可旋转的方式支撑有旋转体12。旋转激光出射装置10在测量时被设置在已知点,并以某个速度旋转照射测量用激光线Lm。
基台11是作为将旋转激光出射装置10设置于已知点时的基准的部位,是在基座部13的上方设置壳体14而构成的。虽然省略了图示,但基座部13是设置有用于设置旋转激光出射装置10的脚部的部位,基座部13整体呈板状,并在中央设置有用于定位的照射孔15。基座部13利用相互等间隔地设置在围绕照射孔15的3个部位的螺丝16(在图1中仅图示了2个)来支撑壳体14。在上述3个螺丝16中,1个被固定在壳体14上,而剩余的2个相对壳体14的螺合量是可变的,以调节高度和倾斜度。
壳体14具有:螺合了各个螺丝16的呈圆板状的底壁部17;与底壁部17一起形成外形的呈圆筒状的外壁部18;以及在外壁部18的内部设置于底壁部17上的呈圆筒状的内筒部19。
在壳体14中,容纳有具有控制部的功能的主基板20。主基板20与电动的各部件电连接,控制部总体上控制各部件的动作。
在壳体14中,与底壁部17关联地设置有定位照射机构21和水平调整机构22。定位照射机构21和水平调整机构22在控制部(20)的控制下,按照省略了图示的操作部的操作而进行工作。
定位照射机构21设置在底壁部17的中央,激光从照射光源23出射并经设置在底壁部17的贯通孔24以及准直透镜25,通过基座部13的照射孔15,从而在旋转激光出射装置10的设置面上形成作为设置位置的基准的照射点(未图示)。定位照射机构21的照射光轴与壳体14即基台11的中心轴一致,并与后述的旋转轴Ra一致。因此,利用由定位照射机构21形成的照射点(未图示),易于将旋转激光出射装置10设置于已知点。
水平调整机构22调整底壁部17即壳体14相对于基座部13的倾斜,是与螺合量可变的2个螺丝16(其中的一个未图示)对应地设置的。水平调整机构22构成为,水平调整电机27经齿轮26与螺丝16连接,利用水平调整电机27的驱动而使螺丝16旋转,从而可以调节螺丝16相对底壁部17的螺合量;通过适当地调节2个螺丝16(其中的一个未图示)的螺合量,可以调整底壁部17即壳体14相对基座部13的倾斜。另外,在本实施例中,水平调整机构22在获得了由后述的一对倾斜传感器32检测的绝对倾斜信号的控制部(20)的控制下,以使来自上述两个倾斜传感器32的输出成为水平的方式自动地进行驱动。因此,水平调整机构22、一对倾斜传感器32、以及控制部(20)具有自动调平机构的功能。
另外,在壳体14中,与外壁部18关联地设置有面板显示器28和电池容纳部29。面板显示器28显示旋转激光出射装置10的各种信息,并在控制部(20)的控制下工作。电池容纳部29是容纳用于旋转激光出射装置10的电力供给的电池30的空间,由可自由开闭的盖板31遮蔽。
在壳体14中,与内筒部19关联地设置有一对倾斜传感器32。这两个倾斜传感器32检测内筒部19相对于水平面的倾斜、也就是在旋转激光出射装置10为了测量而被设置于已知点的状态下内筒部19自身即基台11的绝对倾斜,这两个倾斜传感器32中的一个可以检测绕X轴的倾斜度,另一个可以检测绕Y轴的倾斜度。因此,一对倾斜传感器32作为可以检测基台11相对于水平面的倾斜度的绝对倾斜检测机构而发挥功能。这一对倾斜传感器32将检测出的绝对倾斜信号输出到控制部(20),并经后述的数据传送机构47输出到后述的驱动控制基板53。
内筒部19如上所述整体呈筒状,具有:从其上部的上壁部分33延伸出的支撑轴部分34(基台具有的支撑轴部);以及设置在中间位置的凸缘部分35。支撑轴部分34呈从上壁部分33的中央沿着轴线(与后述的旋转轴Ra一致)延伸的筒状。支撑轴部分34的上端为设置部37,且在本实施例中设置有无线单元38,进而在无线单元38的上端设置有用于安装GPS接收终端(未图示)的适配器39。连接无线单元38与主基板20的电线等从支撑轴部分34的内部穿过。
在凸缘部分35中,限定与轴线(旋转轴Ra)正交的基准平面Bp的上表面是平坦的,并从内筒部19的中间位置以与轴线(旋转轴Ra)正交的方式延伸出来。在内筒部19中,当处于一对倾斜传感器32没有检测到倾斜度的状态时,认为凸缘部分35所限定的基准平面Bp与水平面平行。
由内筒部19可旋转地支撑有旋转体12。旋转体12具有:由内筒部19支撑的基部40;以及容纳激光出射部41的容纳部42。
基部40呈形状与内筒部19的上部形状相适应的筒状,以可经轴承部件43而绕内筒部19的轴线旋转的方式由内筒部19支撑。因此,内筒部19的轴线成为基部40即旋转体12的旋转轴Ra。
在基部40与内筒部19之间,设置有直接驱动式电机(以下称为DD电机44)、编码器45、电力传送机构46、数据传送机构47、以及斜率传感器48。通过DD电机44的驱动使基部40相对于内筒部19旋转。编码器45用于对这种相对的旋转速度、旋转量进行检测。即使在这种旋转的情况下,也可以在基部40与内筒部19之间利用电力传送机构46供给电力,并且利用数据传送机构47进行数据的交换。
斜率传感器48用于对基部40相对于内筒部19的倾斜度进行检测。斜率传感器48具有传感器主体部48a和反射镜48b。传感器主体部48a设置在由内筒部19的凸缘部分35限定的基准平面Bp上,反射镜48b在基部40的下端位置与传感器主体部48a(基准平面Bp)对置。在基部40即旋转体12的轴线与旋转轴Ra一致的状态下,反射镜48b的反射面与基准平面Bp平行。传感器主体部48a具有传感器光源48c、传感器光学系统48d、以及传感器受光部48e。传感器主体部48a使从传感器光源48c出射并通过了传感器光学系统48d的检测光作为沿着基准平面Bp的正交方向(沿着旋转轴Ra的方向)的平行光束而出射。上述检测光由与传感器主体部48a对置的反射镜48b的反射面所反射,再次入射到传感器主体部48a内,并由传感器光学系统48d导向传感器受光部48e并被接收。在传感器受光部48e中,如果以接收由处于与基准平面Bp平行的状态的反射镜48b的反射面所反射的检测光的位置为基准位置,则由上述基准位置反射的检测光的受光位置相对于基准位置的变位量和变位方向会与反射镜48b的反射面相对于基准平面Bp的倾斜相应地变化。因此,在斜率传感器48中,可以根据传感器受光部48e的检测光的受光位置,来检测基部40相对于内筒部19的倾斜度、即旋转体12相对于基台11的相对倾斜度。此处,由于由基台11限定了旋转轴Ra,所以斜率传感器48作为可以检测旋转体12的旋转中心相对于旋转轴Ra的旋转晃动量的相对倾斜检测机构而发挥功能。斜率传感器48将所检测的相对倾斜信号经数据传送机构47输出到后述的驱动控制基板53。
在相对于内筒部19旋转的基部40的上端固定有容纳部42。容纳部42呈中空的圆柱形状,在其上壁部42a以及下壁部42b上,在中央部分设置有与轴线一致的贯通孔42c。在容纳部42中,在基部40由内筒部19可旋转地支撑的状态下,内筒部19的支撑轴部分34穿过贯通孔42c,支撑轴部分34的上端(设置部37)从上壁部42a突出。因此,即使容纳部42与基部40一起相对于内筒部19旋转,设置部37也不会与容纳部42即旋转体12一起旋转,而是可以稳定地将其他测量装置(在本例中是无线单元38)支撑在容纳部42的上方、即收容于容纳部42中的激光出射部41的上方。
激光出射部41可以从设置在容纳部42的侧壁面42d上的照射开口49照射激光。因此,在旋转激光出射装置10中,旋转体12相对于内筒部19旋转,从而可以360度地绕旋转轴Ra照射激光(测量用激光线Lm)。
如图1以及图2所示,激光出射部41具有半导体激光二极管(以下称为LD 50)、准直透镜51、以及光束成形光学系统52。在旋转体12的轴线与旋转轴Ra一致的状态下,激光出射部41的出射光轴Al与由内筒部19的凸缘部分35限定的基准平面Bp平行。
LD 50与具有激光出射部41的驱动控制部的功能的驱动控制基板53(参照图1)相连接,利用上述驱动控制部的控制进行驱动以在出射光轴Al上出射激光。在出射光轴Al上,配置有准直透镜51以及光束成形光学系统52。
从LD 50出射的激光到达准直透镜51。准直透镜51使来自LD 50的激光变成平行光束。经准直透镜51而变成平行光束的激光到达光束成形光学系统52。
光束成形光学系统52对入射的激光进行3分割,并且将分割后的各束激光成形为扇形光束而出射。如图2所示,光束成形光学系统52具有:用于进行3分割的3个棱镜块54a、54b、54c;以及用于形成扇形光束的3个柱透镜55a、55b、55c。在光束成形光学系统52中,以与基准平面Bp平行的方式排列并接合有棱镜块54a、54b、54c,并且在各个棱镜块54a、54b、54c上接合了各个柱透镜55a、55b、55c。
详细而言,在光束成形光学系统52中,由棱镜块54b形成位于出射光轴Al上的入射端面56;同样地,由位于出射光轴Al上的棱镜块54a形成第一出射端面57a,利用棱镜块54a与棱镜块54b的接合面形成分束器58a。另外,在出射光轴Al上的光束由分束器58a反射的方向上,利用棱镜块54b与棱镜块54c的接合面形成分束器58b;在由分束器58b反射的方向上,由棱镜块54b形成第二出射端面57b。在由分束器58a反射后透过了分束器58b的光束的前进方向上,由棱镜块54c形成棱镜反射面59;在由棱镜反射面59反射的方向上,由棱镜块54c形成第三出射端面57c。
在上述各个出射端面57a、57b、57c上,设置有柱透镜55(在分别表示的情况下为55a、55b、55c)。上述各个柱透镜55使从各个出射端面57a、57b、57c出射的平行光束变成随着远离旋转轴Ra而呈扇子那样的扇面形状的光束即扇形光束。
因此,在光束成形光学系统52中,如果激光在出射光轴Al上通过并入射于入射端面56,则在棱镜块54b内前进并到达分束器58a而被2分割。透过分束器58a的一束激光在棱镜块54a内前进并经第一出射端面57a而到达柱透镜55a;由分束器58a反射的另一束激光在棱镜块54b内前进并到达分束器58b而被2分割。由分束器58b反射的一束激光在棱镜块54b内前进并经第二出射端面57b而到达柱透镜55b;透过分束器58b的另一束激光在棱镜块54c内前进而到达棱镜反射面59,在此反射并经第三出射端面57c而到达柱透镜55c。
在光束成形光学系统52中,从柱透镜55a出射的扇形光束成为沿着旋转轴Ra的照射光线Sa,从柱透镜55c出射的扇形光束成为沿着旋转轴Ra并与照射光线Sa隔开规定间隔(在水平面中观察时出射方向相互成规定的角度关系)的照射光线Sc,从柱透镜55b出射的扇形光束成为在照射光线Sa与照射光线Sc之间以跨照射光线Sa和照射光线Sc中的一个的上端与另一个的下端的方式斜向延伸的照射光线Sb。由上述照射光线Sa、照射光线Sb以及照射光线Sc形成了进行旋转照射的测量用激光线Lm。
这样,如图1所示,激光出射部41可以从设置在旋转体12的容纳部42的侧壁面42d上的照射开口49照射激光(测量用激光线Lm),所以在旋转激光出射装置10中,旋转体12相对于内筒部19旋转并从激光出射部41出射激光(测量用激光线Lm),从而可以绕旋转轴Ra而360度地沿着基准平面Bp照射测量用激光线Lm。
此处,如上所述,从激光出射部41出射的测量用激光线Lm是将由驱动控制部(驱动控制基板53)的控制而驱动的LD 50中出射的激光成形而获得的。驱动控制部以可以将测量用激光线Lm的频率调制为多个任意值的方式对LD50进行驱动控制;在同时使用了多个旋转激光出射装置时,可以识别出所接收的测量用激光线Lm是从哪个旋转激光出射装置出射的光线。驱动控制部(驱动控制基板53)以出射由省略图示的操作部的操作来设定的频率的激光(测量用激光线Lm)的方式对LD 50进行驱动控制。
另外,在本发明的旋转激光出射装置10中,在激光出射部41出射的测量用激光线Lm上叠加了由一对倾斜传感器32检测的绝对倾斜信号和由斜率传感器48检测的相对倾斜信号。对于驱动控制部(驱动控制基板53),如上所述,从一对倾斜传感器32输入绝对倾斜信号,并从斜率传感器48输入相对倾斜信号。驱动控制部对LD 50进行驱动控制,以将所取得的相对倾斜信号和绝对倾斜信号叠加到测量用激光线Lm上。在本实施例中,驱动控制部以PSK(PhaseShift Keying,相位偏移调制)方式对LD 50进行驱动控制,将相对倾斜信号和绝对倾斜信号叠加到测量用激光线Lm上。
详细而言,在驱动控制部中,如图3所示,作为表示“0”的信号与表示“1”的信号,使用了由以作为基准并相互相等的某个周期变动的波形(在图示的例子中可以是正弦波(也可以是如双点划线所示的方形波))构成、并且相位相互错开180度的信号(参照图3以及图9(a))。因此,在测量用激光线Lm中,不论是表示“0”的信号还是表示“1”的信号,当观察1周期单位的波形时,则成为以出射强度的振动中心为中心并以时间对出射强度进行积分而得到的积分值相互相等的信号,所以在观察1周期单位时光量相互相等。驱动控制部以将取得的相对倾斜信号和绝对倾斜信号变换为由“0”和“1”构成的数据并根据上述数据适当地组合表示“0”或者“1”的信号的方式对LD 50进行驱动控制。从LD 50出射的激光如上所述地由准直透镜51和光束成形光学系统52成形而成为测量用激光线Lm,所以激光出射部41可以出射叠加了相对倾斜信号和绝对倾斜信号的测量用激光线Lm。因此,在本实施例中,激光出射部41和驱动控制部(驱动控制基板53(参照图1))作为可以发送相对倾斜信号和绝对倾斜信号的发送部而发挥功能。
接下来,参照图4对使用旋转激光出射装置10的测量进行说明。在测量时,以旋转激光出射装置10的一对倾斜传感器32检测不到倾斜的状态将旋转激光出射装置10设置于已知点,并在希望测量的部位设置受光器60。受光器60构成为可以将检测的受光信号输出到运算机构61。在本实施例中,受光器60包括具有±10度的指向性的非球面透镜和Si光电二极管,当经过了非球面透镜的光入射到Si光电二极管的受光面时,受光器60将对应于光量的电信号即受光信号输出到运算机构61。运算机构61根据输入的受光信号求出用于测量的高低角。运算机构61既可以搭载于受光器60的内部,也可以电连接于受光器60的外部。在测量中,通过准确地测量从受光器60输出的受光信号的时间间隔,可以以旋转激光出射装置10为基准对测量部位的位置进行测量。因此,旋转激光出射装置10、受光器60、以及运算机构61作为测量系统而发挥功能。
例如,如图4(a)所示,在从高度方向(Z轴方向)上观察受光器60的受光部60a的中心位置与旋转激光出射装置10的出射位置(出射光轴Al)完全一致的情况下,在受光器60上,在测量用激光线Lm的从高度方向(Z轴方向)上观察时的中心位置C接收光线。于是,如图4(b)所示,从受光器60等间隔地输出与照射光线Sa、照射光线Sb以及照射光线Sc相对应的受光信号。
另一方面,如图4(c)所示,在以出射角度观察时受光器60的受光部60a的中心位置相对于旋转激光出射装置10的出射位置(出射光轴Al)向上方偏移了θv的情况下,在受光器60上,也会在测量用激光线Lm的从高度方向观察时向上方偏移了角度θv的位置U处接收光线。于是,如图4(d)所示,按照与上述上方位置U处的间隔对应的时间差,从受光器60输出与照射光线Sa、照射光线Sb以及照射光线Sc相对应的受光信号。
由此,上述测量系统中,通过准确地测量从受光器60输出的受光信号的时间间隔,可以准确地计算受光器60的设置部位相对于设置有旋转激光出射装置10的已知点的高低角,通过求出已知点与设置部位的距离和方向性,可以准确地对测量部位进行测量。运算机构61按照上述方法,根据来自受光器60的受光信号,计算受光器60的设置部位相对于设置有旋转激光出射装置10的已知点的高低角,并计算测量部位的测量值。
此时,在受光器60上,作为与照射光线Sa、照射光线Sb以及照射光线Sc相对应的受光信号,如图5所示,以A/D值的形式获得以130附近为中心上下变动的多个值(光量)。其原因为,对于受光器60,设定了用于接收测量用激光线Lm的规定采样周期,并将与上述采样周期相对应地获得的值输出为数字值(A/D变换)。另外,在由受光器60接收的受光信号中,其各个值的集合的振幅在渐增后渐减。其原因为,受光器60输出与受光量成比例的输出值,但由于测量用激光线Lm从旋转激光出射装置10旋转出射,所以在受光部60a的中心位置与旋转激光出射装置10的激光出射部41(照射开口49)正对的状态下输出值最大,而在其前后,输出值与偏离正对状态的角度相对应地渐减。因此,在运算机构61中,通过对来自受光器60的3个连续的受光信号各自的重心位置进行检测(参照图6),求出照射光线Sa、照射光线Sb以及照射光线Sc之间的准确的时间间隔。关于从上述各值的集合中检测重心位置的方法是公知的,所以省略详细的说明。
接下来,参照图7对在测量用激光线Lm上叠加相对倾斜信号和绝对倾斜信号时的问题进行说明。图7是为了说明问题而以相互相等的时间示出了上下方的图的横轴的说明图,在上方的图中示意地表示来自受光部的受光信号(受光部中的受光量)随时间的变化,在下方的图中示意地表示作为测量用激光线而出射的激光的光量随时间的变化。另外,在图7的上方的图中,用虚线表示接收了作为具有均匀强度的激光而旋转出射的测量用激光线时的来自受光部的受光信号随时间的变化,并用双点划线表示其重心位置。用上述虚线表示的受光信号随时间的变化从求重心的观点出发呈理想的变化,以下将其称为理想线。
例如,驱动控制部与上述本发明的旋转激光出射装置10同样地,以将获得的相对倾斜信号和绝对倾斜信号变换为由“0”和“1”构成的数据、并根据上述数据适当地组合表示“0”或者“1”的信号的方式,对LD进行驱动控制。此处,在驱动控制部中,如图7的下方的图所示,作为表示“0”的信号,测量用激光线Lm的光量为0(停止从LD 50出射激光);而作为表示“1”的信号,测量用激光线Lm的光量为最大值。
在此情况下,来自受光部的受光信号如图7的上方的图所示,在表示“1”的信号的位置为沿着用虚线表示的理想线的值;相对于此,在表示“0”的信号的位置,值(受光量)为0。因此,即使在表示“0”的信号的位置可以得到作为相对倾斜信号和绝对倾斜信号的信息(的一部分),但由于作为测量用激光线的信息丢失,所以如果根据这种受光信号来求重心,就会与本来的重心位置(用双点划线表示)不同。这样,如果无法检测3个连续的受光信号的各自的准确的重心位置,则无法如上所述那样求出3个照射光线间的准确的时间间隔,所以无法准确地计算受光器的设置部位相对于设置有旋转激光出射装置的已知点的高低角,从而无法得到准确的测量结果。
接下来,参照图8和图9对针对上述问题的本发明的旋转激光出射装置10的作用进行说明。图8是为了说明旋转激光出射装置的作用而以相互相等的时间表示了上下方的图的横轴的与图7同样的说明图,在上方的图中示意地表示来自受光部的受光信号(受光部的受光量)随时间的变化,在下方的图中示意地表示作为测量用激光线而出射的激光的光量随时间的变化。图9是用于说明被偏置的测量用激光线Lm的示意的说明图,(a)表示受光信号中表示“0”的信号和表示“1”的信号,(b)表示全波整流后的值。
在本发明的旋转激光出射装置10中,如上所述,以PSK方式将相对倾斜信号和绝对倾斜信号叠加在测量用激光线Lm上,如果观察周期单位,则具有相互相等的积分值。因此,例如,在与上述方法同样地利用LD 50的点灭控制来生成表示“0”或者“1”的信号的情况下,如图8的下方的图所示,如果以输出从0变化为最大值的信号为表示“1”的信号,则输出从最大值变化为0的信号为表示“0”的信号。于是,在测量用激光线Lm中,不论是表示“0”的信号,还是表示“1”的信号,在观察表示1个信号的周期时,都具有必然点亮的时间段,所以可以防止作为测量用激光线Lm的信息的丢失,可以准确地求出重心位置(参照图8的上方的图)。在此情况下,在运算机构61中,如果来自受光器60的受光信号从0变化到最大值,则判断为表示“1”的信号,而如果从最大值变化到0,则判断为表示“0”的信号,从而可以容易地获得所叠加的相对倾斜信号和绝对倾斜信号。
因此,在旋转激光出射装置10中,通过接收旋转出射的测量用激光线Lm,可以获得作为测量用激光线Lm的信息,并且可以传送作为相对倾斜信号和绝对倾斜信号的信息。
另外,特别地,本实施例的旋转激光出射装置10将从激光出射部41出射的测量用激光线Lm偏置为某个输出值(以下称为基准值),在此基础上,以上述基准值为中心,以上下相等的振幅值振动,并使波形在表示“0”的信号与表示“1”的信号之间错开180度相位,从而在测量用激光线Lm上叠加相对倾斜信号和绝对倾斜信号(参照图9(a))。因此,在从旋转激光出射装置10旋转出射的测量用激光线Lm上叠加的相对倾斜信号和绝对倾斜信号成为以基准值为中心的所谓交流信号。与其对应地,运算机构61从来自接收旋转出射的测量用激光线Lm的受光器60的受光信号中读取所叠加的相对倾斜信号和绝对倾斜信号,然后,将上述受光信号如图9(b)所示那样地以基准值为中心进行全波整流,根据全波整流后的值来求重心位置。因此,在运算机构61中,表示“0”的信号与表示“1”的信号总是具有比基准值大的值的相互相等的结果,所以可以在与来自接收了作为均匀强度的激光并旋转出射的测量用激光线时的受光部的受光信号相同的条件下求重心位置,可以更准确地求出上述重心位置。
此处,在这种结构的旋转激光出射装置10中,存在以下问题:如果旋转体12相对于内筒部19旋转,则旋转体12的旋转中心会相对于旋转轴Ra晃动,即旋转体12的旋转姿态会相对于旋转轴Ra晃动。这是因为,在旋转体12中,由于在相对于旋转轴Ra偏移的位置上设置了激光出射部41,所以伴随旋转而产生了重心移动;因此,即使利用内筒部19提高了旋转体12的支撑刚性,也难以完全消除旋转体12相对于旋转轴Ra(内筒部19)的旋转姿态的晃动。如果在产生这种晃动时,测量用激光线Lm的出射方向也一起倾斜,则如上所述,在测量中使用了测量用激光线Lm的高度位置的差异,所以无法进行准确的测量。
但是,在本发明的旋转激光出射装置10中,即使在产生了这种旋转体12相对于旋转轴Ra的旋转姿态的晃动的情况下,由于在测量用激光线Lm上叠加了相对倾斜信号和绝对倾斜信号,所以从受光器60接收到受光信号的运算机构61根据测量用激光线Lm来计算受光器60的设置部位相对于设置有旋转激光出射装置10的已知点的高低角时,可以使用相对倾斜信号和绝对倾斜信号来修正受光信号(测量用激光线Lm)(也可以是据此的计算结果),所以可以进行准确的测量。
利用本发明的旋转激光出射装置10,可以获得以下(1)~(13)的效果。
(1)围绕从内筒部19延伸的支撑轴部分34的旋转体12相对于内筒部19(基台11)旋转,并在支撑轴部分34的上端设置有设置部37,所以可以将其他测量装置(在上述例子中为无线单元38)稳定地支撑在收容部42上方、即收容在收容部42中的激光出射部41的上方,并且可以360度不间断地绕旋转轴Ra出射激光(测量用激光线Lm)。
(2)由于在测量用激光线Lm上叠加了相对倾斜信号,所以可以防止因轴晃动造成的测量精度降低。其依据如下。叠加在测量用激光线Lm上的相对倾斜信号是由斜率传感器48检测的作为在出射测量用激光线Lm的瞬间基部40相对于内筒部19的倾斜度的信号,并且是旋转体12相对于基台11的相对倾斜度。由此,相对倾斜信号表示为了使激光向与设为铅直方向的旋转轴Ra正交的方向旋转出射,在旋转体12中容纳的激光出射部41相对于水平面的倾斜度、即应向水平方向出射的测量用激光线Lm相对于水平方向的倾斜。因此,运算机构61可以根据相对倾斜信号,对来自接收了测量用激光线Lm的受光器60的3个连续的受光信号进行修正,可以准确地计算受光器60的设置部位相对于设置有旋转激光出射装置10的已知点的高低角。因此,可以通过求已知点与设置部位的距离以及方向性,准确地对测量部位进行测量。
(3)由于在测量用激光线Lm上叠加了绝对倾斜信号,所以可以防止因设置于已知点时基台11相对于水平面的倾斜造成的测量精度降低。其依据如下。叠加在测量用激光线Lm上的绝对倾斜信号是由一对倾斜传感器32检测的作为在出射测量用激光线Lm的瞬间基台11相对于水平面的倾斜度的信号,并且是应设为铅直方向的旋转轴Ra相对于铅直方向的倾斜度。由此,绝对倾斜信号表示为了使激光向与旋转轴Ra正交的方向旋转出射,旋转体12中容纳的激光出射部41相对于水平方向的倾斜度、即应向水平方向出射的测量用激光线Lm相对于水平方向的倾斜度。因此,运算机构61可以根据绝对倾斜信号对来自接收测量用激光线Lm的受光器60的3个连续的受光信号进行修正,可以准确地计算受光器60的设置部位相对于设置有旋转激光出射装置10的已知点的高低角。因此,可以通过求已知点与设置部位的距离和方向性,准确地对测量部位进行测量。此处,在本实施例的旋转激光出射装置10中,利用自动调平机构(水平调整机构22、一对倾斜传感器32以及控制部(20))来进行自动调平(调整为由一对倾斜传感器32检测不到倾斜的状态),但在自动调平机构中难以完全地去除由风、振动等外在因素引起的微小的晃动,所以上述(3)所记载的结构在准确地对测量部位进行处理的方面是特别有效的。
(4)由于相对倾斜信号和绝对倾斜信号是以PSK方式叠加在测量用激光线Lm上的,且在观察周期单位时具有相互相等的积分值,所以可以在恰当地获得作为测量用激光线Lm的信息的同时,传送相对倾斜信号和绝对倾斜信号的信息。因此,如果使用旋转激光出射装置10,则可以通过接收从此旋转出射的测量用激光线Lm,获得作为测量用激光线Lm的信息并获得作为相对倾斜信号和绝对倾斜信号的信息,准确地对测量部位进行测量。
(5)由于在从激光出射部41出射的测量用激光线Lm上叠加了相对倾斜信号和绝对倾斜信号,而上述相对倾斜信号和绝对倾斜信号都是以基准值为中心的所谓的交流信号,所以可以通过运算机构61读取所叠加的相对倾斜信号和绝对倾斜信号,然后根据以基准值为中心进行全波整流所得到的值来求重心位置,来获得相对倾斜信号和绝对倾斜信号,并且可以更准确地求出重心位置。
(6)只要在内筒部19与基部40之间设置斜率传感器48,并且以将斜率传感器48检测的相对倾斜信号叠加到测量用激光线Lm上的方式来设定(更新)驱动控制部(驱动控制基板53)中的控制程序(控制内容),就可以防止因轴晃动所导致的测量精度降低。因此,可以抑制装置的大型化以及复杂化。
(7)只要以将通常在现有技术中搭载的水平状态检测机构(在本实施例中为一对倾斜传感器32)检测的绝对倾斜信号叠加到测量用激光线Lm上的方式设定(更新)驱动控制部(驱动控制基板53)中的控制程序(控制内容),就可以防止因设置于已知点时基台11相对于水平面的倾斜所导致的测量精度降低。因此,可以抑制装置的大型化以及复杂化。
(8)激光出射部41只要是可以对从LD 50出射的激光进行3分割并形成照射光线Sa、照射光线Sb以及照射光线Sc的结构即可,所以可以采用简易的结构,高效地利用从LD 50出射的激光。因此,可以提高旋转照射的测量用激光线Lm的输出,所以在使用了受光性能与现有技术相同的受光器的情况下,可以扩大能够测量的区域。另外,相反,即使是受光性能比以往低的受光器,也可以成为可以测量与以往相同的区域的结构,所以可以减小所使用的受光器的有效直径,实现受光器的小型化。
(9)由于激光出射部41容纳在绕旋转轴Ra旋转的旋转体12中,所以可以抑制由测量用激光线Lm的旋转照射方向(在旋转体12的旋转方向上观察的角度位置)而引起的测量精度(高低角测量的精度)的偏差。其依据如下。当如现有技术中设置在基台上的激光出射部由堆叠在旋转轴上的多个五棱镜和可以朝上述五棱镜出射沿旋转轴的激光的激光源构成、且仅各个五棱镜旋转时,从激光源出射的激光的光量不均的影响会随旋转照射的方向而不同。因此,存在根据旋转照射方向而产生测量精度(高低角测量的精度)的偏差的问题。相对于此,在本发明的旋转激光出射装置10中,包括作为激光源的LD 50的激光出射部41绕旋转轴Ra旋转,所以可以使光量不均的影响固定而与旋转照射方向无关。
(10)在激光出射部41中,对经过了准直透镜51后的激光进行3分割并成形的光束成形光学系统52构成为与基准平面Bp平行地排列了3个棱镜块54a、54b、54c,所以可以减小旋转体12在旋转轴Ra方向上观察时的大小尺寸,并且出射前进方向始终与基准平面平行的3束激光(测量用激光线Lm)。另外,由于可以减小旋转体12在旋转轴Ra方向上观察时的大小尺寸,所以可以抑制在旋转体12相对于旋转轴Ra的旋转姿态上产生晃动。
(11)在收容部42中,在将基部40以可旋转的方式支撑于内筒部19的状态下,内筒部19的支撑轴部分34穿过贯通孔42c,并且支撑轴部分34的上端(设置部37)从上壁部42a突出,所以即使收容部42与基部40一起相对于内筒部19旋转,设置在支撑轴部分34的上端的设置部37也不会与收容部42即旋转体12一起旋转,从而可以稳定地将其他测量装置(在上述例子中为无线单元38)支撑于收容部42上方、即收容于收容部42中的激光出射部41的上方。
(12)由于相对倾斜信号和绝对倾斜信号是以PSK方式叠加在测量用激光线Lm上的,所以即使将测量用激光线Lm的频率设定为任意的值,也可以将相对倾斜信号和绝对倾斜信号叠加在测量用激光线Lm上而不会对所设定的频率造成影响。因此,在同时使用了多个旋转激光出射装置时,可以根据所接收的测量用激光线Lm的频率,来区分出射了所接收的测量用激光线Lm的旋转激光出射装置,并且可以发送测量用激光线Lm的信息以及相对倾斜信号和绝对倾斜信号的信息。
(13)由于在测量用激光线Lm上叠加了相对倾斜信号和绝对倾斜信号,所以无需在测量用激光线Lm的信息与相对倾斜信号和绝对倾斜信号的信息之间进行时间上的对应关联,所以可以利用更简易的结构,来准确地对测量部位的进行测量。
因此,在本发明的旋转激光出射装置10中,即使在从设置在包围旋转轴Ra的环状的旋转体12上的激光出射部41出射的激光(测量用激光线Lm)的出射方向相对于旋转轴Ra发生晃动的情况下,也可以确保高测量精度。
另外,在上述实施例中,采用了将相对倾斜信号(以及绝对倾斜信号)叠加在测量用激光线Lm上并发送到受光器60的结构,但也可以采用单独地发送相对倾斜信号(以及绝对倾斜信号)的结构,而不限于上述实施例。
另外,在上述实施例中,采用了除相对倾斜信号外还将绝对倾斜信号也叠加在测量用激光线Lm上的结构,但也可以不叠加绝对倾斜信号(不是进行发送的结构),而不限于上述实施例。但是,如果如上述实施例那样将相对倾斜信号和绝对倾斜信号叠加在测量用激光线Lm上(发送),则能够更准确地测量,所以优选发送相对倾斜信号和绝对倾斜信号。
另外,在上述实施例中,采用了以PSK方式将相对倾斜信号和绝对倾斜信号叠加在测量用激光线Lm上的结构,但只要是可以将相对倾斜信号和绝对倾斜信号叠加在测量用激光线Lm上的结构即可,而不限于上述实施例。但是,如果如上所述那样以PSK方式将相对倾斜信号和绝对倾斜信号叠加在测量用激光线Lm上,则即使将测量用激光线Lm的频率设定为任意的值,也可以将相对倾斜信号和绝对倾斜信号叠加在测量用激光线Lm上而不会对上述设定的频率造成影响,所以优选设为上述实施例那样的结构。
在上述实施例中,采用了将相对倾斜信号和绝对倾斜信号以PSK方式叠加在测量用激光线Lm上的结构,但只要具备可以至少将作为相对倾斜信号的信息传送到外部的发送部即可,而不限于上述实施例。例如,虽然省略了图示,但也可以采用如下结构:在旋转激光出射装置中,搭载无线通信装置作为发送部,向旋转激光出射装置的控制部(在上述实施例中为主基板20或者驱动控制基板53)输入来自斜率传感器的相对倾斜信号,并且在上述控制部的控制下,无线通信装置传送作为相对倾斜信号的信息。在此情况下,需要相应地在受光器中也设置无线通信装置,受光器的运算机构在计算受光器设置部位处相对于设置有旋转激光出射装置的已知点的高低角时,根据来自无线通信装置的作为相对倾斜信号的信息来修正受光信号(测量用激光线)(也可以是根据上述受光信号的计算结果)。由此,可以进行准确的测量。此时,为了更准确地测量,优选在上述双方的无线通信装置中,对应地传送作为绝对倾斜信号的信息。

Claims (12)

1.一种旋转激光出射装置,其特征在于具备:
旋转体;
基台,所述基台以可绕旋转轴旋转的方式支撑所述旋转体;
激光出射部,所述激光出射部用于向与所述旋转体的旋转轴正交的方向出射激光,并容纳在所述旋转体中;
相对倾斜检测机构,所述相对倾斜检测机构用于对所述旋转体的旋转轴相对于所述基台的轴的旋转晃动量进行检测;以及
发送部,所述发送部能够发送信号以将由所述相对倾斜检测机构检测的相对倾斜信号传送到外部。
2.如权利要求1所述的旋转激光出射装置,其特征在于,所述相对倾斜检测机构设置在所述旋转体与所述基台之间。
3.如权利要求1所述的旋转激光出射装置,其特征在于,所述激光出射部具有激光源。
4.如权利要求3所述的旋转激光出射装置,其特征在于,所述发送部具有:
所述激光出射部的激光源;以及
对所述激光源进行驱动控制的驱动控制部,
所述驱动控制部根据所述相对倾斜信号对所述激光源进行驱动控制,以将所述相对倾斜信号叠加在利用所述旋转体的旋转而从所述激光出射部旋转出射的激光上。
5.如权利要求4所述的旋转激光出射装置,其特征在于,所述相对倾斜信号以相位偏移调制方式叠加在激光上。
6.如权利要求1所述的旋转激光出射装置,其特征在于,在所述基台上设置有能够将所述基台相对于水平面的倾斜度检测为绝对倾斜信号的绝对倾斜检测机构,所述发送部基于所述相对倾斜信号发送由所述绝对倾斜检测机构检测的绝对倾斜信号。
7.如权利要求4所述的旋转激光出射装置,其特征在于,在所述基台上设置有能够将所述基台相对于水平面的倾斜度检测为绝对倾斜信号的绝对倾斜检测机构,所述发送部基于所述相对倾斜信号发送由所述绝对倾斜检测机构检测的绝对倾斜信号。
8.如权利要求5所述的旋转激光出射装置,其特征在于,在所述基台上设置有能够将所述基台相对于水平面的倾斜度检测为绝对倾斜信号的绝对倾斜检测机构,所述发送部基于所述相对倾斜信号发送由所述绝对倾斜检测机构检测的绝对倾斜信号。
9.如权利要求1所述的旋转激光出射装置,其特征在于,还具备无线通信装置,所述发送部利用所述无线通信装置将所述相对倾斜信号传送到外部。
10.一种测量系统,其特征在于具备:
如权利要求4所述的旋转激光出射装置;
受光器,所述受光器能够接收从所述旋转激光出射装置旋转出射的激光;以及
运算机构,所述运算机构根据来自所述受光器的受光信号来求所述受光器的设置部位相对于所述旋转激光出射装置的设置位置的高低角,
所述运算机构对通过叠加相对倾斜信号而成为交流信号的所述受光信号进行全波整流然后求所述受光信号的重心位置。
11.一种测量系统,其特征在于具备:
如权利要求5所述的旋转激光出射装置;
受光器,所述受光器能够接收从所述旋转激光出射装置旋转出射的激光;以及
运算机构,所述运算机构根据来自所述受光器的受光信号来求所述受光器的设置部位相对于所述旋转激光出射装置的设置位置的高低角,
所述运算机构对通过叠加相对倾斜信号而成为交流信号的所述受光信号进行全波整流然后求所述受光信号的重心位置。
12.一种测量系统,其特征在于具备:
如权利要求6所述的旋转激光出射装置;
受光器,所述受光器能够接收从所述旋转激光出射装置旋转出射的激光;以及
运算机构,所述运算机构根据来自所述受光器的受光信号来求所述受光器的设置部位相对于所述旋转激光出射装置的设置位置的高低角,
所述运算机构对通过叠加相对倾斜信号而成为交流信号的所述受光信号进行全波整流然后求所述受光信号的重心位置。
CN201010201768.7A 2009-06-17 2010-06-17 旋转激光出射装置 Active CN101929860B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-143901 2009-06-17
JP2009143901A JP5693827B2 (ja) 2009-06-17 2009-06-17 測量システム

Publications (2)

Publication Number Publication Date
CN101929860A CN101929860A (zh) 2010-12-29
CN101929860B true CN101929860B (zh) 2013-04-17

Family

ID=42767755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010201768.7A Active CN101929860B (zh) 2009-06-17 2010-06-17 旋转激光出射装置

Country Status (4)

Country Link
US (1) US8619250B2 (zh)
EP (1) EP2264400A3 (zh)
JP (1) JP5693827B2 (zh)
CN (1) CN101929860B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5550855B2 (ja) * 2009-06-12 2014-07-16 株式会社トプコン 回転レーザ出射装置
EP2522954A1 (en) * 2011-05-11 2012-11-14 Leica Geosystems AG Tiltable rotating construction laser with a grade mechanism and method for determining a position of a grade arm of the grade mechanism
US20140111813A1 (en) * 2012-10-19 2014-04-24 Hamar Laser Instruments, Inc. Optical assembly and laser alignment apparatus
JP6173067B2 (ja) * 2013-06-25 2017-08-02 株式会社トプコン レーザ測量機
JP6266937B2 (ja) * 2013-09-30 2018-01-24 株式会社トプコン 回転レーザ出射装置およびレーザ測量システム
CN104700592A (zh) * 2013-12-06 2015-06-10 上海诺司纬光电仪器有限公司 一种扫平仪控制系统
KR102441844B1 (ko) * 2015-02-04 2022-09-08 삼성전자주식회사 회전체를 제어하기 위한 방법 및 그 전자 장치
CN114217355B (zh) * 2022-02-21 2022-05-17 中国地震局地震研究所 一种流动重力仪控制方法及流动重力仪手持终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2601390Y (zh) * 2003-03-06 2004-01-28 上海隧道工程股份有限公司 微型顶管机的机头姿态激光测量装置
CN1512137A (zh) * 2002-12-26 2004-07-14 ��ʽ�������տ� 作业位置测量装置
JP2007064701A (ja) * 2005-08-30 2007-03-15 Topcon Corp 回転レーザ装置及びこれを用いた回転ブレ検出装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2731644B2 (ja) * 1991-09-13 1998-03-25 株式会社ミツトヨ 光学式寸法測定装置
JP3512469B2 (ja) * 1994-06-21 2004-03-29 株式会社トプコン 測量用装置
JPH0851462A (ja) * 1994-08-09 1996-02-20 Toshiba Corp 2相psk信号復調装置
JPH09229686A (ja) * 1996-02-21 1997-09-05 Laser Technol Inc データを決定し伝達する装置及び方法
JP3757344B2 (ja) * 1997-02-09 2006-03-22 株式会社トプコン 回転レーザー照射装置
US6016455A (en) * 1997-11-10 2000-01-18 Kabushiki Kaisha Topcon Automatic control system for construction machinery
CA2314882A1 (en) 1998-10-13 2000-04-20 Arc Second, Inc. Rotating head optical transmitter for position measurement system
JP4614506B2 (ja) * 2000-07-24 2011-01-19 株式会社トプコン 携帯型測距装置
JP4531965B2 (ja) * 2000-12-04 2010-08-25 株式会社トプコン 振れ検出装置、振れ検出装置付き回転レーザ装置及び振れ検出補正装置付き位置測定設定システム
JP3799579B2 (ja) * 2001-12-18 2006-07-19 株式会社トプコン 位置測定装置
JP3949681B2 (ja) 2004-09-03 2007-07-25 株式会社トプコン 回転レーザ装置
DE102004053249B4 (de) * 2004-11-04 2006-08-17 Hilti Ag Baulaser mit neigbarem Umlenkmittel
US7894042B2 (en) * 2006-01-18 2011-02-22 Lockheed Martin Corporation Omni-directional imaging sensor
JP5020585B2 (ja) * 2006-09-27 2012-09-05 株式会社トプコン 測定システム
JP2007271627A (ja) * 2007-04-26 2007-10-18 Topcon Corp 作業位置測定装置
JP5145029B2 (ja) * 2007-12-27 2013-02-13 株式会社トプコン 測量機及び測量補正方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1512137A (zh) * 2002-12-26 2004-07-14 ��ʽ�������տ� 作业位置测量装置
CN2601390Y (zh) * 2003-03-06 2004-01-28 上海隧道工程股份有限公司 微型顶管机的机头姿态激光测量装置
JP2007064701A (ja) * 2005-08-30 2007-03-15 Topcon Corp 回転レーザ装置及びこれを用いた回転ブレ検出装置

Also Published As

Publication number Publication date
JP5693827B2 (ja) 2015-04-01
EP2264400A3 (en) 2013-11-20
US20100321673A1 (en) 2010-12-23
US8619250B2 (en) 2013-12-31
EP2264400A2 (en) 2010-12-22
CN101929860A (zh) 2010-12-29
JP2011002273A (ja) 2011-01-06
EP2264400A8 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
CN101929860B (zh) 旋转激光出射装置
CN101535764B (zh) 倾斜度指示设备和方法
US11536568B2 (en) Target instrument and surveying system
US9200900B2 (en) Construction laser system with an at least partially automatically running recalibration functionality for a beam levelling functionality
JP6560596B2 (ja) 測量装置
CN100580374C (zh) 激光测定方法及激光测定系统
JP4531965B2 (ja) 振れ検出装置、振れ検出装置付き回転レーザ装置及び振れ検出補正装置付き位置測定設定システム
CN108291809B (zh) 用于检验和/或校准旋转激光器的竖直轴线的方法
US7388658B2 (en) Inclination detection methods and apparatus
US7115852B2 (en) Photodetection device for rotary laser system
JP2007040762A (ja) 光ジャイロ較正装置、光ジャイロを搭載するロボット及び光ジャイロ較正プログラム
CN104428626A (zh) 激光接收器
US11500096B2 (en) Surveying instrument
US8407904B2 (en) Rotary laser beam emitter
US6043874A (en) System and method for calibrating a laser transmitter
JP2007248214A (ja) 水平角度測定方法及び位置測定方法
JP3937268B2 (ja) レーザー装置
JPH08271251A (ja) トンネル掘進機の位置姿勢計測方法及び装置
JP2022147973A (ja) 飛行体の姿勢検出装置及び姿勢制御システム
JP2022147581A (ja) 測量システム
JP2003021514A (ja) 測量機械用の機械高測定装置とそれを用いた測量機械、及び測量機械の機械高測定方法
WO2024071287A1 (ja) ツイストリングポリゴンミラー、送光器、および測量システム
JPH0635910U (ja) ビーム射出装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant