CN101915269A - 一种永磁偏置混合磁轴承电流刚度和位移刚度确定方法 - Google Patents

一种永磁偏置混合磁轴承电流刚度和位移刚度确定方法 Download PDF

Info

Publication number
CN101915269A
CN101915269A CN 201010200460 CN201010200460A CN101915269A CN 101915269 A CN101915269 A CN 101915269A CN 201010200460 CN201010200460 CN 201010200460 CN 201010200460 A CN201010200460 A CN 201010200460A CN 101915269 A CN101915269 A CN 101915269A
Authority
CN
China
Prior art keywords
suspension rotor
magnetic suspension
permanent magnet
rigidity
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010200460
Other languages
English (en)
Other versions
CN101915269B (zh
Inventor
房建成
郑世强
李海涛
谢进进
李文琢
马纪军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN2010102004600A priority Critical patent/CN101915269B/zh
Publication of CN101915269A publication Critical patent/CN101915269A/zh
Application granted granted Critical
Publication of CN101915269B publication Critical patent/CN101915269B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种永磁偏置混合磁轴承电流刚度和位移刚度确定方法,根据磁悬浮转子的简谐运动动力学方程,建立电流刚度和位移刚度、控制器比例增益、磁悬浮转子简谐运动振荡频率之间的关系,通过调节控制器比例增益,得到关于控制器增益与磁悬浮转子简谐运动振荡频率的相关数据,通过拟合一元线性回归方程的系数,确定磁悬浮转子的电流刚度和位移刚度。本发明简单实用,可应用于磁悬浮转子控制系统的分析设计。

Description

一种永磁偏置混合磁轴承电流刚度和位移刚度确定方法
技术领域
本发明涉及一种永磁偏置混合磁轴承电流刚度和位移刚度确定方法,可以用于磁悬浮转子控制系统的分析与设计。
背景技术
磁轴承是继滑动轴承、滚动轴承和静压轴承之后发展起来的一种理想的新型轴承,具有无接触、无磨损、高速等优点。磁轴承按照磁力提供方式,可分为永磁磁轴承、主动磁轴承和永磁偏置混合磁轴承。永磁磁轴承的主要缺点是刚度低、不可控,主动磁轴承的主要缺点是体积、功耗大,而永磁偏置混合磁轴承利用永磁体取代主动磁轴承中由励磁电流产生的静态偏置磁场,具有降低功率放大器的损耗,减少电磁铁的安匝数,缩小磁轴承的体积和重量,提高轴承承载能力等优点,应用领域日益广泛,如航天器姿态控制执行机构、高速机床、汽轮发动机、空气压缩机等领域。
由于永磁偏置混合磁轴承系统本质是一个开环不稳定系统,所以需要设计闭环控制器对系统进行调节。控制器设计过程中一个重要的环节就是需要确定系统模型。为了确保系统稳定运行,必然要考虑轴承的力一电流特性和力一位移特性,以便对其承载能力的动态性能进行预测,进而使控制器能精确地反馈信号,维持磁轴承系统的正常工作。
在永磁偏置混合磁轴承控制系统的设计计算中,线性控制理论是一种成熟的设计方法,目前常用的线性化方法是在磁悬浮转子的平衡点附近对系统的力学方程进行线性简化,从而进行控制系统设计。其中,电流刚度和位移刚度是线性模型中的两个参数,也是永磁偏置混合磁轴承控制过程中的两个重要参数。因此电流刚度和位移刚度的参数准确性直接影响到所设计的控制器的性能。
目前有关电流刚度和位移刚度的确定方法主要有两类,一是理论计算法,如在中国专利“ZL200710120705.7”公开的“一种基于涡流效应的磁轴承动态电流刚度确定方法”,这种方法通过利用磁轴承设计参数对电流刚度和位移刚度进行计算,并考虑了涡流效应的影响,但忽视了磁轴承之间磁路耦合、漏磁等影响,不能反映磁轴承控制系统正常工作时的系统特性;二是试验法,通过在磁轴承内安装测力传感器,改变电流大小和转子的在间隙中的位置,测量电磁力的大小,获得电流刚度和位移刚度参数值,这种方法虽然具有物理意义简单明确、精度较高等优点,但受限于机械尺寸大小、安装困难等因素的影响,无法在现有的磁轴承中安装。
发明内容
本发明解决的技术问题是:克服现有磁轴承电流刚度和位移刚度确定方法的不足,提出一种面向控制的永磁偏置混合磁轴承电流刚度和位移刚度确定方法,可简便、有效地用于控制系统的分析与设计。
本发明的技术解决方案是:一种永磁偏置混合磁轴承电流刚度和位移刚度确定方法,包括以下步骤:
(1)建立磁悬浮转子的简谐运动动力学方程,进行相似变换,得到简化的简谐运动动力学方程;
(2)进行拉普拉斯变化,得到磁悬浮转子简谐运动的振荡频率的平方项与控制器比例增益的关系表达式;
(3)进行悬浮实验,采用比例微分控制,单自由度稳定悬浮磁悬浮转子,逐渐减少控制器的微分系数,直至磁悬浮转子出现持续、稳定的振荡,记录控制器比例增益和简谐运动振荡频率;
(4)改变控制器比例增益,重复步骤(3),测量多组数据,通过拟合,得到以控制器比例增益为自变量,振荡频率的平方项为因变量的一元线性回归方程为,根据步骤(2)中磁悬浮转子简谐运动的振荡频率的平方项与控制器比例增益的关系表达式,得到永磁偏置混合磁轴承的位移刚度和电流刚度。
本发明的原理是:首先建立磁悬浮转子的简谐运动动力学方程:
( J rr + m l p ) α . . + k h ( l p + l m ) 2 sin α + k p k i k s ( l p + l s ) sin α - mg l p sin α = 0 - - - ( 1 )
其中Jrr是磁悬浮转子的径向的转动惯量,m为磁悬浮转子质量,g为重力加速度常数,α为磁悬浮转子径向转动角位移,lp为保护轴承中心到磁悬浮转子中心的垂直距离,lm为永磁偏置混合磁轴承中心到磁悬浮转子中心的垂直距离,ls为位移传感器中心到磁悬浮转子中心的垂直距离,ks为位移传感器增益,ki永磁偏置混合磁轴承电流刚度,kh为永磁偏置混合磁轴承位移刚度,kp为控制器比例增益;由于保护间隙小,最大径向角位移α不超过3″,可令sinα等于α,将式(1)中sinα用α代替,可得到简化的简谐运动动力学方程:
( J rr + m l p 2 ) α . . + k h ( l p + l m ) 2 α + k p k i k s ( l p + l s ) α - mg l p α = 0 - - - ( 2 )
对(2)式进行拉普拉斯变化,可得
( J rr + m l p 2 ) s 2 + k h ( l p + l m ) 2 + k p k i k s ( l p + l s ) - mg l p = 0 - - - ( 3 )
其中s为拉普拉斯算子,令s=jw,可得到磁悬浮转子简谐运动的振荡频率w的平方项w2与控制器比例增益kp的关系表达式为
w 2 = k p k i · k s ( l p + l s ) ( J rr + m l p 2 ) + k h ( l p + l m ) 2 - mg l p ( J rr + m l p 2 ) - - - ( 4 )
进行简谐运动实验,采用比例微分控制,单自由度稳定悬浮磁悬浮转子,逐渐减少控制器的微分系数,直至磁悬浮转子出现持续、稳定的振荡,记录此时的控制器比例增益和简谐运动振荡频率;改变控制器比例增益,重复以上步骤,测量多组数据,利用最小二乘法,得到以kp为自变量,w2为因变量的一元线性回归方程为:
w2=K·kp+C                     (5)
其中K为一元线性回归方程的斜率,C为一元线性回归方程的截距。
利用最小二乘法,求取K和C的过程如下,记二元函数
Q ( a , b ) = Σ i = 1 n [ w ( i ) 2 - ( K · k p ( i ) + C ) ] 2 - - - ( 6 )
其中n表示测量次数,kp(i),
Figure BSA00000160704600034
分别表示第i次测量所得的控制器比例增益和简谐运动振荡频率,则求解K和C的问题可转换为求Q(a,b)的最小值点,即满足Q(a,b)的梯度
Figure BSA00000160704600035
的点,据此,(K,C)应满足下面的方程组
∂ Q ∂ K = 0 ∂ Q ∂ C = 0 ⇒ ( Σ i = 1 n k p ( i ) 0 ) C + ( Σ i = 1 n k p ( i ) ) K = Σ i = 1 n w ( i ) 2 ( Σ i = 1 n k p ( i ) ) C + ( Σ i = 1 n k p ( i ) 2 ) K = Σ i = 1 n k p ( i ) w ( i ) 2 - - - ( 7 )
记n维向量
Figure BSA00000160704600037
上式可表示为正则方程组的形式
Figure BSA00000160704600038
求解这个方程,即可得到K值和C值。
根据式(4)和式(5)所列的w2与kp的关系表达式,代入K值和C值,可得永磁偏置混合磁轴承的电流刚度ki和位移刚度kh为:
k i = K ( J rr + m l p 2 ) k s ( l p + l s ) k h = C ( J rr + m l p 2 ) - mg l p ( l p + l m ) 2 - - - ( 8 )
本发明与现有技术的优点在于:
(1)相比理论计算法,本发明是在磁轴承控制系统正常工作状态下进行的,磁悬浮转子在间隙中的位置、磁轴承线圈电流都是动态变化的,所以得到电流刚度和位移刚度的参数值可更有效地用于控制系统的分析与设计。
(2)相比试验法,本发明所采用的方法不受磁轴承机械尺寸、安装位置影响,不需要其它辅助设备,利用已有的磁轴承硬件及其控制系统,就可完成电流刚度和位移刚度参数的确定。
附图说明
图1为本发明采用的磁悬浮转子及控制系统示意图;
图2为本发明的实现流程图;
图3为本发明中磁悬浮转子简谐运动时Ax方向上位移振荡的示波器采集图;
图4为本发明中的控制器比例增益kp和振荡频率的平方项w2的测量值及其一元线性回归拟合曲线。
具体实施方案
如图1所示,永磁偏置混合磁轴承控制系统由永磁偏置混合磁轴承、功放、磁悬浮转子、位移传感器和控制器组成。位移传感器检测出电磁铁转子偏离参考点的位移,控制器根据此位移偏差计算出控制信号,然后功放将控制信号转换为控制电流,驱动电磁铁产生适当的电磁力,使磁悬浮转子悬浮在给定位置上。由于保护轴承与永磁偏置混合磁轴承相比,位置更靠近磁悬浮转子,所以在未悬浮时,磁悬浮转子支承在保护轴承之上,防止永磁偏置混合磁轴承与磁悬浮转子接触而受到损伤。
本实例中永磁偏置混合磁轴承及磁悬浮转子的参数如下,转子极转动惯量Jrr为0.0159kgm2,转子质量m为4.74kg,磁轴承中心到转子质心的距离lm为48.92mm,保护轴承到转子质心的距离lp为79.54mm,位移传感器到转子质心的距离ls为77.61mm,重力加速度常数g为9.8m/s2,保护轴承的保护间隙sp为0.22mm。
本发明的流程图如图2所示,一种面向控制的永磁偏置混合磁轴承电流刚度和位移刚度确定方法,首先根据磁悬浮转子的简谐振动动力学方程,得到振荡频率的平方项w2与控制器比例增益kp的关系式;再对磁悬浮转子稳定悬浮,逐减微分系数,直至产生简谐振动,记录kp和w,改变控制器的比例增益kp,测量相应的振荡频率w,通过拟合,得到以kp为自变量,w2为因变量的一元线性回归方程;最后根据线性回归方程系数,获得永磁偏置混合磁轴承的位移刚度和电流刚度。
实验过程如下:
(1)上端A端磁悬浮转子工作,B端电磁铁不工作而落在保护轴承上,磁悬浮转子方向垂直于地面。利用磁轴承控制系统,采用比例微分控制,单自由度稳定悬浮磁悬浮转子。
(2)固定控制器的比例增益kp=2.5,然后逐渐减少控制器的微分系数,直至磁悬浮转子出现持续、稳定的振荡,形成简谐运动,磁悬浮转子在Ax方向上的位移振荡的示波器采集图如图3所示。
(3)利用示波器的Math功能,对磁悬浮转子的位移信号进行快速傅里叶变换(FFT),读取频谱信号的XatMax(M)值,即得到简谐运动振荡频率w,进而得到其平方项w2;然后,递加控制器比例增益,按照上述方法,分别测量kp为3.5,3.6,3.7,3.8,3.9,4,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5时简谐运动振荡频率w及其平方项w2,上述数据经整理列表如下:
  测量次数   kp   w   w2
  1   3.5   30.2   912.04
  2   3.7   33.9   1149.21
  3   3.9   35.6   1267.36
  4   4.1   37.7   1421.29
  5   4.3   40.5   1640.25
  6   4.5   43.1   1857.61
  7   4.7   45.0   2025
  8   4.9   47.9   2294.41
(4)根据这8组测量数据,利用最小二乘法,得到以kp为自变量,w2为因变量一元线性回归拟合曲线
w2=K·kp+C
求取上式的一元线性回归方程的斜率K和截距C的过程如下,记二元函数
Q ( a , b ) = Σ i = 1 8 [ w ( i ) 2 - ( K · k p ( i ) + C ) ] 2
其中n表示测量次数,kp(i),
Figure BSA00000160704600062
分别表示第i次测量所得的控制器比例增益和简谐运动振荡频率,则求解K和C的问题可转换为求Q(a,b)的最小值点,即满足Q(a,b)的梯度
Figure BSA00000160704600063
的点,据此,(K,C)应满足下面的方程组
∂ Q ∂ K = 0 ∂ Q ∂ C = 0 ⇒ ( Σ i = 1 8 k p ( i ) 0 ) C + ( Σ i = 1 8 k p ( i ) ) K = Σ i = 1 8 w ( i ) 2 ( Σ i = 1 8 k p ( i ) ) C + ( Σ i = 1 8 k p ( i ) 2 ) K = Σ i = 1 8 k p ( i ) w ( i ) 2
记8维向量
Figure BSA00000160704600065
Figure BSA00000160704600066
上式可表示为正则方程组的形式
Figure BSA00000160704600067
根据上式,可得一元线性回归方程的斜率K为955.1,截距C为-2440.4。本实例中kp和w2的测量值及其一元线性回归拟合曲线如图4所示。
(5)将得到的K值和C值以及已知的永磁偏置混合磁轴承及磁悬浮转子的参数代入下式
k i = K ( J rr + m l p 2 ) k s ( l p + l s ) k h = C ( J rr + m l p 2 ) - mg l p ( l p + l m ) 2
因而可得本实例中永磁偏置混合磁轴承电流刚度ki和位移刚度kh
k i = 247 N / A k h = - 5.932 × 10 5 N / m
本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (2)

1.一种永磁偏置混合磁轴承位移刚度和电流刚度确定方法,其特征在于实现步骤如下:
(1)建立磁悬浮转子的简谐运动动力学方程:
( J rr + m l p 2 ) α . . + k h ( l p + l m ) 2 sin α + k p k i k s ( l p + l s ) sin α - mg l p sin α = 0
其中Jrr是磁悬浮转子的径向的转动惯量,m为磁悬浮转子质量,g为重力加速度常数,α为磁悬浮转子径向转动角位移,lp为保护轴承中心到磁悬浮转子中心的垂直距离,lm为永磁偏置混合磁轴承中心到磁悬浮转子中心的垂直距离,ls为位移传感器中心到磁悬浮转子中心的垂直距离,ks为位移传感器增益,ki永磁偏置混合磁轴承电流刚度,kh为永磁偏置混合磁轴承位移刚度,kp为控制器比例增益;由于保护间隙小,最大径向角位移α不超过3″,sinα可相似变换等于α,得到简化的简谐运动动力学方程:
( J rr + m l p 2 ) α . . + k h ( l p + l m ) 2 α + k p k i k s ( l p + l s ) α - mg l p α = 0 ;
(2)对步骤(1)中的简化的简谐运动动力学方程进行拉普拉斯变换,表示为
( J rr + m l p 2 ) s 2 + k h ( l p + l m ) 2 + k p k i k s ( l p + l s ) - mg l p = 0
其中s为拉普拉斯算子;令s=jw,得到磁悬浮转子简谐运动的振荡频率w的平方项w2与控制器比例增益kp的关系表达式为
w 2 = k p k i · k s ( l p + l s ) ( J rr + m l p 2 ) + k h ( l p + l m ) 2 - mg l p ( J rr + m l p 2 ) ;
(3)进行悬浮实验,采用比例微分控制,单自由度稳定悬浮磁悬浮转子,逐渐减少控制器的微分系数,直至磁悬浮转子出现持续、稳定的振荡,记录此时的kp和w;
(4)改变控制器比例增益kp,重复步骤(3),测量多组数据,通过拟合,得到以kp为自变量,w2为因变量的一元线性回归方程为
w2=K·kp+C
其中K为一元线性回归方程的斜率,C为一元线性回归方程的截距;
根据步骤(2)中kp与w2的关系表达式,得到永磁偏置混合磁轴承电流刚度ki和位移刚度kh
k i = K ( J rr + m l p ) k s ( l p + l s ) k h = C ( J rr + m l p ) - mg l p ( l p + l m ) 2 .
2.根据权利要求1所述的一种永磁偏置混合磁轴承位移刚度和电流刚度确定方法,其特征在于:所述步骤(4)中一元线性回归方程的斜率和截距利用数据拟合的最小二乘法获得。
CN2010102004600A 2010-06-09 2010-06-09 一种永磁偏置混合磁轴承电流刚度和位移刚度确定方法 Expired - Fee Related CN101915269B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102004600A CN101915269B (zh) 2010-06-09 2010-06-09 一种永磁偏置混合磁轴承电流刚度和位移刚度确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102004600A CN101915269B (zh) 2010-06-09 2010-06-09 一种永磁偏置混合磁轴承电流刚度和位移刚度确定方法

Publications (2)

Publication Number Publication Date
CN101915269A true CN101915269A (zh) 2010-12-15
CN101915269B CN101915269B (zh) 2012-05-23

Family

ID=43322858

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102004600A Expired - Fee Related CN101915269B (zh) 2010-06-09 2010-06-09 一种永磁偏置混合磁轴承电流刚度和位移刚度确定方法

Country Status (1)

Country Link
CN (1) CN101915269B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425554A (zh) * 2011-11-10 2012-04-25 北京中科科仪技术发展有限责任公司 一种磁悬浮分子泵增益调度控制方法
CN104503238A (zh) * 2014-12-15 2015-04-08 北京航空航天大学 一种基于自适应重复控制器的磁悬浮转子系统电流谐波抑制方法
CN107077107A (zh) * 2014-06-05 2017-08-18 泰克年研究发展基金会公司 大规模光子集成电路的多自由度稳定性
CN107797450A (zh) * 2017-10-11 2018-03-13 北京航空航天大学 一种基于复系数法的磁悬浮扁平转子系统章动频率解析方法
CN108368881A (zh) * 2015-12-10 2018-08-03 大金工业株式会社 磁轴承装置及压缩机
CN109058292A (zh) * 2018-08-09 2018-12-21 南京航空航天大学 一种新型磁悬浮轴承不平衡振动力直接抑制方法
CN109707733A (zh) * 2018-11-27 2019-05-03 清华大学 一种磁轴承隔振与抗冲击控制方法及系统
CN110231133A (zh) * 2019-06-26 2019-09-13 北京航空航天大学 一种磁悬浮轴承电流刚度和位移刚度测量方法
CN111350757A (zh) * 2019-12-11 2020-06-30 燕山大学 一种单自由度磁液双悬浮轴承控制方法
CN111350758A (zh) * 2020-03-12 2020-06-30 南京航空航天大学 一种航空发动机永磁偏置锥形磁轴承振动力主动控制方法
CN112987579A (zh) * 2021-05-13 2021-06-18 中国人民解放军国防科技大学 电磁悬浮控制系统中悬浮刚度的测量方法、系统及装置
CN114593148A (zh) * 2022-03-11 2022-06-07 中国航空发动机研究院 一种电磁轴承转子系统控制方法及控制装置
CN114776708A (zh) * 2022-04-21 2022-07-22 北京航空航天大学 变工作点磁轴承稳定控制系统
CN116500524A (zh) * 2023-07-01 2023-07-28 北京格瑞拓动力设备有限公司 磁悬浮电机的轴向磁轴承刚度测试装置
CN116576147A (zh) * 2023-07-12 2023-08-11 广东美的暖通设备有限公司 磁悬浮保护边界的确定方法及其装置、离心压缩机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146726A (ja) * 1998-11-09 2000-05-26 Nsk Ltd 転がり軸受の予圧量測定装置
CN1589397A (zh) * 2001-10-09 2005-03-02 日本精工株式会社 轴承装置的刚度估算设备和方法、制造轴承装置的设备和方法以及轴承装置
CN101033775A (zh) * 2007-01-10 2007-09-12 北京航空航天大学 一种基于涡流效应的磁轴承动态电流刚度确定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146726A (ja) * 1998-11-09 2000-05-26 Nsk Ltd 転がり軸受の予圧量測定装置
CN1589397A (zh) * 2001-10-09 2005-03-02 日本精工株式会社 轴承装置的刚度估算设备和方法、制造轴承装置的设备和方法以及轴承装置
CN101033775A (zh) * 2007-01-10 2007-09-12 北京航空航天大学 一种基于涡流效应的磁轴承动态电流刚度确定方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425554B (zh) * 2011-11-10 2014-04-09 北京中科科仪股份有限公司 一种磁悬浮分子泵增益调度控制方法
CN102425554A (zh) * 2011-11-10 2012-04-25 北京中科科仪技术发展有限责任公司 一种磁悬浮分子泵增益调度控制方法
CN107077107A (zh) * 2014-06-05 2017-08-18 泰克年研究发展基金会公司 大规模光子集成电路的多自由度稳定性
CN104503238A (zh) * 2014-12-15 2015-04-08 北京航空航天大学 一种基于自适应重复控制器的磁悬浮转子系统电流谐波抑制方法
CN104503238B (zh) * 2014-12-15 2017-03-22 北京航空航天大学 一种基于自适应重复控制器的磁悬浮转子系统电流谐波抑制方法
CN108368881B (zh) * 2015-12-10 2019-12-27 大金工业株式会社 磁轴承装置及压缩机
CN108368881A (zh) * 2015-12-10 2018-08-03 大金工业株式会社 磁轴承装置及压缩机
CN107797450A (zh) * 2017-10-11 2018-03-13 北京航空航天大学 一种基于复系数法的磁悬浮扁平转子系统章动频率解析方法
CN109058292A (zh) * 2018-08-09 2018-12-21 南京航空航天大学 一种新型磁悬浮轴承不平衡振动力直接抑制方法
CN109058292B (zh) * 2018-08-09 2019-08-20 南京航空航天大学 一种新型磁悬浮轴承不平衡振动力直接抑制方法
CN109707733B (zh) * 2018-11-27 2020-05-22 清华大学 一种磁轴承隔振与抗冲击控制方法及系统
CN109707733A (zh) * 2018-11-27 2019-05-03 清华大学 一种磁轴承隔振与抗冲击控制方法及系统
CN110231133B (zh) * 2019-06-26 2020-11-24 北京航空航天大学 一种磁悬浮轴承电流刚度和位移刚度测量方法
CN110231133A (zh) * 2019-06-26 2019-09-13 北京航空航天大学 一种磁悬浮轴承电流刚度和位移刚度测量方法
CN111350757A (zh) * 2019-12-11 2020-06-30 燕山大学 一种单自由度磁液双悬浮轴承控制方法
CN111350758B (zh) * 2020-03-12 2021-10-08 南京航空航天大学 一种航空发动机永磁偏置锥形磁轴承振动力主动控制方法
CN111350758A (zh) * 2020-03-12 2020-06-30 南京航空航天大学 一种航空发动机永磁偏置锥形磁轴承振动力主动控制方法
CN112987579A (zh) * 2021-05-13 2021-06-18 中国人民解放军国防科技大学 电磁悬浮控制系统中悬浮刚度的测量方法、系统及装置
CN114593148A (zh) * 2022-03-11 2022-06-07 中国航空发动机研究院 一种电磁轴承转子系统控制方法及控制装置
CN114776708A (zh) * 2022-04-21 2022-07-22 北京航空航天大学 变工作点磁轴承稳定控制系统
CN116500524A (zh) * 2023-07-01 2023-07-28 北京格瑞拓动力设备有限公司 磁悬浮电机的轴向磁轴承刚度测试装置
CN116500524B (zh) * 2023-07-01 2023-08-18 北京格瑞拓动力设备有限公司 磁悬浮电机的轴向磁轴承刚度测试装置
CN116576147A (zh) * 2023-07-12 2023-08-11 广东美的暖通设备有限公司 磁悬浮保护边界的确定方法及其装置、离心压缩机
CN116576147B (zh) * 2023-07-12 2023-09-22 广东美的暖通设备有限公司 磁悬浮保护边界的确定方法及其装置、离心压缩机

Also Published As

Publication number Publication date
CN101915269B (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
CN101915269B (zh) 一种永磁偏置混合磁轴承电流刚度和位移刚度确定方法
Gong et al. Imbalance fault detection of direct-drive wind turbines using generator current signals
Wang et al. Multiscale filtering reconstruction for wind turbine gearbox fault diagnosis under varying-speed and noisy conditions
CN102331349B (zh) 永磁轴承刚度测量装置
Zhu et al. Rotor displacement self-sensing modeling of six-pole radial hybrid magnetic bearing using improved particle swarm optimization support vector machine
CN102169046A (zh) 一种磁悬浮机电设备弹性模态在线测试系统
CN102507187B (zh) 一种测定磁悬浮控制力矩陀螺径向磁轴承刚度特性的方法
CN107911057A (zh) 一种用于飞轮储能系统的转子位置鲁棒观测方法
Sun et al. Study on PID tuning strategy based on dynamic stiffness for radial active magnetic bearing
CN103036498A (zh) 一种基于pmu的同步发电机实用模型参数校核与辨识方法
CN109033488B (zh) 一种基于水机电耦合模型的抽水蓄能机组寿命分析方法
CN110531626B (zh) 基于滚动时域估计的磁悬浮转子振动补偿控制方法及系统
CN102904518B (zh) 一种同步发电机q轴参数在线辨识方法
CN104201963A (zh) 一种抑制直线电机定位力补偿控制器
Jiang et al. Analytical calculation of active magnetic bearing based on distributed magnetic circuit method
CN103174746A (zh) 一种主动型磁悬浮轴承系统及控制电路
CN103501148A (zh) 一种无轴承永磁同步电机无径向位移传感器运行控制方法
CN103324841A (zh) 基于故障录波器数据的在线动态负荷建模方法
Liu et al. Rotor displacement self-sensing method for six-pole radial hybrid magnetic bearing using mixed-kernel fuzzy support vector machine
Xu et al. Online detection and location of eccentricity fault in PMSG with external magnetic sensing
Kascak et al. Motoring performance of a conical pole-pair separated bearingless electric machine
Sun et al. Self-sensing technology of rotor displacement for six-pole radial active magnetic bearing using improved quantum particle swarm optimized cubature Kalman filter
CN207215371U (zh) 磁悬浮转子偏心模拟实验装置
CN103592530B (zh) 基于包络线拟合的低频振荡机理类型判别方法
CN106959158A (zh) 一种抽水蓄能机组振动监测方法及监测系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120523

Termination date: 20180609

CF01 Termination of patent right due to non-payment of annual fee