CN101923584A - 风力机专用翼型设计方法及风力机专用翼型 - Google Patents

风力机专用翼型设计方法及风力机专用翼型 Download PDF

Info

Publication number
CN101923584A
CN101923584A CN2009101912757A CN200910191275A CN101923584A CN 101923584 A CN101923584 A CN 101923584A CN 2009101912757 A CN2009101912757 A CN 2009101912757A CN 200910191275 A CN200910191275 A CN 200910191275A CN 101923584 A CN101923584 A CN 101923584A
Authority
CN
China
Prior art keywords
wind energy
energy conversion
conversion system
centerdot
aerofoil profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009101912757A
Other languages
English (en)
Other versions
CN101923584B (zh
Inventor
陈进
张石强
庞晓平
陆群峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN2009101912757A priority Critical patent/CN101923584B/zh
Publication of CN101923584A publication Critical patent/CN101923584A/zh
Application granted granted Critical
Publication of CN101923584B publication Critical patent/CN101923584B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Abstract

本发明公开了一种风力机专用翼型设计方法及采用该方法设计得到的风力机专用翼型,本发明的方法采用简单高阶多项式形状函数来表达翼型的几何形状,通过按照特定约束条件改变形状函数多项式的系数,即可得到相应的翼型形状,本发明的风力机专用翼型在Re=1×106~3×106雷诺数范围内,具有低翼型表面粗糙度敏感性、较高的升力系数和最大升阻比,同时在较大攻角范围内,具有高升阻比以及良好的结构特性,与其他风力机翼型相比,具有良好的相容性和声学性能。

Description

风力机专用翼型设计方法及风力机专用翼型
技术领域
本发明涉及一种风力机专用翼型设计方法,同时还涉及根据该风力机专用翼型设计方法设计得到的风力机专用翼型。
背景技术
风能作为一种可再生的清洁能源,越来越受到世界各国的重视。其蕴含量巨大,全球的风能约为2.74×109MW,其中可利用的风能为2×107MW,比地球上可开发利用的水能总量还要大10倍。据预测,到2020年底,风电在全球的装机容量几乎可以达到12亿kW(120万MW)。这代表年发电量共有3万亿kW·h(3000TW·h),相当于世界电力需求的12%。
风力机依靠风轮叶片捕捉风能,叶片翼型设计理论是决定风力机功率特性和载荷特性的根本因素,一直是各国学者研究的热点所在。传统风力机一直沿用航空翼型,主要包括美国航空航天局的NACA-230系列、NACA-44系列、NACA6系列、NACA-LS系列和美国贝尔公司的FX系列等。但随着风力机技术的迅速发展,发现传统的航空翼型并不能很好地满足风力机特定运行环境的要求,为适应风力机运行工况要求,国际上风能技术发达国家都相继开发各自的风力机专用翼型系列。在国内,对风力机专用翼型的研究工作还很有限,特别是在风力机专用翼型的设计方法研究上,与国外有着较大的差距。
发明内容
有鉴于此,本发明提供了一种能够直接设计出风力机专用翼型的风力机专用翼型设计方法以及通过该设计方法设计出的风力机专用翼型,在Re=1×106~3×106雷诺数范围内,设计出的翼型具有低翼型表面粗糙度敏感性、较高的升力系数和最大升阻比、较大攻角范围内具有高升阻比以及良好的结构特性,与其他风力机翼型具有良好的相容性和良好的声学性能。
本发明的目的之一是提供一种风力机专用翼型设计方法,包括以下步骤:
1)对复平面上的一偏心圆zc进行儒可夫斯基保角变换,得到保角变换函数如下:
ζ=f(zc)=zc+a2/zc
该公式表现为另一复平面ζ上的一个前圆后尖,表面光滑,类似翼型的流线型图形,其中a为几何尺度因子,为1/4翼型弦长;
2)将zc设计为拟圆,对zc进行拟圆表达,得到拟圆表达函数如下:
zc=a×ρ(θ)×exp(iθ)
其中θ为复角,ρ(θ)为θ的可变函数,exp(iθ)为复平面的指数表示;
将拟圆表达函数代入步骤1.1)中的保角变换函数,可得如下方程:
ζ = z c + a 2 / z c = a ( ρ + 1 ρ ) cos ( θ ) + i · a ( ρ - 1 ρ ) sin ( θ )
3)用笛卡尔直角坐标对复平面ζ进行表达,即ζ=x+iy,带入步骤1.2)中的方程,即得如下等式:
x = a ( ρ + 1 ρ ) cos ( θ ) y = a ( ρ - 1 ρ ) sin ( θ )
4)根据Taylor级数对等思想,通过对大量翼型的集成研究发现,可以用一个简单的高阶多项式对ρ(θ)进行表达,即得如下的翼型形状函数:
ρ(θ)=C0+C1θ+C2θ2+C3θ3+…Ckθk+…
其中,k=0,1,2,...n;C0,C1,C2,...Ck,...,θ∈[0,2π]
5)选择ρ(θ)的第2到第9项系数作为优化设计的变量X:
X=(x1,x2,x3,x4,x5,x6,x7,x8)=(C1,C2,C3,C4,C5,C6,C7,C8,C9);
将变量X代入步骤4)中的翼型形状函数,再将得到的ρ(θ)值代入步骤3)中的等式,即得到风力机专用翼型的形状及坐标参数,所得结果为一系列的弦向x,y坐标值,将各坐标点依次连接并表示在二维直角坐标系上,即可得到翼型二维形状;通过舍取级数项数和改变级数系数,进行优化设计,即可得到不同形状和性能的翼型;
进一步,所述步骤5)中的优化设计还包括基于风力机专用翼型设计工况条件(即设计攻角αd和相应翼型所处叶片展向位置实际运行条件下的雷诺数Re与马赫数Ma),分别以自由转捩和固定转捩工况的翼型升阻比加权值作为目标函数,建立遗传算法的适应度目标函数模型如下:
f(x)=max(λ·(cl/cd)+(1-λ)·(c′l/c′d))
式中:λ为自由转捩工况升阻比权值系数,λ∈[0,1];cl,cd为自由转捩工况下翼型升力系数和阻力系数;c′l,c′d为固定转捩工况下的翼型升力系数和阻力系数,其中转捩模型采用吸力面(上翼面)处于1%弦长位置固定转捩,压力面(下翼面)处于10%弦长位置固定转捩;
进一步,所述步骤5)中的优化设计还包括采用改进后的多目标遗传算法对风力机专用翼型型线进行形状优化,遗传算法的参数设定为:
初始种群数目:p=30,最大进化代数:kmax=200,交叉概率:pcross=0.7,变异概率:pmat=0.1。
进一步,为保证所设计的几何形状具有翼型的特征,翼型形状函数系数必须满足控制方程约束:
C 0 = 1 2 π C 1 + 4 π 2 C 2 + · · · + 2 k π k C k + · · · = 0 π C 1 + π 2 C 2 + · · · + π k C k + · · · = ϵ π C 1 + 2 π 2 C 2 + · · · + ( 3 k - 1 ) π k 2 k C k + · · · = - Δ
式中:k为选取形状函数的最高阶数,ε,Δ分别为拟圆图形在原坐标平面内的横坐标偏移量和纵坐标偏移量;
同时,为确保生成翼型型线的设计空间覆盖一个近似圆空间,建立变量边界约束条件:
Xmin≤X≤Xmax
Xmin、Xmax分别表示设计变量的上限和下限值,取值为:
X min X max = - 1 , - 1 , - 1 , - 1 , - 1 , - 0.1 , - 0.01 , - 0.001 + 1 , + 1 , + 1 , + 1 , + 1 , + 0.1 , + 0.01 , + 0.001 ;
进一步,所述步骤5)中的优化设计中,翼型最大厚度弦向位置约束条件为:
0.24≤Lmax≤0.35
Lmax为翼型最大厚度所处的弦向位置;
设计工况下翼型升力系数约束为:
cl≥0.8;
设计工况下翼型升力系数粗糙度敏感性约束为:
cl-c′l≤0.05;
进一步,为控制风轮工作时的噪声,叶尖部分翼型具有的尖尾缘特性约束为:
yu,0.99-yl,0.99≤0.01;
式中,yu,0.99,yl,0.99分别表示x弦向坐标为0.99时,翼型上、下翼面的y坐标值。
本发明的目的之二是提供一种风力机专用翼型,所述风力机专用翼型是选取翼型厚度为0.15的厚度约束,通过采用权利要求1所述的风力机专用翼型设计方法进行优化设计得到,翼型最大厚度位置在弦向x/c=0.254处,最大弯度为cam/c=0.037385,所处弦向位置为x/c=0.443;
本发明的目的之三是提供一种风力机专用翼型,所述风力机专用翼型是选取翼型厚度为0.17的厚度约束,通过采用权利要求1所述的风力机专用翼型设计方法进行优化设计得到,翼型最大厚度位置在弦向x/c=0.289处,最大弯度为cam/c=0.029445,所处弦向位置为x/c=0.460;
本发明的目的之四是提供一种风力机专用翼型,所述风力机专用翼型是选取翼型厚度为0.18的厚度约束,通过采用权利要求1所述的风力机专用翼型设计方法进行优化设计得到,翼型最大厚度位置在弦向x/c=0.294处,最大弯度为cam/c=0.030005,所处弦向位置为x/c=0.688;
本发明的目的之五是提供一种风力机专用翼型,所述风力机专用翼型是选取翼型厚度为0.20的厚度约束,通过采用权利要求1所述的风力机专用翼型设计方法进行优化设计得到,翼型最大厚度位置在弦向x/c=0.305处,最大弯度为cam/c=0.028847,所处位置为x/c=0.691。
本发明的有益效果是:
1.本发明的方法可以直接根据需要设计风力机专用翼型,其设计出的翼型具有以下优点:
1)较低的粗糙度敏感性,即翼型最大升阻比和最大升力系数受粗糙条件的影响很小。从而保证即使翼型前缘处在受外界污染或在一定的制造误差的条件下,仍能保证具有良好的空气动力学性能;
2)设计翼型具有较高的最大升阻比,从而保证风力机叶片具有更高的捕风效率;
3)设计翼型具有相对较高的最大升力系数,从而在设计叶尖速比下可以降低叶片的弦长,达到降低叶片工作时所受的载荷;
4)设计翼型应具有良好的非设计工况性能,即在较大攻角范围内能具有较高的升阻比;
5)设计翼型与其它风力机翼型具有良好的兼容性,最大厚度位置控制在弦向的24~35%之间;
2.本发明的方法可以推广应用到压气机叶片翼型设计,低速航空翼型设计,潜艇剖面型线设计等流线型物体形状设计,具有良好的社会价值和经济价值。
本发明的其他优点、目标,和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书和权利要求书来实现和获得。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步的详细描述,其中:
图1为WT150翼型型线;
图2为WT150翼型在自由转捩工况和固定转捩工况气动特性对比图(图2(a)为升力系数曲线比较图,图2(b)为阻力系数曲线比较图,图2(c)为升阻比曲线比较图,图2(d)为升-阻力特性比较图);
图3为WT170翼型型线;
图4为WT170翼型在自由转捩工况和固定转捩工况气动特性对比图(图4(a)为升力系数曲线比较图,图4(b)为阻力系数曲线比较图,图4(c)为升阻比曲线比较图,图4(d)为升-阻力特性比较图);
图5为WT180翼型型线;
图6为WT180翼型在自由转捩工况和固定转捩工况气动特性对比图(图6(a)为升力系数曲线比较图,图6(b)为阻力系数曲线比较图,图6(c)为升阻比曲线比较图,图6(d)为升-阻力特性比较图);
图7为WT201翼型型线;
图8为WT201翼型在自由转捩工况和固定转捩工况气动特性对比图(图8(a)为升力系数曲线比较图,图8(b)为阻力系数曲线比较图,图8(c)为升阻比曲线比较图,图8(d)为升-阻力特性比较图);
图9为WT150翼型与传统的NACA64415翼型的气动特性比较曲线(图9(a)为升力系数曲线比较图,图9(b)为升阻比曲线比较图);
图10为WT180翼型与传统的NACA63418翼型的气动特性比较曲线(图10(a)为升力系数曲线比较图,图10(b)为升阻比曲线比较图)。
具体实施方式
以下将参照附图,对本发明的优选实施例进行详细的描述。应当理解,优选实施例仅为了说明本发明,而不是为了限制本发明的保护范围。
本发明的风力机专用翼型设计方法,包括以下步骤:
1)对复平面上的一偏心圆zc进行儒可夫斯基保角变换,得到保角变换函数如下:
ζ=f(zc)=zc+a2/zc
该公式表现为另一复平面ζ上的一个前圆后尖,表面光滑,类似翼型的流线型图形,其中a为几何尺度因子,为1/4翼型弦长;
2)将zc设计为拟圆,对zc进行拟圆表达,得到拟圆表达函数如下:
zc=a×ρ(θ)×exp(iθ)
其中θ为复角,ρ(θ)为θ的可变函数,exp(iθ)为复平面的指数表示;
将拟圆表达函数代入步骤1.1)中的保角变换函数,可得如下方程:
ζ = z c + a 2 / z c = a ( ρ + 1 ρ ) cos ( θ ) + i · a ( ρ - 1 ρ ) sin ( θ )
3)用笛卡尔直角坐标对复平面ζ进行表达,即ζ=x+iy,带入步骤1.2)中的方程,即得如下等式:
x = a ( ρ + 1 ρ ) cos ( θ ) y = a ( ρ - 1 ρ ) sin ( θ )
4)根据Taylor级数对等思想,通过对大量翼型的集成研究发现,可以用一个简单的高阶多项式对ρ(θ)进行表达,即得如下的翼型形状函数:
ρ(θ)=C0+C1θ+C2θ2+C3θ3+…Ckθk+…
其中,k=0,1,2,...n;C0,C1,C2,...Ck,...,θ∈[0,2π]
需要注意的是,为保证所设计的几何形状具有翼型的特征,翼型形状函数系数必须满足控制方程约束:
C 0 = 1 2 π C 1 + 4 π 2 C 2 + · · · + 2 k π k C k + · · · = 0 π C 1 + π 2 C 2 + · · · + π k C k + · · · = ϵ π C 1 + 2 π 2 C 2 + · · · + ( 3 k - 1 ) π k 2 k C k + · · · = - Δ
式中:k为选取形状函数的最高阶数,ε,Δ分别为拟圆图形在原坐标平面内的横坐标偏移量和纵坐标偏移量;
5)选择ρ(θ)的第2到第9项系数作为优化设计的变量:
X=(x1,x2,x3,x4,x5,x6,x7,x8)=(C1,C2,C3,C4,C5,C6,C7,C8,C9),同时,为确保生成翼型型线的设计空间覆盖一个近似圆空间,建立变量边界约束条件:
Xmin≤X≤Xmax
Xmin、Xmax分别表示设计变量的上限和下限值,取值为:
X min X max = - 1 , - 1 , - 1 , - 1 , - 1 , - 0.1 , - 0.01 , - 0.001 + 1 , + 1 , + 1 , + 1 , + 1 , + 0.1 , + 0.01 , + 0.001 .
将变量X代入步骤4)中的翼型形状函数,再将得到的ρ(θ)值代入步骤3)中的等式,即得到风力机专用翼型的形状及坐标参数,所得结果为一系列的弦向x,y坐标值,将各坐标点依次连接并表示在二维直角坐标系上,即可得到翼型二维形状;通过舍取级数项数和改变级数系数(在满足各项约束条件的基础上),进行优化设计,即可得到不同形状和性能的翼型。
其中,步骤5)中的优化设计还包括基于风力机专用翼型设计工况条件(即设计攻角αd和相应翼型所处叶片展向位置实际运行条件下的雷诺数Re与马赫数Ma),分别以自由转捩和固定转捩工况的翼型升阻比加权值作为目标函数,建立遗传算法的适应度目标函数模型如下:
f(x)=max(λ·(cl/cd)+(1-λ)·(c′l/c′d))
式中:λ为自由转捩工况升阻比权值系数,λ∈[0,1];cl,cd为自由转捩工况下翼型升力系数和阻力系数;c′l,c′d为固定转捩工况下的翼型升力系数和阻力系数,其中转捩模型采用吸力面(上翼面)处于1%弦长位置固定转捩,压力面(下翼面)处于10%弦长位置固定转捩;
采用改进后的多目标遗传算法对风力机专用翼型型线进行形状优化,遗传算法的参数设定为:
初始种群数目:p=30,最大进化代数:kmax=200,交叉概率:pcross=0.7,变异概率:pmat=0.1。
在具体设计中,还需注意以下的约束条件:
1.翼型最大厚度弦向位置约束条件为:
0.24≤Lmax≤0.35
Lmax为翼型最大厚度所处的弦向位置;
2.设计工况下翼型升力系数约束为:
cl≥0.8;
3.设计工况下翼型升力系数粗糙度敏感性约束为:
cl-c′l≤0.05;
4.为控制风轮工作时的噪声,叶尖部分翼型具有的尖尾缘特性约束为:
yu,0.99-yl,0.99≤0.01;
式中,yu,0.99,yl,0.99分别表示x弦向坐标为0.99时,翼型上、下翼面的y坐标值。
实施例1
如图1和图2所示,所述风力机专用翼型WT150是选取翼型厚度为0.15的厚度约束,通过采用权利要求1所述的风力机专用翼型设计方法进行优化设计得到,翼型最大厚度位置在弦向x/c=0.254处,最大弯度为cam/c=0.037385,所处弦向位置为x/c=0.443。下表为翼型WT150的形状函数方程的系数。
  翼型名称   C1   C2   C3   C4   C5   C6   C7   C8
  WT150   0.131796   -0.060058   -0.150282   0.154312   -0.066557   0.0149111   -0.00167887   7.47892e-005
采用风力机翼型专用分析软件RFOIL 3D翼型进行详细的气动特性分析,翼型WT150分析结果见图2。图中可见翼型WT150具有较低的粗糙度敏感性,对于外界污染、外物损伤和加工不敏感;具有较高的升力系数和最大升阻比;具有良好的非设计工况气动性能,WT150翼型自由转捩工况下最大升力系数为1.7748,最大升阻比为158.079,固定转捩工况下最大升力系数为1.6504,最大升阻比为97.6994。
实施例2
如图3和图4所示,所述风力机专用翼型WT170是选取翼型厚度为0.17的厚度约束,通过采用权利要求1所述的风力机专用翼型设计方法进行优化设计得到,翼型最大厚度位置在弦向x/c=0.289处,最大弯度为cam/c=0.029445,所处弦向位置为x/c=0.460。下表为翼型WT170的形状函数方程的系数。
  翼型名称   C1   C2   C3   C4   C5   C6   C7   C8
  WT170   0.101061   -0.0626973   -0.159258   0.166905   -0.0697439   0.0148122   -0.00157114   6.59562e-005
采用风力机翼型专用分析软件RFOIL 3D翼型进行详细的气动特性分析,翼型WT170分析结果见图4。图中可见翼型WT170具有较低的粗糙度敏感性,对于外界污染、外物损伤和加工不敏感;具有较高的升力系数和最大升阻比;具有良好的非设计工况气动性能,WT170翼型自由转捩工况下最大升力系数为1.5817,最大升阻比为147.829,固定转捩工况下最大升力系数为1.4887,最大升阻比为88.4434。
实施例3
如图5和图6所示,所述风力机专用翼型WT180是选取翼型厚度为0.18的厚度约束,通过采用权利要求1所述的风力机专用翼型设计方法进行优化设计得到,翼型最大厚度位置在弦向x/c=0.289处,最大弯度为cam/c=0.029445,所处弦向位置为x/c=0.460。下表为翼型WT180的形状函数方程的系数。
  翼型名称   C1   C2   C3   C4   C5   C6   C7   C8
  WT180   0.135179   0.169777   -0.650805   0.526446   -0.199565   0.0399258   -0.00407183   0.000166823
采用风力机翼型专用分析软件RFOIL 3D翼型进行详细的气动特性分析,翼型WT180分析结果见图6。图中可见翼型WT180具有较低的粗糙度敏感性,对于外界污染、外物损伤和加工不敏感;具有较高的升力系数和最大升阻比;具有良好的非设计工况气动性能,WT180翼型自由转捩工况下最大升力系数为1.6341,最大升阻比为151.556,固定转捩工况下最大升力系数为1.5647,最大升阻比为91.4793。
实施例4
如图7和图8所示,所述风力机专用翼型WT201是选取翼型厚度为0.20的厚度约束,通过采用权利要求1所述的风力机专用翼型设计方法进行优化设计得到,翼型最大厚度位置在弦向x/c=0.294处,最大弯度为cam/c=0.030005,所处弦向位置为x/c=0.688。下表为翼型WT201的形状函数方程的系数。
  翼型名称   C1   C2   C3   C4   C5   C6   C7   C8
  WT201   0.136947   0.168366   -0.680133   0.555068   -0.210776   0.0421114   -0.00428201   0.000174758
采用风力机翼型专用分析软件RFOIL 3D翼型进行详细的气动特性分析,翼型WT201分析结果见图8。图中可见翼型WT201具有较低的粗糙度敏感性,对于外界污染、外物损伤和加工不敏感;具有较高的升力系数和最大升阻比;具有良好的非设计工况气动性能,翼型WT201自由转捩工况下最大升力系数为1.5689,最大升阻比为152.65,固定转捩工况下最大升力系数为1.4211,最大升阻比为83.0673。
参照图9,10分别为WT150、WT180翼型与相当厚度传统风力机常用翼型NACA64415、NACA63418翼型在相同运行工况下的气动特性对比图。在主要攻角范围内,自由转捩和固定转捩工况条件下,新翼型都比传统翼型具有更高的升阻比和升力系数。可见本发明实施例新翼型的气动性能对比传统翼型表现出明显的提高。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.风力机专用翼型设计方法,其特征在于:包括以下步骤:
1)对复平面上的一偏心圆zc进行儒可夫斯基保角变换,得到保角变换函数如下:
ζ=f(zc)=zc+a2/zc
其中a为几何尺度因子,为1/4翼型弦长;
2)将zc设计为拟圆,对zc进行拟圆表达,得到拟圆表达函数如下:
zc=a×ρ(θ)×exp(iθ);
其中θ为复角,ρ(θ)为θ的可变函数,exp(iθ)为复平面的指数表示;
将拟圆表达函数代入步骤1)中的保角变换函数,可得如下方程:
ζ = z c + a 2 / z c = a ( ρ + 1 ρ ) cos ( θ ) + i · a ( ρ - 1 ρ ) sin ( θ ) ;
3)用笛卡尔直角坐标对复平面ζ进行表达,即ζ=x+iy,带入步骤2)中的方程,即得如下等式:
x = a ( ρ + 1 ρ ) cos ( θ ) y = a ( ρ - 1 ρ ) sin ( θ ) ;
4)根据Taylor级数对等思想,用一个高阶多项式对ρ(θ)进行表达,即得如下的翼型形状函数:
ρ(θ)=C0+C1θ+C2θ2+C3θ3+…Ckθk+…;
其中,k=0,1,2,...n;C0,C1,C2,...Ck,...为形状函数系数,θ∈[0,2π];
5)选择ρ(θ)的第2到第9项系数作为优化设计的变量X:
X=(x1,x2,x3,x4,x5,x6,x7,x8)=(C1,C2,C3,C4,C5,C6,C7,C8 C9);
将变量X代入步骤4)中的翼型形状函数,再将得到的ρ(θ)值代入步骤3)中的等式,即得到风力机专用翼型的形状及坐标参数,所得结果为一系列的弦向x,y坐标值,将各坐标点依次连接并表示在二维直角坐标系上,即可得到翼型二维形状;通过舍取级数项数和改变级数系数,进行优化设计,即可得到不同形状和性能的翼型。
2.根据权利要求1所述的风力机专用翼型设计方法,其特征在于:所述步骤5)中的优化设计还包括基于风力机专用翼型设计工况条件,即设计攻角αd和相应翼型所处叶片展向位置实际运行条件下的雷诺数Re与马赫数Ma,分别以自由转捩和固定转捩工况的翼型升阻比加权值作为目标函数,建立遗传算法的适应度目标函数模型如下:
f(x)=max(λ·(cl/cd)+(1-λ)·(c′l/c′d));
式中:λ为自由转捩工况升阻比权值系数,λ∈[0,1];cl,cd为自由转捩工况下翼型升力系数和阻力系数;c′l,c′d为固定转捩工况下的翼型升力系数和阻力系数,其中转捩模型采用吸力面处于1%弦长位置固定转捩,压力面处于10%弦长位置固定转捩,以上所述吸力面即上翼面,压力面即下翼面。
3.根据权利要求2所述的风力机专用翼型设计方法,其特征在于:所述步骤5)中的优化设计还包括采用改进的多目标遗传算法对风力机专用翼型型线进行形状优化,遗传算法的参数设定为:
初始种群数目p=30,最大进化代数kmax=200,交叉概率pcross=0.7,变异概率pmat=0.1。
4.根据权利要求3所述的风力机专用翼型设计方法,其特征在于:为保证所设计的几何形状具有翼型的特征,翼型形状函数系数必须满足控制方程约束:
C 0 = 1 2 πC 1 + 4 π 2 C 2 + · · · + 2 k π k C k + · · · = 0 πC 1 + π 2 C 2 + · · · + π k C k + · · · = ϵ πC 1 + 2 π 2 C 2 + · · · + ( 3 k - 1 ) π k 2 k C k + · · · = - Δ ;
式中:k为选取形状函数的最高阶数,ε,Δ分别为拟圆图形在原坐标平面内的横坐标偏移量和纵坐标偏移量;
同时,为确保生成翼型型线的设计空间覆盖一个近似圆空间,建立变量边界约束条件:
Xmin≤X≤Xmax
Xmin、Xmax分别表示设计变量的上限和下限值,取值为:
X min X max = - 1 , - 1 , - 1 , - 1 , - 1 , - 0.1 , - 0.01 , - 0.001 + 1 , + 1 , + 1 , + 1 , + 1 , + 0.1 , + 0.01 , + 0.001 .
5.根据权利要求4所述的风力机专用翼型设计方法,其特征在于:所述步骤5)中的优化设计中,翼型最大厚度弦向位置约束条件为:
0.24≤Lmax≤0.35
Lmax为翼型最大厚度所处的弦向位置;
设计工况下翼型升力系数约束为:
cl≥0.8;
设计工况下翼型升力系数粗糙度敏感性约束为:
cl-c′l≤0.05;
6.根据权利要求5所述的风力机专用翼型设计方法,其特征在于:为控制风轮工作时的噪声,叶尖部分翼型具有的尖尾缘特性约束为:
yu,099-yl,099≤0.01;
式中,yu,0.99,yl,0.99分别表示x弦向坐标为0.99时,翼型上、下翼面的y坐标值。
7.风力机专用翼型,其特征在于:所述风力机专用翼型是选取翼型厚度为0.15的厚度约束,通过采用权利要求1所述的风力机专用翼型设计方法进行优化设计得到,翼型最大厚度位置在弦向x/c=0.254处,最大弯度为cam/c=0.037385,所处弦向位置为x/c=0.443。
8.风力机专用翼型,其特征在于:所述风力机专用翼型是选取翼型厚度为0.17的厚度约束,通过采用权利要求1所述的风力机专用翼型设计方法进行优化设计得到,翼型最大厚度位置在弦向x/c=0.289处,最大弯度为cam/c=0.029445,所处弦向位置为x/c=0.460。
9.风力机专用翼型,其特征在于:所述风力机专用翼型是选取翼型厚度为0.18的厚度约束,通过采用权利要求1所述的风力机专用翼型设计方法进行优化设计得到,翼型最大厚度位置在弦向x/c=0.294处,最大弯度为cam/c=0.030005,所处弦向位置为x/c=0.688。
10.风力机专用翼型,其特征在于:所述风力机专用翼型是选取翼型厚度为0.20的厚度约束,通过采用权利要求1所述的风力机专用翼型设计方法进行优化设计得到,翼型最大厚度位置在弦向x/c=0.305处,最大弯度为cam/c=0.028847,所处位置为x/c=0.691。
CN2009101912757A 2009-10-30 2009-10-30 风力机专用翼型设计方法及风力机专用翼型 Expired - Fee Related CN101923584B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101912757A CN101923584B (zh) 2009-10-30 2009-10-30 风力机专用翼型设计方法及风力机专用翼型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101912757A CN101923584B (zh) 2009-10-30 2009-10-30 风力机专用翼型设计方法及风力机专用翼型

Publications (2)

Publication Number Publication Date
CN101923584A true CN101923584A (zh) 2010-12-22
CN101923584B CN101923584B (zh) 2012-08-15

Family

ID=43338517

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101912757A Expired - Fee Related CN101923584B (zh) 2009-10-30 2009-10-30 风力机专用翼型设计方法及风力机专用翼型

Country Status (1)

Country Link
CN (1) CN101923584B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102395146A (zh) * 2011-12-09 2012-03-28 中国科学院上海微系统与信息技术研究所 一种面向多目标点监测的无线传感网感知拓扑构建方法
CN102444540A (zh) * 2011-11-10 2012-05-09 深圳市艾飞盛风能科技有限公司 一种水平轴风力发电机的风轮叶片翼型
CN103133272A (zh) * 2013-03-26 2013-06-05 国电联合动力技术有限公司 一种大型风机的薄翼型叶片
CN103174585A (zh) * 2013-03-15 2013-06-26 中国农业大学 一种s型垂直轴风力机叶片形状设计方法
CN103967718A (zh) * 2013-02-05 2014-08-06 新疆尚孚新能源科技有限公司 三维曲面翼型的设计方法
CN104317992A (zh) * 2014-10-11 2015-01-28 重庆工商大学 风力机翼型正设计方法及风力机翼型族
CN104612892A (zh) * 2014-12-30 2015-05-13 中国科学院工程热物理研究所 一种风力机翼型的多学科优化设计方法
CN104819104A (zh) * 2015-03-03 2015-08-05 西安理工大学 一种基于力学模型的圆弧翼型叶片受力计算方法
CN105404743A (zh) * 2015-11-25 2016-03-16 湖北工业大学 B样条与曲率光滑连续性结合的风力机翼型设计方法
CN109026519A (zh) * 2018-07-26 2018-12-18 华北电力大学 风电叶片、风轮及风电叶片弦长的确定方法
CN112253401A (zh) * 2020-10-21 2021-01-22 石家庄铁道大学 一种不同湍流度下风力机翼型气动力方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101458735A (zh) * 2008-12-31 2009-06-17 重庆大学 一种具有高升阻比的翼型

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102444540A (zh) * 2011-11-10 2012-05-09 深圳市艾飞盛风能科技有限公司 一种水平轴风力发电机的风轮叶片翼型
CN102444540B (zh) * 2011-11-10 2013-09-11 深圳市艾飞盛风能科技有限公司 一种水平轴风力发电机的风轮叶片翼型
CN102395146B (zh) * 2011-12-09 2014-03-12 中国科学院上海微系统与信息技术研究所 一种面向多目标点监测的无线传感网感知拓扑构建方法
CN102395146A (zh) * 2011-12-09 2012-03-28 中国科学院上海微系统与信息技术研究所 一种面向多目标点监测的无线传感网感知拓扑构建方法
CN103967718B (zh) * 2013-02-05 2016-10-05 新疆尚孚新能源科技有限公司 三维曲面翼型的设计方法
CN103967718A (zh) * 2013-02-05 2014-08-06 新疆尚孚新能源科技有限公司 三维曲面翼型的设计方法
CN103174585A (zh) * 2013-03-15 2013-06-26 中国农业大学 一种s型垂直轴风力机叶片形状设计方法
CN103133272A (zh) * 2013-03-26 2013-06-05 国电联合动力技术有限公司 一种大型风机的薄翼型叶片
CN104317992A (zh) * 2014-10-11 2015-01-28 重庆工商大学 风力机翼型正设计方法及风力机翼型族
CN104612892A (zh) * 2014-12-30 2015-05-13 中国科学院工程热物理研究所 一种风力机翼型的多学科优化设计方法
CN104612892B (zh) * 2014-12-30 2017-03-29 中国科学院工程热物理研究所 一种风力机翼型的多学科优化设计方法
CN104819104A (zh) * 2015-03-03 2015-08-05 西安理工大学 一种基于力学模型的圆弧翼型叶片受力计算方法
CN104819104B (zh) * 2015-03-03 2017-05-31 西安理工大学 一种基于力学模型的圆弧翼型叶片受力计算方法
CN105404743A (zh) * 2015-11-25 2016-03-16 湖北工业大学 B样条与曲率光滑连续性结合的风力机翼型设计方法
CN105404743B (zh) * 2015-11-25 2018-09-07 湖北工业大学 B样条与曲率光滑连续性结合的风力机翼型设计方法
CN109026519A (zh) * 2018-07-26 2018-12-18 华北电力大学 风电叶片、风轮及风电叶片弦长的确定方法
CN109026519B (zh) * 2018-07-26 2019-09-03 华北电力大学 风电叶片、风轮及风电叶片弦长的确定方法
CN112253401A (zh) * 2020-10-21 2021-01-22 石家庄铁道大学 一种不同湍流度下风力机翼型气动力方法及系统

Also Published As

Publication number Publication date
CN101923584B (zh) 2012-08-15

Similar Documents

Publication Publication Date Title
CN101923584B (zh) 风力机专用翼型设计方法及风力机专用翼型
CN101532906A (zh) 风力发电机叶片的流体动力学和结构力学分析方法
CN101615216B (zh) 对翼型尾缘进行流线形增厚的方法
CN102235325B (zh) 基于翼型集成和混合尾缘改型的风力机叶尖翼型设计方法
CN103136422A (zh) 翼型集成与b样条结合的中等厚度翼型设计方法
CN103277245A (zh) 一族大厚度钝尾缘风力机翼型及其设计方法
CN203374428U (zh) 一族大厚度钝尾缘风力机翼型
Chen et al. A detailed investigation of a novel vertical axis Darrieus wind rotor with two sets of blades
Wang et al. Aerodynamic shape optimized design for wind turbine blade using new airfoil series
CN106089569A (zh) 一种适用于低雷诺数流动的小型风力机叶片翼型
CN110298093B (zh) 一种浮式风机缩比模型性能相似叶片设计方法
CN104863799A (zh) 一种利用贝塞尔函数曲线的风力机翼型设计方法
CN102163244A (zh) 一种叶片前缘豚头型处理方法
CN112883503B (zh) 基于ptfe膜对风机叶片气动特性影响的数值模拟方法
CN104018998B (zh) 一种用于兆瓦级风力机叶片的21%厚度主翼型
CN103133272A (zh) 一种大型风机的薄翼型叶片
CN103939283B (zh) 垂直轴风力机专用叶片
CN103306907B (zh) 一种大型风机的大厚度钝尾缘翼型叶片
CN101886619B (zh) 风力发电机叶尖专用翼型
Grasso Design of a family of new advanced airfoils for low wind class turbines
Rajakumar et al. Computational fluid dynamics of wind turbine blade at various angles of attack and low Reynolds number
CN103883483B (zh) 一种100w风力发电机叶片
CN104018999B (zh) 一种用于兆瓦级风力机叶片的25%厚度主翼型
CN104696158B (zh) 一种垂直轴风力发电机组升力型叶片翼型
CN203770019U (zh) 一种100w风力发电机叶片

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120815

Termination date: 20131030